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Firing Rate Dynamics in the Hippocampus Induced by

Trajectory Learning
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The hippocampus is essential for spatial navigation, which may involve sequential learning. However, how the hippocampus encodes new
sequences in familiar environments is unknown. To study the impact of novel spatial sequences on the activity of hippocampal neurons,
we monitored hippocampal ensembles while rats learned to switch from two familiar trajectories to a new one in a familiar environment.
Here, we show that this novel spatial experience induces two types of changes in firing rates, but not locations of hippocampal place cells.
First, place-cell firing rates on the two familiar trajectories start to change before the actual behavioral switch to the new trajectory.
Second, repeated exposure on the new trajectory is associated with an increased dependence of place-cell firing rates on immediate past
locations. The result suggests that sequence encoding in the hippocampus may involve integration of information about the recent past

into current state.
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Introduction

The hippocampus plays a key role in episodic memory (Squire,
1992; Vargha-Khadem et al., 1997; Burgess et al., 2002; Squire et
al., 2004), in spatial navigation (Morris et al., 1982; Jarrard, 1993;
Ferbinteanu and Shapiro, 2003), and in learning odor sequences
(Fortin et al., 2002). A key common element in these tasks is the
need to learn novel sequences of events or locations. Therefore,
the hippocampus has been hypothesized to represent and link
individual events in a sequence to form an overall memory trace
(Blum and Abbott, 1996; Jensen and Lisman, 1996, 2005; Levy,
1996; Wallenstein et al., 1998; Eichenbaum et al., 1999; Lisman,
1999; Howard et al., 2005). However, direct experimental data for
how hippocampal neurons encode new sequences during learn-
ing are still lacking.

A common protocol for studying hippocampally dependent
learning and memory in rodents is the use of spatial navigation
tasks, in which animals travel through a sequence of locations
(Skaggs and McNaughton, 1996; Dragoi and Buzsaki, 2006; Su-
zuki, 2006; Ji and Wilson, 2007). Hippocampal neurons fire at
specific locations (place fields) in a given environment (O’Keefe
and Dostrovsky, 1971; McNaughton et al., 1983; Muller, 1996).
Moreover, when different trajectories intersect and share a com-
mon location, hippocampal cells representing the location dis-
charge at different rates, depending on where the animal has
come from or where it will go (Frank et al., 2000; Wood et al.,
2000; Ferbinteanu and Shapiro, 2003; Bower et al., 2005; Smith
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and Mizumori, 2006; Ainge et al., 2007a). This suggests that firing
rates may be involved in encoding episodic memory (Frank et al.,
2000; Wood et al., 2000; Ferbinteanu and Shapiro, 2003; Huxter
etal., 2003; Leutgeb et al., 2005a,b,c, 2006; O’Keefe and Burgess,
2005). However, place fields are also found to translocate when
rats alternate between two trajectories (Lee et al., 2006; Griffin et
al., 2007). This raises the possibility that not only firing rate but
also field location might be involved in trajectory learning.

Thus, previous results indicate that learned spatial trajectories
can be reflected in differentially patterned hippocampal place-
cell activity, but the dynamics of these patterns during learning is
unknown. To study this, we monitored hippocampal cell ensem-
bles while rats learned a new trajectory in a familiar environment.
Rats were first trained to run a continuous figure-eight-shaped
maze (see Fig. 1 A), alternating between two reward sites [left (L),
right (R)] via a central track along two trajectories: LR and RL
(see Fig. 1 B). Then, in the middle of a session, the reward at R or
L was terminated and the animals were required to switch to a
new unilateral LL or RR trajectory for reward.

We found that the trajectory switching induced a dynamic
change in firing rates, but not firing locations of the CA1 cells
representing the central track, both before and after the actual
behavioral change. The dynamics revealed that place cells became
increasingly dependent on past locations along the new trajecto-
ries, suggesting that sequence memory in the hippocampus may
require integrating past with current state information.

Materials and Methods

Behavioral task and training

Four Long—Evans rats (5-8 months old) were trained to run a figure-
eight-shaped maze (see Fig. 1). The training and later recording protocol
was approved by the Committee on Animal Care at Massachusetts Insti-
tute of Technology and followed National Institute of Health guidelines.
Animals were trained for 2-3 weeks (once per day, 30—60 min) to alter-
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nate between LR and RL trajectories for food at reward sites L and R
(alternation task). After they reached at least 80% accuracy, a tetrode
array was surgically implanted. Starting 1 week after the surgery, the rats
were retrained for the same alternation task for another 1 to 2 weeks until
their performance recovered to presurgery levels.

On trajectory-switching days, the rats ran the same alternation task for
~15 min as during previous trainings. Then, the reward at R was termi-
nated and the reward at L was delivered if the animals traveled RL or the
new LL trajectory. No other change was made in the maze or task. On the
following 69 d, the animals were rewarded only for the new LL trajec-
tory. They reached >80% accuracy for the new LL trajectory on the
second or third day after the switch. After running LL for about a week,
three of the four rats were trained to switch back to the alternation task,
and then switch to the new RR trajectory with a similar schedule. On
average, each switch took ~7 d. The seven switching sessions from alter-
nation to LL or RR were combined in the analysis.

