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Spectral/multienergy CT employing the state-of-the-art energy-discriminative photon-counting detector can identify absorption
features in the multiple ranges of photon energies and has the potential to distinguish different materials based on K-edge
characteristics. K-edge characteristics involve the sudden attenuation increase in the attenuation profile of a relatively high atomic
number material. Hence, spectral CT can utilize material K-edge characteristics (sudden attenuation increase) to capture images in
available energy bins (levels/windows) to distinguish different material components. In this paper, we propose an imaging model
based onK-edge characteristics formaximummaterial discriminationwith spectral CT.Thewider the energy binwidth is, the lower
the noise level is, but the poorer the reconstructed image contrast is. Here, we introduce the contrast-to-noise ratio (CNR) criterion
to optimize the energy bin width after the K-edge jump for the maximum CNR. In the simulation, we analyze the reconstructed
image quality in different energy bins and demonstrate that our proposed optimization approach can maximize CNR between
target region and background region in reconstructed image.

1. Introduction

X-ray computed tomography (CT) has been widely applied
in clinical and preclinical applications, since Hounsfield’s
Nobel Prize winning breakthrough. A typical conventional
CT system employs a broad energy spectrum source and a
digital integrating sensor whose output is proportional to the
energy fluence integrated over the entire incidence spectrum.
Physically, the X-ray spectrum contains much information;
the conventional CT system collects photons over the whole
X-ray spectrum to ignore spectral responses of materials.
Hence, the conventional CT often does not have sufficiently
high contrast resolution for biological soft tissues [1].

With the development of spectral detectors and novel
contrast agents, CT image contrast resolution could be sig-
nificantly improved. Recent advances in spectral/multienergy
detector technology have allowed for spectral CT systems to
identify absorption features in the multiple ranges of photon
energies [2–6]. Spectral CT has a stronger capability to
distinguish different materials because it can capture images
in available energy bins [7–13]. Meanwhile, contrast agent

has been widely applied in biomedical imaging to enhance
tissue contrast [14–19]. Spectral CT imaging utilizes not
only density characteristics of contrast agents but also K-
edge characteristics of contrast agents to distinguish different
materials. K-edge characteristics involve the sudden atten-
uation increase in the attenuation profile of some contrast
agents, which could be captured by spectral CT in avail-
able energy bins. Hence, different materials can be easily
distinguished according to their K-edges characteristics [20,
21], while their Hounsfield numbers may be very similar in
conventional CT images.This opens a door for spectral CT to
support functional, cellular, and molecular imaging studies.

For contrast agent imaging by spectral CT, threshold
settings for available energy bins have a major impact on
spectral image quality in terms of image contrast and noise
level. Hence, it is important to partition the energy bin
optimally based on K-edge characteristics. In this paper, we
propose a contrast agent imaging model to optimize energy
bin for maximum material discrimination with spectral CT.
Based on this model, we investigate how to select one energy
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bin for optimal contrast agent imaging to distinguish different
materials, introducing a contrast-to-noise ratio (CNR) where
the signal difference is defined between contrast enhance-
ment region (CER) and background region values.

This paper is organized as follows. Section 2 intro-
duces our proposed contrast agent imaging model. Section 3
describes our simulation experiment. Section 4 demonstrates
our experimental results. Section 5 discusses relevant issues
and concludes the paper.

2. Materials and Methods

An earlier paper [22] has introduced the theoretical formal-
ism of K-edge imaging model to determine two energy bins
on both sides of the K-edge and analyzed the effect of K-
edge energy bins on the resultant image quality. Here, we
only briefly reproduce the optimization scheme and analyze
how to optimize one energy bin after the K-edge jump to
distinguishing contrast enhancement region and background
region.

