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Background. Next generation sequencing (NGS) is being widely used to identify genetic variants associated with human disease.
Although the approach is cost effective, the underlying data is susceptible to many types of error. Importantly, since NGS
technologies and protocols are rapidly evolving, with constantly changing steps ranging from sample preparation to data processing
software updates, it is important to enable researchers to routinely assess the quality of sequencing and alignment data prior to
downstream analyses. Results.Here we describe QPLOT, an automated tool that can facilitate the quality assessment of sequencing
run performance. Taking standard sequence alignments as input, QPLOT generates a series of diagnostic metrics summarizing run
quality and produces convenient graphical summaries for these metrics. QPLOT is computationally efficient, generates webpages
for interactive exploration of detailed results, and can handle the joint output of many sequencing runs. Conclusion. QPLOT is
an automated tool that facilitates assessment of sequence run quality. We routinely apply QPLOT to ensure quick detection of
diagnostic of sequencing run problems. We hope that QPLOT will be useful to the community as well.

1. Introduction

Next generation sequencing (NGS) is a revolutionary tech-
nology for biomedical research and is being deployed in a
variety of applications, ranging from the identification of
rare variants, de novo mutations, and somatic mutations in
human disease studies to assessments of transcriptome and
epigenome states in cultured cells. Since NGS provides more
complete results than traditional array technologies and is
rapidly decreasing in cost, it is becoming more widely used
for genomics studies. Whole exome sequencing, which is the
targeted sequencing of the entire collection of protein coding
regions in the genome, has already led to great advances in
Mendelian disorder genetics [1, 2], complex traits [3, 4],and
cancer genomics [5, 6]. The 1000 Genomes Project [7, 8]
is leading an effort to provide a comprehensive catalog of
human variation across the world through whole genome

sequencing. Several underway studies are now deploying
whole genome and whole exome sequencing to study large
collections of human disease samples.

The success of NGS studies depends on appropriately
understanding the quality of underlying data. However,
unlike traditional array platforms, analysis of sequencing
data is much more complex, making real time monitor-
ing of data quality more challenging. NGS technologies
and associated set of protocols are constantly evolving,
and updates to several different components of the pro-
cess (including, for example, software, sample preparation,
and/or reagents) can result in important and sometimes
unexpected changes in data quality. We believe that the
ability to generate automated visual summaries that help
identify common problems is critical. To achieve this, we
developed QPLOT, a tool for quick quality assessment in
NGS data. QPLOT calculates and graphs summary statistics
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(a) Run92Trim empirical versus reported Phred score
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(b) Run92Trim empirical Phred score by cycle
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Figure 1: A subset of figures generated by QPLOT on an Illumina run. (a) Empirical base quality scores versus the scores stored in the BAM
files. (b) Empirical base quality scores by cycles. (c) Bias of depth by GC content. (d) Insert size distribution.

describing sequence and alignment quality. Data quality
is assessed both through reported base quality scores and
empirically obtained metrics by comparing aligned bases to
the reference genome. In this way, it is possible to track the
number of high quality bases along the length of a read
(to choose a read length that maximizes the yield of high
quality bases and compare run quality over time) or identify
the presence of adaptor sequence and other problems in
alignment (these can result in high empirical mismatch rates
near the ends of RNA-sequencing reads, due to difficulties
in correctly placing splice junctions—a problem that can be
ameliorated by excluding these bases from variant calling
and RNA editing analyses after alignment). We constantly

interact with our sequencing core and other collaborators
generating sequence data to improve QPLOT and facilitate
efforts to drive up the quality of next generation sequence
data.

QPLOT differs from tools that only inspect unaligned
sequence reads (such as FastQC [9] and SolexaQA [10]),
because it can identify common problems in alignment and
provide diagnostic descriptions of read mapping. For exam-
ple, it generates empirically calibrated base quality scores and
insert size distributions, two features that have substantial
impact on variant calling and other downstream analyses.
QPLOT also tries to improve packages designed specifically
for handling aligned data (such as SAMStat [11] and Picard



BioMed Research International 3

20 40 60 800
Cycle

1
2
3
4

5
6
7

5

10

15

20

25

30

Em
pi

ric
al

 P
hr

ed

0

(a) Empirical Phred score by cycle

0 100 120
GC content

20 40 60 80

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 m
ea

n 
de

pt
h

1
2
3
4

5
6
7

(b) Mean depth versus GC

Figure 2: Exemplar diagnosis plots of RNA-sequencing data. (a) Empirical base quality scores by cycles. (b) Differential GC biases across
multiple samples.