Surgery and tetrode recording

A microelectrode array containing 18 independently adjustable tetrodes
was implanted at coordinate (anteroposterior —4.1 mm relative to the
bregma, mediolateral 2.2 mm relative to the midline) to target hip-
pocampal neurons in dorsal CAl. Tetrodes were individually advanced
to CA1 pyramidal cell layer during the 2 weeks after surgery. Recording
began once units were stable and the animals were proficient in the
alternation task. Spikes recorded from a tetrode with any of its four
channels crossing a preset triggering threshold (60—80 wV) were ac-
quired at 32 kHz. Single-unit clusters were manually sorted off-line using
a custom-made software (Xclust, Wilson, MA), based on two-
dimensional (2D) projections of spike peak-to-peak amplitudes (Gray et
al,, 1995). No attempts were made to match units across days for same
animals. Some units may be recorded repeatedly, because tetrodes were
never moved for the rest of the experiment once recording started. In any
case, we sampled from the same neuronal population in CA1 on different
days. Two infrared diodes were used to track the animals’ positions and
head directions. Diode positions were sampled at 30 Hz with a spatial
resolution ~0.67 cm. The position data used in the analysis were from
the back diode, which was approximately located above the middle point
of the interaural line.

Data analysis

Task performance. Each session was divided into a series of individual
laps, defined as runs between reward sites. LR and RL laps were consid-
ered correct for the alternation task, and LL (RR) laps were considered
correct for the unilateral LL (RR) task. Laps that did not belong to any of
four trajectories were considered incorrect for both tasks. The perfor-
mance (accuracy) for a task (alternation or unilateral) was defined at
each individual lap as follows. For a given lap, a window centered at the
current lap and containing *3 laps (seven laps total) was defined. Accu-
racy was defined as the number of correct laps divided by the total num-
ber oflaps (seven) in the window. The performance curves for all sessions
were aligned (lap 0) on either their switching laps, the laps at which
reward at L or R was terminated, or actual first laps on new trajectories
after the switch, and then averaged. Different window sizes (311 laps)
yielded a similar average performance curve, but with different
smoothness.

Firing rate maps. The 2D maze was divided into 2 X 2 cm bins. For each
bin, firing rate of a cell was computed as number of spikes fired by the cell
divided by occupancy time at the bin. The rates were then spatially
smoothed using a 2D Gaussian window with ¢ = 2 cm. The rate maps
were computed separately for each trajectory, either using all the laps or
a block of three consecutive laps on the trajectory.

Place-field properties and central track mean rate. Place fields were de-
fined on each of the three trajectories in a session (LR/RL/LL or LR/RL/
RR) fora place cell [place cells were defined as overall firing rate =0.2 and
<4 Hz and complex spike index =5% (McHugh et al., 1996)]. Laps were
linearized into one-dimensional trajectories, which were binned with a 2
cm spatial bin size. Firing rate within each spatial bin was computed as
number of spikes emitted by that cell divided by the animal’s occupancy
time during all laps on a trajectory. Place fields on a trajectory were

Jiand Wilson e Learning-Induced Hippocampal Dynamics

determined as described previously (Mehta et al., 1997; Lee et al., 2004a,
2006). A rate threshold, which was 10% of the peak firing rate, was used
to determine the boundaries of place fields. Fields with gaps smaller than
10 cm were merged into a single field. The reliability of a place field was
assessed as the percentage of laps with nonzero firing rate on its trajec-
tory. All place fields identified were reliable on at least one trajectory,
with a mean reliability of 94%, median of 100%, and range [45% 100%].
Only those place cells that yielded at least one place field with its peak on
or close to the central track were included for subsequent analysis (for
details, see supplemental Fig. S1, available at www.jneurosci.org as sup-
plemental material). We considered those fields of the same cell but on
different trajectories as the same field, if they overlapped by at least 75%.

Once the boundary of a field, and hence field length, was defined along
a trajectory, we computed the center of mass (COM) of the fields for a
given lap on the trajectory. First, all the spikes within the field boundary
during the lap and their corresponding positions within the field were
determined. COM was the average spatial location of those spikes. Those
laps during which animals stopped in the field (average speed <10 cm/s)
were excluded from the analysis.

The firing rate of a place cell was computed only within the central
track or maze segments, independent of the boundaries of their fields,
and was computed separately for each trajectory. Those laps with low
speed in the central track (average speed <10 cm/s) were excluded.
Spikes within the central track during all laps on a trajectory were
counted. The number was divided by occupancy time to obtain the cell’s
mean firing rate for that trajectory. Similarly, mean rate was also com-
puted for each maze segment or for individual windows of three laps. In
the latter case, only spikes during a window were included.

Correlation in mean rate between trajectories. In contrast with previous
studies (Frank et al., 2000; Wood et al., 2000; Ferbinteanu and Shapiro,
2003; Bower et al., 2005; Smith and Mizumori, 2006; Ainge et al., 2007a),
the new trajectory (LL or RR) in our experiment shared the same past
locations and differed only in immediate future locations with one old
trajectory (LR or RL), and at the same time differed only in immediate
past and shared the same future locations with the other old trajectory
(RL or LR). By comparing activity on the central track across different
trajectories, we were able to examine how an element (e.g., immediate
past or future location) in a spatial sequence affects place-cell response.
By “immediate,” we considered a spatial scale close to the length of a
central track segment (~16 cm) and a temporal scale associated with it
(~0.2-1.5 s). We refer to the pairs LL/LR and RR/RL as same-past, the
pairs LL/RL and RR/LR as different-past, and the pair LR/RL as alternat-
ing trajectories.

