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Abstract
Despite recent major advances in leukemia research, the pathobiology of chronic lymphocytic
leukemia (CLL) remains poorly understood. Herein we review the role chronic inflammation plays
in the initiation and progression of CLL. The robust production of inflammatory cytokines and
chemokines accompanied by activation of intra-cellular pro-inflammatory pathways, and the
presence of somatic mutations that activate pro-inflammatory signaling pathways, suggest that
chronic inflammation plays a pathophysiological role in this disease. Indeed, glucocorticoids and
non-steroidal anti-inflammatory possess anti-tumor activity, and glucocorticoids have been
broadly used to treat CLL and its complications. Recent clinical trials demonstrated that tyrosine
kinase inhibitors, such as ibrutinib and the immune-modulatory agent lenalidomide, induced
impressive clinical responses in CLL patients with relapsed or refractory disease. As those pro-
inflammatory pathway inhibitors and immune modulating drugs proved to be effective in CLL,
other agents with similar activities are currently investigated in clinical trials. New insights into
the pathobiology of CLL and the development of novel classes of drugs will undoubtedly provide
us with effective tools to treat and perhaps cure CLL.

2. Introduction
B-cell chronic lymphocytic leukemia (CLL), the most common leukemia in the Western
hemisphere, is characterized by a dynamic imbalance between the proliferation and
apoptosis of neoplastic B-lymphocytes co-expressing cluster of differentiation 5 (CD5) and
CD19 antigens. Although approximately 20% of CLL patients are diagnosed as a result of
routine blood tests [1], CLL patients may present with a wide range of symptoms typically
witnessed in chronic inflammatory diseases. Fatigue, for example, might at times be so
severe that it alone constitutes an indication for treatment[2], and disease progression is
often associated with constitutional B symptoms such as low-grade fever, night sweats, and
weight loss[2].

A paradoxical deregulation of the immune system that produces an exaggerated
inflammatory response to minor insult or to self-antigens coupled with an inadequate
response to infectious stimuli is typically found in patients with CLL. The breakdown of
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tolerance to self-antigens causes a variety of autoimmune phenomena such as autoimmune
hemolytic anemia and/or thrombocytopenia (occurring in one third of CLL patients
throughout the course of their disease[3]), and overt cutaneous inflammatory reactions. For
example, more than 50 years ago, Weed et al.[4] described delayed hypersensitivity
reactions to mosquito bites in patients with CLL and in 1998, Davis et al. described 8
patients with CLL who presented with papulovesicular lesions resembling arthropod bites
whose skin biopsies showed T and B lymphocyte and prominent eosinophilic infiltrations
with eosinophilic granular protein deposition[5].

Although those syndromes are caused by an amplified inflammatory reaction, the relatively
high rate of infectious complications in CLL patients is the result of an inefficient immune
response. Approximately 50% of patients with CLL die of infectious complications[6].
Although most serious complications are therapy related, inherent defects in mucosal,
humeral, and cellular immune responses render CLL patients susceptible to infection[7].
Signs and symptoms of inflammation, detected at the onset of the disease, worsen with
disease progression, as is elevated levels of C-reactive protein levels and erythrocyte
sedimentation rate [8]. High beta-2 microglobulin (β2M) levels, usually detected in a broad
spectrum of chronic inflammatory diseases, correlate with disease stage, tumor burden, and
poor prognosis[9]. Whereas high levels of β2M are associated with an increased release of
pro-inflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin 1
(IL-1), IL-6, and IL-8, β2M diminishes the ability of dendritic cells to enact a T-cell
response[10]. Intracellular pro-inflammatory signaling pathways are activated in CLL cells,
providing the cells with proliferative and survival advantages and inducing the production of
inflammatory cytokines. Novel agents designed to block those pathways induce a dramatic
reduction in disease burden and partial restoration of the humeral immune-response in
patients with relapsed/refractory disease.

We review here the unique features of the inflammatory response in CLL patients and
discuss the effects of established and novel anti-inflammatory agents used to treat this
disease.