For current spectral CT system, its spectral detector (e.g.,
Medipix-3 [4–6]) is a photon-counting systemwith selectable
thresholds, which depends on a threshold equalization mask
to adjust each pixel to record different energy photons. We
assume that the energy distribution function of an X-ray
source is 𝐼

0
(𝐸); in a given energy threshold 𝑇, we have the

photon number received by the spectral detector:

𝐼
𝑇 (𝐸) = ∫

∞

𝑇

𝐼
0 (𝐸) 𝜂 (𝐸) 𝑑𝐸, (1)

where 𝜂(𝐸) is the detector efficiency.
For a given energy bin defined by two energy thresholds

0 < 𝑇
1
< 𝑇
2
, the received photon number can be expressed

as

𝐼
(𝑇
1
,𝑇
2
)
(𝐸) = ∫

𝑇
2

𝑇
1

𝐼
0
(𝐸) 𝜂 (𝐸) 𝑑𝐸. (2)

This paper focuses on how to set the thresholds in the energy
bin imaging to distinguish contrast enhancement region and
background region based on K-edge characteristics. First,
we need to study the linear attenuation characteristics of
background materials and contrast agents. Let 𝑎

𝐵
(𝐸) be

the linear attenuation coefficient function of a background
material at an energy 𝐸; we have

𝑎
𝐵
(𝐸) = 𝜎

𝐵
(𝐸) 𝜌
𝐵
; (3)

we assume that 𝑎
𝐶
(𝐸) is the linear attenuation coefficient

function of a contrast agent at an energy 𝐸, and 𝑎
𝐶
(𝐸) can

be expressed as

𝑎
𝐶
(𝐸) = 𝜔𝜎

𝐶
(𝐸) 𝜌
𝐶
+ (1 − 𝜔) 𝜎

𝐵
(𝐸) 𝜌
𝐵
, (4)

where 𝜎
𝐵
(𝐸) and 𝜎

𝐶
(𝐸) are the mass attenuation coefficients

of background material and contrast agent, 𝜌
𝐵
and 𝜌

𝐶
are

the densities of background material and contrast agent,
respectively, and 𝜔 is the concentration of the contrast agent.

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

Photon energy (keV)

Li
ne

ar
 at

te
nu

at
io

n 
co

effi
ci

en
t

Contrast agent
Background

𝜇B

𝜇C

Figure 1: Attenuation profiles of a typical contrast agent and a soft
tissue (background material).

For a given contrast agent concentration 𝜔, we plot two
linear attenuation profiles of a typical contrast agent and
background material (i.e., tissue) according to their mass
attenuation coefficients and densities, which are shown as
in Figure 1. In Figure 1, the attenuation coefficients of the
contrast agent have a sudden increment at an energy𝐾, which
reflects the K-edge characteristics. Theoretically, if we per-
form an energy bin imaging at the point 𝐾 with spectral CT,
there is a maximum material discrimination for background
region and contrast agent region in reconstructed image.
However, the narrower the energy bin width is, the higher
the noise level is, and there are few photons to carry the
information. Hence, we select one energy bin of finite width
to study contrast agent imaging in this paper. Let 𝜇

𝐵
be the

average attenuation coefficient of the background material
within the energy bin after the K-edge jump; we have

𝜇
𝐵
=

1

𝑤
∫
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𝐵 (𝐸) 𝜌𝐵𝑑𝐸,

(5)

where 𝑤 is the energy bin width, and let 𝜇
𝐶
be the average

attenuation coefficient of the contrast agent within the energy
bin after the K-edge jump; we have

𝜇
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(6)

For a given energy bin after the K-edge jump, from (2) we
have the received photon number

𝐼
𝑤
(𝐸) = ∫

𝐾+𝑤

𝐾

𝐼
0
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The reconstructed images can be evaluated as contrast-to-
noise ratio (CNR), and the CNR can be defined as

CNR =
𝜇
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− 𝜇
𝐵
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+ 𝜙
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𝐵

, (8)
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Table 1: Biologically relevant densities of phantom materials.

Materials Blood Bone Lung Tissue
Density (g/cm3) 1.05 1.9 0.26 1.0

where 𝜙
2

𝐶
and 𝜙

2

𝐵
are corresponding variances of the contrast

agent region and background region in reconstructed image.
The difference between the mean value of contrast agent

region and background region relies on the energy bin
width 𝑤 and contrast agent concentration 𝜔. For a given
reconstructed object, the variances of reconstructed image
rely on the photon number 𝐼

𝑤
(𝐸) determined by the energy

bin width 𝑤. Hence, we can search for the optimal 𝑤 value
to maximize the CNR for maximummaterial discrimination.
In the following, we will make numerical simulation to test
the proposed imaging model, including phantom design and
image reconstruction protocols.