Correlation in central track mean rate between same-past (different-
past) trajectories was computed as follows. For each cell i, we took its
central track mean rate values (x;, ;) on a pair of same-past (different-
past) trajectories. All of the cells in all sessions that yielded at least one
field with peak on the central track were combined, and the values were
arranged into two vectors X(x;, x,,. . . , X,,) and Y( y,, ¥5,. . ., ). Then,
the correlation (coefficient, R) is as follows:

1< . -
gz(xf—X)(y;—y)

n

R — (1 ,
gg(xl —x)? EE(” -y

i=1

where X and y are mean values of vector X and Y, respectively. The
significance level ( p value) was assessed by Pearson’s r.

Firing rate dynamics. All switching sessions were aligned (lap 0) at
either their switching laps or their actual first laps on the new trajectories
after the switch. Because of behavioral variations across sessions, at a
given lap different sessions yielded different trajectories. To combine
cells on the same trajectories across sessions, we defined windows of
consecutive three laps and considered each window as a discrete time
point.

To study firing rate changes on familiar trajectories after the switch,
we computed a normalized rate change for each cell to quantify how
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Figure 1.  Behavioral task and performance. 4, The figure-eight maze as shown in cumulative distribution of sampled loca-
tions during a typical switching session. Letters mark strategic points: L and R are the left and right reward sites, respectively; E
and T are the entrance and exit of the central track, respectively. The central track was divided into three segments (1, 2, 3) for
analysis. B, Schematic diagrams of running trajectories on the maze (RL, LR, LL, RR). Arrows mark running directions. C, Actual
laps during two switching sessions (top and bottom, both switching from alternation LR/RL to LL). For each plot, the y-axis
symbolically denotes three strategic points: L, T, and R. For example, an upward line L-T-R means an LR lap. Dashed line, Time at
which reward at R was terminated. D, Average accuracy (mean = SE), computed from all sessions, for alternation (LR/RL, ) and
unilateral (LL or RR, @) behavior. Different sessions were aligned (dashed line) either on their switching laps (top) or their actual
first laps on new trajectories after the switch (bottom).

its firing rate within a window of three laps changed from its mean
rate during baseline laps, the 20 laps before the switch. For a given cell
in a session, its rate on the central track within each lap window was
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the normalized rate change from the baseline.
To obtain an average rate change within a pe-
riod (baseline laps, laps between switching
laps and actual first laps on new trajectories,
or laps on familiar trajectories after the
switch), the normalized rate changes of all
cells in the lap windows within the period
were averaged.

To study firing rate dynamics on new trajec-
tories for a particular segment, we collected all of
the fields that were active in the segment on at
least one of the three allowed trajectories (mean
rate, =1 Hz). We first computed each the aver-
age firing rate of each cell on each of the two
trajectories (LR and RL) during the baseline
laps. We then computed each the firing rate of
each cell on the new trajectory for each window
of three laps after lap 0. Based on baseline and
window-by-window rates of all cells combined
from all seven switching sessions, we computed
rate correlation (r) for each window of three laps
between the same-past and different-past trajec-
tories. For same-past r, we collected the baseline
LR rates and the LL rates in a window of all cells
recorded in alternation-to-LL sessions, and also
the baseline RL rates and the RR rates in the
same window of all cells recorded in alternation-
to-RR sessions. The firing rates of these two
groups of cells were combined to form two vec-
tors: one for baseline rates and one for the rates
in the window. Same-past r was computed from
the two vectors according to (1). For different-
past r, we collected baseline LR rates and RR
rates in a window, and combined with baseline
RL rates and LL rates in the same window. As
such, the correlations were computed for all of
the windows with at least 10 active cells. Not
every window yielded enough cells to obtain
correlation values.

Results

Behavioral performance

Four rats were tested in seven switching
sessions. On average, there were 83.6 *
11.7 laps per session. The vast majority of
laps (96.9%) were along one of the LR, RL,
LL, or RR trajectories (Fig. 1B).

Each session started with alternation
between LR and RL, after which the ani-
mals were trained to switch to the new LL
(four sessions, four rats) or RR (three
sessions, three of the four rats) (for de-
tails, see Materials and Methods). The
switch to unilateral LL or RR trajectory
was considered new learning because, be-
fore the switch, the only experience with
these trajectories was rare, unreinforced,
random errors (3.5%, or 0.86 lap per ses-
sion). In all sessions, animals made the
switch successfully, although the learn-
ing rates across sessions were variable
(Fig. 1C). On average, during the 20 laps

before one of the two original reward sites was no longer
rewarded (switching lap), alternation performance was 96 *

computed, subtracted from the mean, and divided by the SD of its 1% (mean * SE). After the switching lap, alternation behavior
firing rates during baseline laps. The absolute value was considered ~ dropped and unilateral behavior increased (Fig. 1 D). The an-
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imals made the first lap on new trajecto-
ries after 15 * 2 (range, 9-22) laps con-
tinuing on the old alternation task.
During the last 20 laps of these sessions,
76 * 5% of them were on the unilateral
trajectories.