3. The inflammatory response in CLL
3.1 Soluble inflammatory signals

The role of cytokines and chemokines in the pathogenesis, maintenance, and progression of
CLL has been the subject of intense research over the past two decades. In a recent
comprehensive analysis of 23 cytokines in the sera of 84 patients with CLL and 49 age-
matched healthy individuals, the levels of 17 cytokines, mostly pro-inflammatory cytokines,
were significantly higher in the sera of the patients with CLL[11] (Fig 1). More than a 14-
fold increase in INF-γ was found in the sera of untreated CLL patients[12]. Similarly,
plasma levels of interleukin 6 (IL-6), IL-10[13], IL-8, and TNF-α[14] were also typically
increased over levels in controls. Whether produced by CLL cells or other cells, these
cytokines contribute, both directly and indirectly, to the survival of CLL cells.

In culture, CLL cells undergo spontaneous apoptosis[15]. However, co-culture with T
lymphocytes, mesenchymal stromal cells, nurse-like cells (NLCs), or endothelial cells
significantly reduces apoptosis rates of CLL cells[16, 17], suggesting that soluble factors
and cell-to-cell interactions provide CLL cells with survival signals. Various cytokines
whose levels are not increased in CLL also play a role in this process. For example, IL-4
activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT)
pathway that protects CLL cells from chemotherapy-induced apoptosis[18]. Although IL-4
levels are not elevated in the seraof patients with CLL[11], IL-4 receptor levels are
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constitutively high in CLL cells[19]. Similarly, B-cell activating factor (BAFF), a member
of the TNF superfamily, is thought to provide CLL cells with a survival advantage [20].

3.2 The cellular arm of chronic inflammation
The presence of CLL cells induces qualitative and quantitative alterations in T-cell
populations. However, except in rare cases of spontaneous remission [21], the immune
response fails to contain or eradicate the CLL clone. The immune response to CLL is
determined by opposing forces: an avid immune reaction triggered by the presence of the
malignant clone and impaired immune activity resulting from a defect in effector cell
function and CLL cell features that allow evasion of an immune attack.

Large numbers of CD4, CD8, and NK cells are usually detected at the time of CLL
diagnosis. The expansion of T cells and natural killer (NK) cells is associated with a
prolonged time to first treatment [22], and the relative number of CD8 and CD4 cells is an
independent predictor of survival [23], which suggests that these cells have anti-tumor
activity. Remarkably, the CD4/CD8 ratio is inverted in nearly half of CLL patients because
of an expansion of the cytotoxic T cells [23]. Functionally, these T cells are skewed toward
a memory cell phenotype, and the inverted ratio is associated with shorter lymphocyte
doubling time and worse prognosis [24]. In addition to quantitative changes, the function of
T cells and NK cells may be impaired in patients with CLL. For example, CD4 cells from
CLL patients showed increased susceptibility to FAS ligand (CD95)-induced apoptosis[25]
and reduced expression of CD40 ligand and CD28[26, 27].

Other cellular components of the immune system also contribute directly to the survival of
CLL cells by induction of inflammatory signals. Specifically, monocyte-derived NLCs cells
attract, bind, and protect CLL cells from spontaneous and drug-induced apoptosis in a
contact-dependent manner [28]. Co-culture with NLCs upregulates the activity of nuclear
factor (NF)-κB and the production of pro-inflammatory chemokines, including chemokine
ligand 3 (CCL3), CCL4, and CCL22 in CLL cells[29]. Thus, the cross-talk between CLL
cells and NLCs activates inflammatory pathways and provides a survival advantage to CLL
cells.

3.3 B-cell receptor (BCR) and intracellular pro-inflammatory signaling pathways
The trans-membranal BCR encompasses cell surface immunoglobulin (sIg) bound to a
dimer of Ig-α (CD79a) and Ig-β (CD79b) chains [30, 31]. In a normal B cell, antigen
binding induces the formation of a complex structure comprised of various kinases and
scaffold proteins, termed signalome, tethered at sites of sIg activation[32]. Signalosome
activation by kinases, such as Lyn kinase, results in activation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) and the nuclear factor of activated T cells (NF-
AT)[33]. BCR’s two crucial function, signal transduction and antigen presentation to helper
T cells, are initiated upon exposure to an antigen. In CLL, stimulation of the BCR induces
expansion of the malignant clone [34, 35]. In about 20% of patients with mutated IgHV, an
almost identical sequence—the complementarity determining region 3 (CDR3) in both
heavy and light chains [36-38] has been identified as a limited set of antigens is recognized
by the CLL cell sIg. BCR signaling in CLL is heterogeneous. CLL cells from some patients
appear to be unresponsive to antigen engagement when IgM is used for BCR stimulation,
whereas cells from other patients retain their signaling capacity [39]. Unlike normal B cells
that undergo apoptosis unless they differentiate into plasma or memory cells, CLL cells are
sustained by a constitutive tonic BCR activation that provides the substrate for activation of
NF-κB and NF-κB-regulated genes [40], induction of pro-survival signals, and production
of pro-inflammatory cytokines (Fig. 2).
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In addition to activation of the BCR, cytokine receptors such as toll-like receptor (TLR) and
CD40 bind their corresponding ligands and initiate signal transduction of pro-inflammatory
pathways. Furthermore, similar to constitutively activated BCR, STAT3 is constitutively
activated in CLL [41], providing CLL cells with a survival advantage, activating NF-κB
[42] and enhancing the production of inflammatory chemokines and cytokines (Fig. 2).