3. Numerical Simulation

In the simulation, a thorax phantom (Figure 2) was designed
to be more preclinically relevant, which is defined on
http://www.imp.uni-erlangen.de/forbild/. The phantom con-
tains a heart region, a tissue region, a lung region, a vertebra
region, and a contrast enhancement region (CER). The
phantomwasmade 25 cm × 25 cm in size and discretized into
a 500 × 500 matrix. We used Gadolinium solution whose K-
edge is 50 keV, as a testing contrast agent in the CER inside
the heart region, and the whole heart region is considered as
the region of interest (ROI).

To investigate the proposed imaging theory, we study
how to search for the optimal energy bin to maximize the
CNR for maximum material discrimination. First, we study
the characteristics of the thorax phantom materials. For
tomographic imaging, the linear attenuation coefficient 𝜇

represents the gray value of reconstructed image. Here, we
can obtain the mass attenuation coefficient 𝜇/𝜌 according
to the X-ray attenuation databases reported by the National
Institute of Standards and Technology (NIST). To calculate
the linear attenuation coefficients of the phantom materials,
the densities 𝜌 of these materials were selected in reference to
the biomedical literature [23–26] and summarized in Table 1.
In our simulation, we used blood attenuation characteristics
to substitute heart attenuation characteristics.

Then, we used a free-of-charge software program
(SpekCalc) [27] to calculate X-ray spectra from tungsten
anode tubes. The X-ray tube voltage is assumed as 120 kVp
with a 2.5mm Al filter, and its emission spectra are shown
in Figure 3. In our study, it was assumed that the detector
efficiency 𝜂(𝐸) was 90%, the spectral CT system was viewed
as in a typical parallel-beam geometry, and the scanning
range was from 0∘ to 180∘ with a 1∘ angular increment in the
given energy bins. According to the Beer-Lambert law, we
can capture the thorax phantom projection data.

To perform the energy bin imaging with spectral CT,
we used a typical analytical reconstruction protocol: filtered

Lung
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Vertebra
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Figure 2: Thorax phantom.
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Figure 3: Source photon emission spectra.

backprojection (FBP), and a reconstructed image using FBP
formula can be expressed as

𝑓 (𝑥, 𝑦) = ∫
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, (9)

where 𝑔 = ∫
𝐿
𝜇(𝑤, 𝑙)𝑑𝑙 is the integral of the linear attenuation

coefficient distribution along an X-ray path.
Then, we can calculate the expected image 𝑓(𝑥, 𝑦)
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(10)

and the variance of reconstructed image 𝑓(𝑥, 𝑦) [22, 28]

Var (𝑓 (𝑥, 𝑦)) = Var(∫
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(11)
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Figure 4: Relationship between the energy bin width (𝑤) and CNR.
The curve for Gadolinium solution (0.5%) in the thorax phantom.

From (10) and (11), CNR of ROI in reconstructed image can
be written as follows:
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(12)

where 𝑔
𝐶
(𝑤, 𝑡) is the reconstructed sinogram of the contrast

agent region and𝑔
𝐵
(𝑤, 𝑡) is the reconstructed sinogramof the

background material region. From (12), we can find that the
CNR will depend on the energy bin width 𝑤. In Section 4,
we will calculate the best energy bin width 𝑤 value after the
K-edge jump to maximize the CNR of ROI.

4. Results

We used our proposed approach to analyze the thorax
phantom and determined the best energy bin for imaging
based on K-edge characteristics and plotted the relationships
between 𝑤 and CNR, as shown in Figure 4. Then, we used
the optimal 𝑤 value (29 keV) to perform energy bin imaging
for the thorax phantom, and the reconstructed image is
shown in Figure 5(a). Meanwhile, we chose a broad energy
spectrum (25∼100 keV) to reconstruct the thorax phantom
which can be considered as the conventional CT imaging, and
the reconstructed result is shown in Figure 5(b). Compared
to the broad energy spectrum imaging result, it is easier to
distinguish Gadolinium solution region and heart region in
optimal energy bin imaging result. Finally, we calculated the
CNR of ROI in Figures 5(a) and 5(b), which is summarized
in Table 2. From Table 2, we can see that CNR of ROI in
Figure 5(a) is smaller than that in Figure 5(b). To compare

Table 2: Summary of maximumCNR for different imagingmodels.