The central track of the maze was shared
by all of the trajectories. Because our later
analysis mainly focused on place fields on
this portion of the maze, we divided the
central track into three segments (Fig. 1 A)
and examined the animals’ behavior in
each of the segments to quantify factors
that might contribute to place-cell activity.
We considered three behavioral parame-
ters: head direction, lateral position, and
running speed. There were systematic dif-
ferences in these parameters across trajec-
tories (supplemental Fig. S1 A, available at
www.jneurosci.org as supplemental mate-
rial). Head direction in segment 1 reflected
the direction of entry, and in segment 3 the

Rate 2 (Hz)

Same-—past
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direction of exit. The differences in lateral
position were small (<2 c¢cm) across all of
the trajectories, but significant between
trajectory pairs LR/LL in segment 3. In ad-
dition, the speeds on the new unilateral tra-
jectories were slower than the alternating
trajectories.

Figure 2.

Rate 1 (Hz)

Firing rates of place cells on the central track were trajectory dependent. 4, Firing rate maps of four example place
cells on three trajectories (LR, RL, LL, or RR). Only the central track and its surrounding segments are shown. Color codes firing rate
with maps within a panel sharing the same peak rate (number in hertz). E and T are the central track entrance and exit,
respectively. B, Comparison of mean firing rates of all place cells on the central track between same-past, different-past, and
alternating trajectories. Each dot represents the mean rates of a place cell on two trajectories during a single switching session

(e.g., LLand LR, or RR and RL for same-past). Red lines, Linear regressions.

Firing rate differences across trajectories

We first asked how place-cell activity dif-

fered across trajectories. Of 323 CAL1 cells recorded, we restricted
this analysis to 42 place cells with at least one field peak located on
the central track (for details, see supplemental Fig. S1, available at
www.jneurosci.org as supplemental material).

Figure 2A shows the activity of four example place cells on
three trajectories (LR, RL, LL or RR) in different sessions. Al-
though their field locations were similar across all three trajecto-
ries, there was a dramatic difference in firing rate on the central
track (Fig. 2A). Their rates differed largely between different-past
trajectories (LR/RR, RL/LL), but were relatively similar between
same-past trajectories (LR/LL, RL/RR).

To quantify this observation, we computed the mean rates on
the central track of all of the cells, separately for different trajec-
tories. To measure differences in firing patterns across trajecto-
ries, we computed the correlation coefficient (R) of the firing
rates with same-past, different-past, and alternating (LR/RL) tra-
jectories for the cell population (Fig. 2 B). There appeared a sys-
tematic drop in firing rates on the new trajectories (population
mean * SE rate: 6.8 = 1.1 Hzon LR and RL; 4.6 = 0.6 Hzon LL
and RR; p = 0.0016, paired ¢ test). This rate decrease may reflect
the speed change after the trajectory switch (supplemental Fig.
S1A, available at www.jneurosci.org as supplemental material).
Despite this global change, there was a strong correlation in the
mean rates between same-past trajectories (r = 0.83, p = 1.1 X
10 '), but only a weak correlation between different-past (r =
0.24, p = 0.12) or alternating (r = 0.33, p = 0.029) trajectories.

Place-field firing rate is known to be influenced by behavioral
parameters such as head direction and running speed (Mc-
Naughton et al., 1983; Huxter et al., 2003). The firing rate varia-
tion could be a result of trajectory dependent behavioral differ-
ence. The head directions deviated equally between same-past

and between different-past trajectories (supplemental Fig. S1A,
available at www.jneurosci.org as supplemental material), yet the
rate correlation between same-past trajectories was much larger
than that between different-past trajectories. Restricting the anal-
ysis to segment 2, where there was no difference in head direction
either between same-past or between different-past trajectories,
produced the same results (supplemental Fig. S2, available at
www.jneurosci.org as supplemental material), and moreover in
segment 3, where the head direction difference between same-
past was larger than that between different-past trajectories, yet
the rate correlation between same-past trajectories was stronger
(supplemental Fig. S2, available at www.jneurosci.org as supple-
mental material). Similar observations regarding the lateral posi-
tion in segments 2 and 3 indicate that lateral position also could
not explain the rate difference (supplemental Fig. S2, available at
www.jneurosci.org as supplemental material). In addition, the
running speed dropped similarly between same-past and
different-past trajectories in segments 2 and 3. Therefore, it is
unlikely that, despite its global influence on the firing rates, speed
change is responsible for the higher correlation between same-
past trajectories than between different-past trajectories.