3.4 Summary
Activation of chronic inflammatory processes, characteristically found in CLL, provide CLL
cells with survival advantage and stimulate the neoplastic clone Constitutive activation of
pro-inflammatory intracellular master regulators, such as NF-kB and STAT3, contribute to
chronic inflammation by the induction of inflammatory cytokines such as IL-6 and IL-1,
whose activities are enhanced by cross-talk between CLL cells and their microenvironment,
resulting in quantitative and qualitative abnormalities in the effector arm of the immune
response. Strategies to target one or more pro-inflammatory pathways are discussed in
chapter 5.

4. CLL cell somatic mutations activating pro-inflammatory pathways
Two large-scale DNA deep-sequencing studies detected somatic mutations in CLL cells. In
one study, deep sequencing of 105 CLL samples detected 1,246 mutations affecting 1,100
protein-coding genes with a mean of 20 mutations per person [43]. In another study, parallel
whole genome sequencing of CLL cells and germ-line DNA from 91 CLL patients’ samples
detected 1,838 nonsynonymous mutations in 1608 protein-coding genes and 45 mutations
per person [44]. Surprisingly, only 186 recurrent and non-recurrent mutations were
identified simultaneously in both data sets. Despite the limited overlap in mutation
detection, the mutated genes were clustered in similar pathways in the two data sets, with an
overwhelming representation of pro-inflammatory pathways (Table 1).

A few mutations detected in a significant number of patients significantly affect the
activation of pro-inflammatory signaling pathways. The myeloid differentiation factor
(MYD88) gene was found to be mutated in 3% to 10% of patients, most of whom had IgHV
mutation [44, 45]. The most common MYD88 mutation detected in CLL is an activating
mutation in p.L265P [45]. MYD88 encodes the protein MYD88 known to synchronize the
assembly of a multi-subunit signaling complex consisting of various members of the
interleukin-1 receptor-associated kinase (IRAK) serine-threonine kinase family known to
activate NF-κB, STAT3, and induce the secretion of pro-inflammatory cytokines [46, 47].
The NOTCH1 gene was found to be mutated in 4% to 12% of patients with CLL [43, 44],
most commonly in a selected group of patients with trisomy 12, unmutated immunoglobulin
heavy chain variable (IgVH), and aggressive disease. In CLL patients with those features, 28
of 62 (41.9%) harbored a mutation in NOTCH1 [48]. Similar to the MYD88 activating
mutation, NOTCH1 mutations activate components of the NF-κB pathway [49].

Unlike activating mutations in MYD88 and NOTCH1, mutations in the ataxia
telangiectasia-mutated (ATM) gene are usually inactivating mutations. ATM is a serine-
threonine kinase that activates the checkpoint response upon exposure to stressors that
induce DNA damage [50]. Complex links tie ATM to inflammation and cancer; ATM is an
immune modulator, and both activated and inactivated ATM promotes inflammation (Fig.
3). The ATM gene is located at the long arm of chromosome 11. Deletion of 11q, found in
2% to 10% of CLL patients, is associated with a lower remission rate [51, 52] and a patient’s
prognosis worsens if the mutation occurs in both alleles [53]. The incidence of ATM
mutation in patients lacking the 11q abnormality depends on the screening methods. Whole-
genome sequencing studies identified ATM mutations in 4% to 10% of patients with CLL
[43, 44]. However, gene dosage analysis performed by multiplex ligation probe
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amplification detected ATM alterations in about 25% of patients at diagnosis. Identifying
ATM mutation is of clinical significance because patients harboring those mutations have a
shorter disease-free survival [54].