Imaging models CNR
Optimal energy bin (50∼79 keV) imaging 642.1
Broad energy spectrum (25∼100 keV) imaging 438.0

Table 3: Summary of the optimal width and maximum CNR for
different concentration contrast agents.

Contrast agents Optimal 𝑤 (keV) Maximum CNR
Gadolinium solution (0.5%) 29 642.1
Gadolinium solution (1%) 30 1084.9
Gadolinium solution (5%) 32 1519.0

the reconstructed results, we plotted the profiles along the
broken lines in Figure 5, as shown in Figure 6.

The CNR of ROI also relies on the contrast agent concen-
tration𝜔, and thenwe analyze the relationships betweenCNR
and the concentration 𝜔 of contrast agent. We chose different
concentrations of Gadolinium solution (0.5%, 1%, and 5%)
as the testing contrast agents and plotted the relationships
between 𝑤 and CNR with different concentrations, as shown
in Figure 7. Finally, we calculated the optimal 𝑤 and maxi-
mum CNR for different concentration contrast agents, and
the results are summarized in Table 3. From Table 3, we can
see that the higher the concentration of Gadolinium solution
is, the wider the optimal energy bin width is, and the bigger
the CNR of ROI is.

5. Discussions and Conclusion

This paper is a follow-up study for an earlier paper [22].
Although some relevant theories are similar, this study
focuses on how to distinguish contrast agents and back-
ground materials (i.e., tissue) in biomedical imaging with
spectral CT, which can be readily generalized to deal with
more general settings and able to determine the best energy
bin for maximummaterial discrimination.

There are several issues worth further discussion in
the simulation. First, we apply a mimetic X-ray emission
spectrum in our study; the X-ray emission spectra with
1 keV energy bins are obtained by the free-of-charge soft-
ware program (SpekCalc). To analyze relationships between
energy bin 𝑤 and CNR of ROI, we calculate the photon
number 𝐼

𝑤
(𝐸) with the given energy bin width 𝑤 value of

an integer. As a result, it is inevitable to introduce some
errors, compromising the estimation of the optimal energy
bin width 𝑤. Second, the curves of CNR in Figure 7 are
not so smooth in some energy bins, which reflects the real
CNR characteristics in the given X-ray emission spectra.
The unsmooth reason is that the X-ray emission spectra
have some drastic jumps in some energies. If the imaging
energy bin contains these drastic jumps, the photon number
will drastically increase, and the variance of ROI in the
reconstructed image will drastically decrease, so the curves
of CNR in Figure 7 have some jumps in corresponding
energy bins. Additionally, the proposed approach depends on
specific phantom configurations, and the optimal energy bin
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(a) (b)

Figure 5: Two model imaging results. (a) is the reconstructed thorax phantom image in the optimal energy bin, and (b) is the reconstructed
thorax phantom image in a broad energy spectrum. The display window for the two images is [0, 1].
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Figure 6: Profiles corresponding to the broken lines in Figure 5.
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Figure 7: Relationships between the energy binwidth (𝑤) andCNR.
The curves for Gadolinium solutions (0.5%, 1%, and 5%) in the
thorax phantom.

width is application-specific. Nevertheless, our optimization
theory is rigorous and can be applied once the application
context or the class of images is known. In a follow-up study,
we will study the biomedical samples with the spectral CT
based on our proposed imaging theory.

In conclusion, contrast agent imaging with spectral CT
has a great potential for clinical applications including, but
not limited to, tissue characterization and contrast studies.
We proposed a contrast agent imaging model to optimize
energy bin for maximum material discrimination; it estab-
lished guidelines for optimization of energy thresholds and
could be readily generalized for biomedical imaging.
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