The trajectory dependence of place-cell firing rates confirmed
the previous report of “splitter” cells (Frank et al., 2000; Wood et
al., 2000; Ferbinteanu and Shapiro, 2003; Bower et al., 2005).
More interestingly, because firing rates between different-past
trajectories were poorly correlated and these trajectories differed
only in past locations, this result suggests that the difference in
immediate past locations resulted in a separation in firing rate
patterns of CAl ensembles on the central track. Similarly, be-
cause the firing rates remained highly correlated between same-
past trajectories, which differed only in immediate future loca-
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Figure3. Place-field rates changed on familiar trajectories after the switch. 4, Rate maps of four example place cells (a-d), baseline laps and the laps after the switch,

each from a different session, during consecutive blocks of three laps on one of the two familiar trajectories (LR, RL). Only the
centraltrackand its surrounding segments are shown. Each row represents a cell. Color codes firing rate with the number showing
peak rate in hertz. Notice the different color scales for LR and RL. Eand T are the central track entrance and exit, respectively. Black
dashed line, Switching laps. Red dashed lines, Actual first laps on new trajectories. B, Average normalized rate changes (mean =
SE) on the central track across all the place cells during the baseline laps before the switching (baseline), during the laps on
familiar trajectories after the switching laps but before the actual first laps on new trajectories (pre), and during the laps on

familiar trajectories after the actual first laps on new trajectories (post).

tions, the result also suggests that the difference in immediate
future locations had a relatively smaller impact on firing rate
patterns of CA1 neurons. This is consistent with previous results
that indicate that the majority of CA1 cells reflect retrospective
coding (Frank et al., 2000; Ferbinteanu and Shapiro, 2003).

Firing rate dynamics on familiar trajectories after the switch
To examine how place cells responded to trajectory switching, we
next analyzed changes in place-cell properties lap-by-lap before,
during, and after the switch. To investigate whether changes in
place-cell activity preceded behavioral changes, we first focused
on the familiar (LR/RL) trajectories during the laps after switches
and before actual first laps on new trajectories.

Figure 3A shows the activities of example place cells on famil-
iar trajectories. Firing rates of these cells on the central track were
stable before, but started to change after the switching laps. In
contrast, the firing locations of these cells did not shift
systematically.

We computed a normalized rate change for each place cell to
quantify how its rate on the central track of the familiar trajecto-
ries fluctuated from its mean rate during baseline laps (for details,
see Materials and Methods), defined as 20 laps before the switch-
ing lap. We then averaged the normalized rate changes of all the
cells combined from all sessions (Fig. 3B). The normalized rate
change during the laps after the switch, but before actual first laps
on new trajectories was significantly higher than the random rate
fluctuation during the baseline laps ( p = 3.0 X 10 ~°, signed rank
test). This increase in rate change from baseline persisted even

and their shifts from the mean COM
(ACOM). On average, COM did not show
a systematic backward or forward shift on
the familiar trajectories (Fig. 4A). There
was no significant correlation between
ACOM and lap number, when all the
switching sessions were aligned either on
their switchinglaps (r = 0.088, p = 0.50) or
their actual first laps on the new trajectories after the switch (r =
—0.14, p = 0.25). The lack of COM shift did not depend on field
length on familiar trajectories (supplemental Fig. S5, available at
www.jneurosci.org as supplemental material).

These data indicate that place cells adjusted their firing rates,
but not locations, on familiar trajectories before the behavioral
switches to new trajectories, thus suggesting that changes in
place-cell activity contribute to the learning involved with trajec-
tory selection. Because before the behavioral switch the trajecto-
ries did not change, the firing rate change was likely induced by
the termination of reward at one of the two sites.

Firing rate dynamics on new trajectories

To examine whether there was also change in place-cell activity
during or after behavioral changes, we analyzed the dynamics of
place-cell properties on the new trajectories.

Figure 5A shows the activities of example place cells in con-
secutive blocks of three laps on the new trajectories (LL or RR),
compared with their baseline activities on two familiar trajecto-
ries (LR and RL). Whereas the field locations appeared stable
across the laps on the new trajectories, the firing rates changed
gradually toward a direction that became more separated from
different-past trajectories and more similar to same-past
trajectories.

Overall, 20 of the 42 cells showed significant changes in firing
rate on the central track (correlation between rates and lap num-
bers, p < 0.05) toward the same-past direction, whereas three
showed significant changes toward the different-past and 17
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Figure4. Place-field location did not systematically shift on familiar or new trajectories. 4,

B, Lap-by-lap COM changes (ACOM, mean == SE) on the familiar LR/RL (4) and new LL/RR (B)
trajectories, averaged over all place fields with peaks on the central track. Different sessions
were aligned (lap 0) on either their switching laps (left) or their actual first laps on new trajec-
tories (right). Solid lines, Linear regressions. A positive/negative ACOM value means a forward/
backward shift from mean COM along the direction of animals’ motion.

showed no significant changes (Fig. 5B). The other two cells did
not yield enough spikes on the new trajectories for the analysis.
Of the 23 cells with significant changes, 7 increased and the other
16 decreased their firing rates. Furthermore, the rate changes on
new trajectories were not predicted by their rate changes on fa-
miliar trajectories before the behavioral switch (Fig. 5C). There
was no significant correlation across the cell population between
the rate changes on new trajectories and the rate changes on
either the same-past (r = —0.12, p = 0.44) or different-past (r =
—0.25, p = 0.098) trajectories before the actual first laps on new
trajectories. This result suggests that the rate changes on new and
familiar trajectories were caused by two separate processes, with
the former likely by change in reward and the latter by recent
experience on new trajectories.