Whole genome sequencing studies did not detect a “common” CLL mutation. Rather, they
identified pro-inflammatory pathway mutations, providing a rationale for the development
of agents that target these pathways. In the next chapter we discuss the effects of well-
established anti-inflammatory drugs and novel pro-inflammatory pathway signal
transduction inhibitors that are currently investigated in clinical trials.

5. Agents
a. Anti-inflammatory agents

It has been well established that anti-inflammatory agents are active in CLL (Table 2),
further supporting the hypothesis that inflammation is a driving force in this disease.

i. Glucocorticoids (GCs)—When given as a single agent to CLL patients, GC treatment
results in a partial response, with shrinkage of lymph nodes and reduction in splenic size in
one-third of patients[55]. An increase in peripheral blood lymphocytes is often seen in the
first weeks of treatment and is attributed to the redistribution of lymphocytes that shift from
lymphoid organs and bone marrow into the peripheral blood. The anti-tumor effect is at least
partially ascribed to the lympholytic effect of these drugs. Steroids induce apoptosis of
lymphocytes by different mechanisms. Those include direct activation of transcription of
death-specific genes and negative modulation of pro-inflammatory cytokines [56]. Steroid-
induced apoptosis occurs without an inflammatory response because cells with intact
membranes are removed by phagocytosis, without leaking their cytotoxic cellular contents
[56].

High-dose corticosteroids are still used in patients with refractory or relapsed disease, with
some patients achieving good, occasionally complete, responses [57]. Because steroids are
thought to induce apoptosis in lymphoid cells independent of the p53 pathway, this
treatment might be useful in patients with 17p deletion or with p53 mutations. Indeed,
Thornton et al. (2003) reported a 50% response rate in patients with p53 abnormalities
treated with high-dose methyl prednisolone in a small single-institution retrospective
study[58]. Nowadays, the major indication for steroid is autoimmune hemolytic anemia or
immune thrombocytopenia [7, 58]. Major side effects include susceptibility to infections and
metabolic, psychiatric, dermatologic, musculoskeletal, and gastrointestinal toxicities, which
limit its widespread clinical use.

ii. Non-steroidal anti-inflammatory drugs (NSAIDs)—Aspirin is known to decrease
CLL cell viability in a dose- and time-dependent manner and to induce apoptosis of CLL
cells [59]. More than decades of intense research on the anti-inflammatory effects of NSAID
revealed many pathways that are directly or indirectly targeted by this diverse group of
agents. However, cyclooxygenases (Cox) 1 and 2 are the principal enzymes targeted by most
NSAIDs. Inhibition of Cox reduces prostaglandin production and ameliorates inflammation.
Cox-2 is constitutively expressed in CLL cells, and higher Cox-2 levels were detected in
patients with poor prognostic factors [60]. Inhibition of Cox-2 induces apoptosis of CLL
cells via activation of caspase cascade [59]. Cox-2 inhibitors suppress the anti-oxidant
glutathione-inducing oxidative stress and cellular apoptosis [61].

A recent report of 686 newly diagnosed early-stage CLL patients, treated at the Mayo Clinic
between 1995 and 2008, did not benefit from NSAID use, as time to first therapy was
similar in users and non-users[62]. However, NSAID might have a role in potentiating the
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effect of chemotherapy in CLL patients. Several in-vitro studies demonstrated that NSAIDs
enhance the effects of purine nucleoside analog- and rituximab-based treatments in CLL[63,
64], and a retrospective analysis of 280 patients with relapsed/refractory CLL who received
salvage chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab
demonstrated an improved OS and PFS with concurrent use of aspirin [65].

b. Statins
Statins, the broadly used cholesterol-lowering agents, also possess anti-angiogenic [66, 67]
and anti-inflammatory properties [68]. Statins decrease the synthesis of inflammatory
cytokines and adhesion molecules [69] and reduce the levels of endothelial nitric oxide
synthase, thereby reducing oxidative stress and vascular inflammation [69-72]. In vitro
studies demonstrated that simvastatin induces apoptosis of CLL cells by activating caspase 9
[73]. Statins can also prevent the homing of lymphocytes to lymph nodes [74, 75], possibly
providing additional benefits when combined with chemotherapy. Statins also reduce the
cell surface CD20 expression, an effect that might reduce the efficacy of rituximab [76].
Two retrospective studies evaluated the effect of statins on the clinical course of patients
with CLL. In both cohorts, statin use did not affect treatment-free survival [62, 77].
Friedman et al. found that the use of statins at the time of diagnosis of CLL is associated
with a reduced need for initial therapy [77]. Prospective studies to evaluate the clinical
benefits of statins on CLL are warranted.