[12]) through its computational efficiency (QPLOT can sam-
ple regions of the genome randomly so as to rapidly evaluate
very large alignments) and its ability to handle many samples
(which helps to identify batch effects and other transient
data processing problems). Importantlywenote that genome-
wide summary statistics can be extrapolated based on ran-
domly sampled regions with little loss of accuracy. When
the number of input files is very large, QPLOT can generate
XML and text files with raw summary data and an interactive
webpage that allows users to explore available quality metrics
and graphs. XML and text output can be conveniently stored
in a tracking database. In addition to graphical representa-
tion, key features are also summarized to generate a concise
representation of the quality measurement (for example, a
mean squared difference is used to summarize concordance
of empirical and reported base quality scores, and the impact
of GC content is summarized in a similar fashion based on
the deviation of the depth for each GC bin from uniform
coverage).

2. Materials and Methods

QPLOT is implemented in C++ and invokes R to generate
figures. Available statistics include summaries of base quality,
both overall and along each position in a read, comparisons
of reported and empirical quality base scores, summaries
of insert size for paired end libraries, global evaluations of
coverage as well as more detailed evaluations of coverage
as a function of GC content, and the regions targeted for
enrichment. Empirical base scores are calculated as Phred
scaled mismatch rates, that is, −10 × log

10
(number of

matches/(number of matches + number of mismatches)),
where number of matches and number of mismatches are
the counts of aligned sequence bases that are concordant or
discordant with the expected base in the reference genome,
respectively, excluding known variant sites; thesemismatches
are dominated by genuine sequencing errors and provide
a basis for base quality recalibration. To describe potential
GC bias in sequencing runs, we calculate the mean depth
of coverage for each GC content bin (0–100 representing 0–
100% GC composition) for a series of windows along the
genome (or, in the case of targeted sequencing experiments,
within targeted regions). After normalization by the expected
depth based on total mapped reads, the normalized depth
for each GC content bin reflects biases of each experiment
and can be compared with sequenced samples. Details of
other summary statistics are available on the QPLOT website
(http://genome.sph.umich.edu/wiki/QPLOT). QPLOT can
be run as a stand-alone tool or incorporated into automated
data processing pipelines.

3. Results and Discussion

We regularly use QPLOT in our sequencing projects includ-
ing whole genome sequencing, RNA-seq, and targeted
sequencing. Results for one Illumina run in a whole genome
low pass sequencing study are shown in Figure 1. In this
run the reported base quality scores deviate from empirically
assessed quality, indicating that base quality recalibration
is recommended (Figure 1(a)). As expected, empirical base
quality scores decrease with increasing position along reads
(Figure 1(b)), which is typical of Illumina sequencing.

http://genome.sph.umich.edu/wiki/QPLOT
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However at position 36 empirical quality scores appear to
increase, an artifact of the −q 15 option used in BWA [13]
when mapping these data. The −q 15 option trims portions
of reads with base quality <15, but always leaves at least 36
bases in each read (in our experience, this option increases
the fraction of mapped reads and the number of mapped
high quality bases). In this run, sequences with very high or
very low GC content are underrepresented (below 1 in the
relative depth curve, Figure 1(c)). Assessment of paired reads
shows a distribution of insert sizes with peaks ranging from
∼240 bp to ∼300 bp (Figure 1(d)). In this case, since reads
are 120 bases long, many paired reads overlap (particularly
in lanes 1, 3, 5, and 7);these overlaps, if ignored, can result
in PCR artifacts that look like sequence variants—suggesting
that the protocol might be tweaked to increase library insert
sizes. When we compared metrics generated by evaluating
the complete data and those extrapolated from random 5Mb
segments of the genome, the two sets of summary statistics
were remarkably similar (see QPLOTwebpage for examples),
but computing time was reduced from 38 minutes to 13
minutes.

In a second example, Figure 2 summarizes the results
of an RNA-sequencing run. Here, empirical base quality
scores are unexpectedly low near the beginning of each read
(Figure 2(a)). When we remapped all reads after trimming
the first several bases, the same pattern was repeated, sug-
gesting that the observation is not due to high sequencing
error rates or residual adapter sequences (trimming and
remapping usually solve problems with residual adapter
sequences, in our experience). Instead, the observation is
the result of alignment artifacts when exon boundaries fall
near the beginning or end of reads, a common problem in
RNA-sequencing analyses. To avoid artifacts in downstream
analyses, we suggest trimming the beginning and end bases
of each read after mapping. Figure 2(b) shows that lane 7 has
a GC content pattern that is dramatically different from the
others, recommending great caution before comparing gene
expression levels estimated for that sample and the others
[14].

4. Conclusions

NGS has revolutionized the way genomics and biomedical
studies are conducted. However the technologies are still
rapidly evolving, and analysis of NGS data is challenging.
Simple and convenient tools are important to help monitor
data production and processing. Here we describe QPLOT,
a computationally efficient tool that we hope will be helpful
in quality assessment and diagnosis of NGS performance.
We hope that information conveyed in these plots and
statistics will facilitate the understanding of sequencing data
to enable improved downstream processing and constant
quality improvements.
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