In contrast, the vast majority of the cells (35) did not signifi-
cantly shift in COM, with only two shifting toward the same-past
direction and three toward the different-past (Fig. 5B). On aver-
age, there was no systematic backward or forward COM shift on
new trajectories after the switch (Fig. 4 B). There was no signifi-
cant correlation between ACOM and lap number, when all of the
switching sessions were aligned either on their switching laps (r =
—0.015, p = 0.89) or their actual first laps on the new trajectories
after the switch (r = —0.015, p = 0.90). The lack of COM shift did
not depend on field length on new trajectories (supplemental Fig.
S5, available at www.jneurosci.org as supplemental material).

We then examined whether there was a systematic and coher-
ent change in firing rate across the place-cell population. Figure 6
plots spike rasters of all the cells active around the central track
during laps in a session switching from alternation to LL. The
cells showed distinctive and stable firing patterns on LR and RL
before the switch. After the switch, the firing pattern on LL laps
was initially similar to the pattern on different-past RL. The pat-
tern then gradually became more similar to that of same-past LR.
This suggests that hippocampal ensembles on the new trajectory
undergo a collective dynamic change in firing rate, in which pat-
terns become progressively less correlated with their different-
past and more correlated with their same-past counterparts.

To quantify this, we computed a rate correlation (r) between
same- and different-past trajectories. To check whether the dy-
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namics varied across central track segments, the correlation was
computed separately for each segment. The seven switching ses-
sions were aligned (lap 0) on either their switching laps or their
actual first laps on the new trajectories after the switch. In both
cases, the 20 laps before the switch were taken as baseline laps,
and all laps after lap 0 were grouped into windows of three laps.
For each segment, we collected all cells that were active in the
segment and calculated the firing rate of each cell within each
window of three laps on the new trajectory (LL or RR), as well as
its average firing rate within baseline laps on LR and RL. The rate
correlation for a window was the correlation between firing rates
of all the cells, combined from the seven sessions, within the
window on the new trajectories and their baseline rates on either
the same-past (same-past r) or different-past (different-past r)
trajectories.

The rvalues with the sessions aligned on the switching laps are
plotted in Figure 7A. The initial different-past r was low in seg-
ment 1, but high in segments 2 and 3. In all three segments, the
different-past r decreased with lap number (correlation between
r and lap number, segment 1: r = —0.75, p = 7.2 X 10 % seg-
ment 2: 7 = —0.82, p = 1.9 X 10~ % segment 3: r = —0.82, p =
2.0 X 10 ~°). Although the drops in r were linear in segments 2
and 3, the correlation in segment 1 appeared to approach an
asymptotic value around —0.25, which was also approximately
the mean rate correlation between place-cell activities at two dif-
ferent locations on the maze. The asymptotic behavior in seg-
ment 1 suggests this value of —0.25 may be the limit for different-
past trajectories r. This result indicates that the rate patterns on
the new trajectories in the entire central track became increas-
ingly separated from their different-past trajectories.

The same-past r was initially high in segment 1 and 2, and low
in segment 3. In segment 3, the same-past r rapidly increased with
lap number (r = 0.80, p = 5.5 X 10 ~°). The increase was also
observed in segment 1 (r = 0.64, p = 0.00036), despite an initial
high r value. In segment 2, the same-past r decreased slightly (r =
—0.53, p = 0.0093), but stayed high in the end of the sessions. It
is likely the slight decrease in segment 2 was caused by behavioral
variation, because the decrease was not significant after firing rate
was corrected for behavioral dependence (see below). These data
indicate that the rate patterns on the new trajectories over the
entire central track in the end became similar to their same-past
trajectories.

The results were similar when the sessions were aligned on
their actual first laps on new trajectories (Fig. 7B). Different-past
r significantly decreased across the three segments (segment 1:
r=—0.74,p =73 X 107> segment 2: r = —0.81, p = 4.7 X
10 7% segment 3: r = —0.84, p = 2.3 X 10~°), and same-past r
increased significantly in segment 1 (r = 0.47, p = 0.029) and 3
(r=0.83,p = 3.7 X 10 %), except that same-past r in segment 2
did not change significantly with this alignment (r = 0.0017, p =
0.99).

We then examined whether the observed change in firing rate
correlations could have been generated by other noncognitive
factors. First, a careful examination of lap-by-lap fluctuation in
head direction, lateral position, and speed indicated that the rate
dynamics could not be explained by variations in these behavioral
parameters on the new trajectories (supplemental Fig. S6, avail-
able at www.jneurosci.org as supplemental material). Second, the
same analysis applied to the baseline laps showed that rate corre-
lation values did not change during these laps (supplemental Fig.
S7A, available at www.jneurosci.org as supplemental material),
consistent with the previous analysis showing that firing rates on
the baseline laps were stable (supplemental Fig. S3, available at
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on new trajectories). Solid lines, Linear regressions.