c. Novel agents
i. Kinase inhibitors—The success of tyrosine kinase inhibitors in the treatment of chronic
myelogenous leukemia has inspired many of the current ongoing clinical trials for CLL.
These trials use different types of orally administrated kinase inhibitors that prevent
phosphorylation of key molecules along signaling pathways that promote the survival and
proliferation of the CLL cell.

Tyrosine kinase inhibitors have demonstrated impressive responses in patients with relapsed
and refractory CLL. Because of the pivotal role of BCR signaling in CLL, these agents are
sometimes collectively referred to as BCR inhibitors, however this name is misleading, and
these molecules inhibit converging intra-cellular pathways that deliver signals not only from
the BCR, but from various other sources, including TLRs, cytokines, chemokines, and
integrins CD40 and BAFF[78]. The final common pathways of all kinase inhibitors are
inhibition of key transcription factors, most importantly NF-κB, but also nuclear factor of
activated T-cells (NFAT) and STAT3, resulting in the inhibition of pro-survival and pro-
inflammatory pathways. Currently, four major kinase inhibitors are actively tested in phase
2 or phase 3 clinical trials. All are associated with strong inhibition of inflammatory
pathways.

Dasatinib (Sprycel) is an oral kinase inhibitor targeting SRC and ABL kinases and is
approved for treatment in chronic myeloycytic leukemia. The primary target in CLL is
considered the non-receptor tyrosine kinase LYN, which initiates the BCR signaling.
However, it has been shown that its effect is not specific for LYN, but that BTK and perhaps
other kinases are also inhibited [79]. A phase 2 study of patients with refractory/relapsed
disease reported overall response rate of 20%, with progression-free survival of 7.5 months
and a reduction of > 50% in lymphadenopathy in 7 of 15 patients enrolled[80]. When tested
in vitro on human and mouse neutrophils, Dasatinib showed a strong anti-inflammatory
effect. Dasatinib completely blocked integrin and Fc receptor-mediated neutrophil functions
and significantly impaired chemotaxis and adhesion functions of neutrophils when tested in
concentrations that correspond to serum levels in treated patients[81]. Taken together, these
studies suggest that the clinical efficacy of Dasatinib is at least partially mediated by its
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inhibition of pro-inflammatory pathways within the CLL cell and anti-inflammatory signals
from the microenvironment.

Fostamatinib (R788) inhibits the spleen tyrosine kinase (SYK) and a number of other
kinases, including ZAP70, which is aberrantly expressed in some cases of CLL and
correlates with more aggressive disease [78]. SYK inhibitors were initially developed as
anti-inflammatory drugs[82], but have shown a promising effect on phase 1/2 studies in
patients with refractory/relapsed non-Hodgkin’s lymphoma. Of 11 patients with CLL who
participated in this study, 6 (55%) achieved partial response [83].

GS-1101 (CAL-101) is a highly selective inhibitor of the PI3Kδ kinase. This is one of three
isoforms of the P13K complex that is responsible for phosphorylation of
phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 [PIP2]) to generate PI(3,4,5)P3 (PIP3).
PIP3, in turn, is the docking site of several cytoplasmatic kinases that integrate signals from
several pathways, including the BCR, TLR pathways, CD40, and BAFF[78]. In a phase 1
study that included 54 patients with CLL, 80% had a reduction in lymphadenopathy by ≥
50% and PFS was not reached at 11 months. The clinical effect was independent of
traditional prognostic factors, most notably IGVH mutation status [78]. Because of a
transient increase in the absolute lymphocyte counts, it was difficult to categorize these
patients as responders according to the known International Workshop on Chronic
Lymphocytic Leukemia criteria. Subsequently, these criteria have been modified and a
Lymphoma Response Foundation-sponsored workshop has suggested adding the term
“nodal response” to describe this phenomena (currently only for patients in clinical trials)
[84]. Similar to other kinase inhibitors, along the BCR signaling pathways, GS-1101 showed
strong inhibition of inflammatory response with markedly reduced secretion of pro-
inflammatory cytokines (such as IL-6 and TNF) and chemokines (such as CCL3 and CCL4)
mediated by BCR stimulation or NLCs [85].