www.jneurosci.org as supplemental material). Furthermore, re-
moving dependence of rate on behavioral parameters produced a
similar dynamics of different-past r for all the 3 segments, and of
same-past r for segment 1 and 3 (supplemental Fig. S7B, available
at www.jneurosci.org as supplemental material). The same-past r
in segment 2 showed a nonsignificant change after this correc-
tion. Third, normalizing firing rates across the cell population
produced a similar trend in firing rate correlations, indicating
that the rate dynamics was not dominated by a particular group
of high-rate or low-rate cells (supplemental Fig. S7C, available at
www.jneurosci.org as supplemental material).
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Place-cell activity showed a dynamic change on new trajectories. A, Rate maps of seven example place cells (a- g),
each from a different session, during baseline laps on the two alternating trajectories (LR, RL) and during consecutive blocks of 3
laps on the new trajectories (LL or RR). Only the central track and its surrounding segments are shown. Eand T are the central track
entrance and exit, respectively. Each row represents a cell. Color codes firing rate with maps within a row sharing the same peak
rate (number in hertz). B, Central track mean rates and field COMs of all the cells during the first (early) and last (late) two blocks
of laps on the new trajectories. Each line represents a cell. Blue lines, Cells showing a significant rate change (correlation between
rates or COMs and lap numbers with p << 0.05) on the new trajectories that became more similar to same-past trajectories. Red
lines, Cells showing a significant change toward different-past trajectories. Gray lines, Cells without a significant change. C,
Central track mean rate changes of all the cells on new trajectories, compared with the changes on same-past and different-past
familiar trajectories before the first actual laps on new trajectories. Each dot represents the rate change of a place cell on a new
trajectory (rate change 1: rate difference between the first and last two blocks of laps on the new trajectory) and on a familiar
trajectory (rate change 2: rate difference between the baseline laps and the laps after the switching but before the actual first laps
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These results indicated that immediate
pastlocations had a strong influence on the
place-cell dynamics. We next ask whether
this effect was confined on the central track
or could also be extended to other places on
the maze. We did the same analysis to ad-
ditional 30 place cells with at least one field
peak in the segments before the central
track (pre segments) and 52 place cells after
(post segments) (Fig. 8). We found that ac-
tivity patterns in pre segments remained
similar with their same-past trajectories
(Fig. 8A), indicating the trajectory switch
per se did not alter all place fields on the
maze. However, similar to the rate dynam-
ics on the central track, the activity patterns
on the new trajectories in the two immedi-
ate post segments became increasingly sep-
arated from their different-past trajectories
(Fig. 8B). The effect was progressively
weaker and was not observed in the distant
post segment. This result suggests that the
rate dynamics on the central track were ex-
tended but limited to adjacent segments.

Together, these results indicate a collec-
tive firing rate change in CAl ensembles
induced by trajectory switching. With
more experience on new trajectories, the
firing patterns became increasingly sepa-
rated from their different-past trajectories,
and progressively more similar to their
same-past trajectories. Therefore, trajec-
tory learning induced a change in place-cell
activity that increased the dependency on
immediate past location or state.

Peak

Discussion

Episodic experiences commonly consist of
novel arrangements of events occurring in
familiar environments. How the hip-
pocampus encodes different event se-
quences in familiar contexts is unknown.
We have analyzed firing patterns of CAl
ensembles in animals as they explicitly
learned a new sequence of locations (new
trajectory) in a familiar environment. In
agreement with the rate hypothesis (Leu-
tgeb et al., 2005b,¢), we found a dynamic
change in CALl place-field firing rates dur-
ing the learning experience, without sys-
tematic change in their firing locations.

Firing rate dynamics
The observed place-field dynamics likely reflect changes in un-
derlying synaptic input to place cells. As suggested in the path-
integration proposal (Samsonovich and McNaughton, 1997; Mc-
Naughton et al., 2006), this input information may come from
two possible sources: current sensory information and informa-
tion associated with immediate past experience. In our experi-
ment, both types of information could be altered across trajecto-
ries. Same-past trajectories differ in immediate future locations
and would reflect differences in current sensory input because of
the systematic variation in behavioral parameters such as head
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Firing pattern of multiple place cells on the central track displayed a collective dynamic change on a new trajectory. Spike rasters of the cells active on the central track during individual

laps in a session switching from alternation to LL. The axis labels of the first panel apply to all the panels. For every panel, each row represents a cell, and each tick represents a spike. E and T are the
central track entrance and exit, respectively. Six laps before and 12 laps after the switch (lap 0) are shown. The label on top of each panel denotes lap number (black number on the left, e.g., 21,
meaning it was the 21st lap after the switch), the trajectory (black letters in the middle, e.g., LL, meaning the animal was running the LL trajectory), and the time that the animal had been on the
new LL trajectory (red number on the right, e.g., 1, meaning it was the first time the animal on the LL trajectory after the switch).

direction and lateral position (supplemental Fig. S1 A, available at
www.jneurosci.org as supplemental material), particularly in
segment 3. However, different-past trajectories would reflect dif-
ferent immediate past input. Our results indicate a shift in rela-
tive contribution from these two types of information to place-
cell activity during and after new trajectory learning. More
specifically, CA1 ensemble activity was initially dominated by
current input information, and then shifted to input associated
with immediate past experience along a trajectory.

In our experiment, the activity patterns on the new trajecto-
ries were initially more correlated with the trajectories that shared
the same current information (Fig. 7). In segment 1, the initial
rate correlation was high between same-past trajectories, because
of similar head direction and immediate future locations, but low
between different-past trajectories because of the head direction
difference. In segment 3, the initial rate correlation was high be-
tween different-past trajectories because of the similarity in head
direction, lateral position, and immediate future locations, but
low between same-past trajectories because of the difference in
these parameters. In segment 2, the initial rate correlations were
relatively high both between different-past and between same-

past trajectories, because of similar head direction, lateral posi-
tion, and immediate future locations across all trajectories.