Ibrutinib (PCI-37265) is an irreversible inhibitor of the BTK kinase. Similar to other kinase
inhibitors tested in patients with CLL, it inhibits several signaling pathways, including BCR,
TLR, and BAFF CD40, and also disrupts the protective effect of stromal cells[78]. In two
phase 1b/2 clinical studies Ibrutinib as monotherapy was tested on patients with relapsed/
refractory disease including elderly patients, and induced durable remissions across all
groups tested, including elderly patients and patients with high-risk disease. Interestingly,
similar to GS-1101, transient lymphocytosis was associated with better response [86, 87]. In
addition, partial restoration of the humoral immune deficiency that is found with advanced
disease was also reported with sustained increase in levels of IgA [88]. Treatment with
Ibrutinib resulted in a rapid decrease in serum concentration of the inflammatory
chemokines CCL3 and CCL4 [89]. Furthermore, Ibrutinib was shown to block the secretion
of cytokines from activated T cells, while not affecting their survival [78].

ii. Immunomodulatory drugs (IMiDs)—IMiDs include thalidomide and its derivatives
lenalidomide (CC-5013) and pomalidomide (CC-4047). These oral medications are
synthetic glutamic acid derivatives that are either approved for clinical use or for evaluation
in clinical trials in hematologic and non-hematologic malignancies. During the late 1990s
and early 2000s, several clinical trials established the efficacy of thalidomide in the
treatment of multiple myeloma [90, 91]. Lenalidomide is a 4-amino tultaramide derivative
of thalidomide with enhanced immune-modulatory potency, reduced neurosedative toxicity,
and a reduced risk of venous thromboembolism [92]. Leprosy was the first indication for
thalidomide in the modern era, and its efficacy in treatment patient with leprosy is attributed
to its strong anti-inflammatory effect, mainly through the suppression of TNF-α levels [93,
94]. The anti-leukemic effect of this drug is more complex, and in addition to inhibition of
cytokine release it may also enhance the activity of the cellular arm of the immune response.
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It has been shown that lenalidomide stimulates T-cell proliferation and activates NK cells
[95]. Furthermore, CLL recognition by T cells is inherently impaired. This is attributed to
impaired immunological synapse formation that is partially corrected with lenalidomide
[96]. Several phase 2 clinical trials for CLL demonstrated the efficacy of lenalidomide alone
or in combination anti-CD20 antibodies, with an overall response rate ranging from 32% to
65%[97-100]. Patients with unfavorable cytogenetic abnormalities, particularly elderly
patients, also seem to benefit [100]. Tumor flare reaction is an adverse effect of
lenalidomide that is observed uniquely in patients with CLL. It is characterized by a painful
swelling of the lymph nodes and/or splenomegaly, accompanied by rash, low-grade fever,
and rarely, a rise in the peripheral blood white cell counts [101]. NSAID and low-dose
steroid therapy alleviates the symptoms but not the frequency of tumor flare reaction.
Whether the appearance of tumor flare is associated with long-term clinical response is not
yet clear [101].

6. Conclusions and future perspectives
The introductions of effective chemotherapy agents combined with anti-CD20 antibodies
revolutionized the treatment of CLL. A number of patients attain long-term remission and a
few patients might have been cured. Nevertheless, for most patients, CLL is still an
incurable disease. As in other chronic diseases whose incidences increase with age[102],
chronic inflammation contributes to the pathobiology and symptomatology of CLL.
Inflammatory cytokine are a result of and contribute to the activation of pro-inflammatory
pathways within the malignant clone. Recent whole genome sequencing of CLL cells
identified mutations in genes that activate pro-inflammatory signaling pathways, suggesting
that those pathways are potential targets for therapeutic intervention. The interaction of CLL
cells with cellular and extracellular components of the microenvironment cells of the
immune system, such as TH Cells, NK cells, and NLC, contributes to CLL cells’ pro-
inflammatory microenvironment.

Recognizing the role of chronic inflammation in CLL expands the arsenal of effective
therapeutic modalities. More than 40 years ago, Ezdini et al. reported that some patients with
CLL respond to steroid treatment and that this response is accompanied by transient
lymphocytosis and shrinkage of lymph nodes[55]. Remarkably, an identical clinical
response has been observed in patients treated with novel kinase inhibitors. Clinical
response to kinase inhibitors and IMIDs is accompanied by a dramatic reduction in the
levels of inflammatory cytokines and chemokines, suggesting other agents targeting pro-
inflammatory pathways such as JAK inhibitors[103, 104], recently reported to induce
apoptosis of CLL cells[105], might prove to be effective therapeutic agents for CLL.

Recognition of the central role inflammation plays in the pathobiology of CLL raised the
hope that inhibition of inflammatory pathways may pave the road for curing CLL in the near
future. Understanding the details of the inflammatory response has already resulted in the
development of several agents that are currently under clinical investigations, and has
expanded the range of other potential candidate drugs to be considered in future studies.
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Figure 1.
Serum cytokine and chemokine levels in patients with CLL and healthy individuals (Yan et
al. (2011). Serum cytokine and chemokine levels were measured in 84 CLL patients and 49
age-matched healthy individuals. Shown are cytokine and chemokine levels that were high,
compared to healthy controls, in patients with both IgHV-mutated and –unmutated CLL.
Data are depicted according to cytokine levels in serum. A. Low levels: IL-5, IL-4, IL-10,
IFN-γ, and IL-17. B. Medium levels: granulocyte macrophage colony-stimulating factor
receptor (GM-CSF), IL-1β, IL-8, IL-6, Ifα, IL-2, IL-15, and CCL3. C. High levels:
CXCL11, CCL17, CCL4, CXCL10, IL-12, CCL19, CCL11, CXCL9, and CCL2 [11].
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Figure 2.
Signaling pathways activated in CLL cells. Upon attachment to their corresponding
receptors (A, B and C) various extracellular factors induce signal transduction and activate
transcription of inflammatory cytokines and chemokines. A. Ligands binding to TLR induce
MYD88-mediated activation of NF-κB via phosphorylation and ubiquitination of IκB,
enabling nuclear localization and DNA binding of NF-κB. B. BCR activation recruits BTK,
which in turn phosphorylates IκB and activates NF-κB. C. Several ligands phosphorylate
membrane-bound tyrosine kinase and non-tyrosine kinase receptors or recruit JAKs that
transduce signaling by activating STAT3, ERK, and/or AKT (not shown). Phosphorylated
(p) STAT3 forms heterodimers, shuttles to the nucleus, and activates transcription. D. In
CLL, STAT3 is constitutively phosphorylated. Because STAT3 activates STAT3, high
levels of unphosphorylated STAT3 (USTAT3) are present in CLL cells. E. USTAT3 binds
NF-κB in competition with IκB; USTAT3 that shuttles freely in and out of the nucleus
“carries” into the nucleus NF-κB that binds to DNA and activates transcription. F. Both
pSTAT3 and NF-κB induce production of inflammatory cytokines that provide CLL cells
with survival advantage.
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Figure 3.
Chronic inflammation is induced in cells with wild-type or deleted ATM at different stages
of the disease: At an early stage, wild-type ATM promotes TP53 DNA-damage repair and
induction of chronic inflammation and production of inflammatory cytokines such as IL-6.
When ATM is mutated, in the absence or presence of 11q deletion, less TP53 is produced
and accumulating damaged DNA induces an inflammatory response. This effect is more
prominent when the disease burden is high or during disease progression.
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Table 1

Pro-inflammatory pathways in which mutated genes were detected in two large whole-genome DNA
sequencing studies

Canonical Pathways [43] P value Canonical Pathways[44] P value

NF-κB signaling 0.01 ATM signaling 0.00006

Toll like receptor signaling 0.02 LPS-stimulated MAPK signaling 0.0007

CD28 signaling in T helper cells 0.04 CC receptor 3 signaling in eosinophils 0.0001

Leukocyte extravasation signaling 0.04 Chemokine signaling 0.001

CXCR4 signaling 0.05 T-cell receptor signaling 0.01

Chemokine signaling 0.06 Toll-like receptor signaling 0.02

B-cell receptor signaling 0.06 B-cell receptor signaling 0.02

ATM signaling 0.08 IL-12 signaling and production in macrophages 0.03

IL-4 signaling 0.09 IL-3 signaling 0.03

IL-12 signaling and production in macrophages 0.09 IL-1 signaling 0.04

IL-15 signaling 0.1 CXCR4 signaling 0.04

Role of NFAT in the regulation of the immune response 0.1 MIF regulation of innate immunity 0.05

IL-8 signaling 0.05

Acute phase response signaling 0.06

NF-κB signaling 0.06

IL-17 signaling 0.07

PI3K signaling in B lymphocytes 0.1

B-cell activating factor signaling 0.1

Role of NFAT in the regulation of the immune response 0.1

NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells, ATM, ataxia telangiectasia-mutated; CD, cluster of differentiation; CXCR4,
chemokine receptor type 4; IL, interleukin; NFAT, nuclear factor of activated T-cells; MIF, migration inhibitory factor; NK, natural killer; Fcγ, Fc
gamma; PI3K, phosphatidylinositide 3-kinases; FcγRIIB, Fcγ receptor IIB; Wnt, Int and Wg gene; MAPK, mitogen-activated protein kinase;
BAFF, B-cell activating factor;

The functional analysis presented in this table was generated through the use of IPA (Ingenuity Systems (www.ingenuity.com). Fisher’s exact test
was used to calculate a P-value determining the probability that the association between the mutated genes and the canonical pathway could be
explained by chance. Pro-inflammatory pathways in which mutated genes were detected in the study of Quesada et al. [43] are depicted in columns
1 and 2, and in the study of Wang et al. [44], in columns 3 and 4. Both studies detected mutations in genes crucial for an inflammatory response,
including cytokine signaling pathways (eg: IL-6), innate immunity activation pathways (eg: TLR signaling), chemokine signaling (eg: CXCR4) and
pro-inflammatory transcription factors (eg: NF-κB signaling).
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Table 2

Selected agents that has anti-inflammatory properties used in CLL

Agents Primary mechanism of action Potential benefits in CLL Clinical efficacy – selected studies

Old agents

Glucocorticoids Transactivation of anti-
inflammatory genes and
transrepression of pro-inflammatory
genes

Lympholytic Partial response in one third of
patients. Mobilization from lymph
nodes and spleen [55] High dose
GC induced responses in 50% if
patients with 17p deletion [58]

NSAID Inhibition of (Cox-1) and Cox-2 Inhibition of Cox-2 induces
apoptosis of CLL cells

Concurrent use of aspirin and
statins improved OS and PFS in
patients with relapsed/refractory
disease treated with chemo-
immunotherapy [65]

Statins HMG-CoA reductase inhibitors Decrease synthesis of
inflammatory cytokines,
induces apoptosis of CLL
cells

Novel agents

 Tyrosine Kinase Inhibitors

  Dasatinib (Sprycel) c-SRC and c-ABL kinase inhibitor Targets also Lyn and BTK,
impairs chemotaxis and
adehesion of neutrophils

ORR of 20% in refractory/relapsed
CLL [80]

  Fostamatinib (R788) Syk kinase inhibitor Targets also ZAP70 Limited data in patients with
refractory/relapsed CLL [83]

  GS1101 (CAL-101) PI3Kδ inhibitor Reduces secretion of
inflammatory cytokines and
chemokines

37 patients with relapsed/refractory
CLL enrolled in a Phase 1 study. >
50% reduction in lymphadenopathy
in 60% of patients [106]

  Ibrutinib (PCI-32765) Irreversible BTK inhibitor Inhibits BCR, TLR, BAFF,
CD40 signaling pathways,
reduces levels of CCL3 and
CCL4

ORR of 71% independent of
genomic risk factors in 85 patients
enrolled in a Phase 1b/2 study [86]

 Immunomodulatory agents

  Lenalidomide Suppression of TNF-α levels Immunomodulatory effects
on proliferation of T cells,
activation of NK cells and
improvement in
immunological synapse
formation

ORR ranging from 32% to 65%.
Elderly patients and patients with
17p benefit [97, 99-101]

NSAID non-steroidal anti-inflammatory drugs; COX cyclooxygenase; BCR B-cell receptor; TLR toll-like receptor; B-cell activating factor; GC
glucocorticoids; OS overall survival; PFS progression free survival; ORR Overall response rate.
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