With more experience on new trajectories, activity patterns
became more similar with the trajectories that shared the same
immediate previous experience and more different from those
with different immediate previous experience. Regardless of the
different initial conditions as mentioned above, activity in all
three segments on new trajectories became more separated from
their different-past trajectories and more correlated with their
same-past trajectories (Fig. 7), indicating an increase in the influ-
ence of immediate past input on place-cell activity.

Firing rate dynamics and sequence learning

We observed that firing rate patterns changed as the animals
learned new trajectories. However, it is important to understand
the relationship between the observed rate dynamics and learn-
ing, that is, whether changes in neural activity precede or follow
expression of learned behavior. It is presently unknown whether
the exact behavioral task studied here depends on the hippocam-
pus. A similar task has been found to be compromised by hip-
pocampal lesions (Ferbinteanu and Shapiro, 2003), but another
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correlation between individual lap windows on new trajectories and baseline laps on same-past (blue) and different-past (red)
trajectories. The correlation was computed for the three central track segments separately. The segments and the trajectory pairs
areillustrated on the top for each panel. The trajectory pairing s only drawn for the sessions switching from alternation to LL. Cells
active on the central track in these sessions were combined with those from alternation to RR to generate the plot on the bottom.
Sessions were aligned (lap 0) on their switching laps. Solid lines, Linear regressions. B, Same as 4, but with sessions aligned (lap
0) on their actual first laps on new trajectories after the switch.
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study shows that continuous alternation
performance is not altered by the lesion
unless a delay is imposed (Ainge et al.,
2007b). Previous studies found that hip-
pocampal activity changes could occur ei-
ther before, during, or after the actual
learning of an associational task in the pri-
mate (Wirth et al., 2003), and occur during
learning of odor sequences in rats (Manns
etal., 2007). Previous studies on the role of
trajectory-dependent CA1 activity in alter-
nation behavior in rats have been contro-
versial (Ferbinteanu and Shapiro, 2003;
Bower etal., 2005; Ainge et al., 2007b; Grif-
fin et al., 2007).

In our study, we found that place-cell
firing rates changed significantly on famil-
iar trajectories before the animals switched
to new trajectories (Fig. 3). This indicates
that CALl activity changes preceded actual
behavioral changes, and therefore provides
evidence for an active role of place-cell ac-
tivity in trajectory learning. In our experi-
ment, this active process may be induced or
initiated by the change in reward contin-
gency. However, firing rates continued to
change even after the animals performed
well on the new trajectories, especially in
segments 2 and 3 of the central track and in
postsegment 1 and 2 (Figs. 7, 8). Therefore,
neural activity change appears to persist af-
ter behavioral change. This suggests that
CA1 may also keep track of repetitive learn-
ing experience as the new experience be-
comes familiar. It is likely that the rate
changes before and after the behavioral
switch involve different mechanisms, be-
cause they were not significantly corre-
lated. Together, CA1 firing rate dynamics
seems to play multiple roles in sequential
trajectory learning, although other mecha-
nisms could also be involved (Skaggs et al.,
1996; Dragoi and Buzsaki, 2006; Shapiro
and Ferbinteanu, 2006).

Place-field COM shift on

new trajectories

Although we did not find any systematic
shift in the COM of place fields, two previ-
ous related experiments reported that
COM underwent a dramatic forward shift
in similar tasks (Lee et al., 2006; Griffin et
al., 2007). We hypothesize that the differ-
ence probably reflects the different experi-
mental procedures. In these previous ex-
periments, animals were initially trained to
run a unilateral trajectory on half of a con-
tinuous T maze while the access to the
other half was prevented by one or two
wooden blocks. Then, the blocks were re-
moved or shifted to a different location,
and the animals were required to choose
one of the two possible trajectories. There-
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fore, there was not only a change in the trajectory, but also a
change in the maze cues. It is possible that these cue changes, as
well as the potential changes in the perceived start and/or end
positions of trajectories caused by the cue manipulations might
have triggered the shift in place-field locations, as observed after
other types of cue manipulations (Gothard et al., 1996; Lever et
al., 2002; Huxter et al., 2003; Lee et al., 2004b; Leutgeb et al.,
2005b). In our experiment, the change in trajectory was achieved
without manipulation of cues or the structure of the maze itself.
Previous studies also show that place-field COMs shift slightly
backward during the first a few laps on a track (Mehta et al., 1997,
2000; Lee et al., 2004b). This phenomenon was reproduced when
we analyzed place-field COM only for the baseline laps on the
alternating LR/RL laps before the switch (data not shown). How-
ever, while the animals were learning the new trajectories, we did
not find any systematic COM shift. This suggests that the back-
ward shift of COM occurs after introduction into a behavioral
context, but not after changes in behavior within that context.

Cellular mechanisms for the firing rate dynamics

We observed that place-cell activity during learning was increas-
ingly influenced by the input associated with immediate past lo-
cations. Although the precise mechanisms underlying the ob-
served dynamics remain unknown, we provide a possible
explanation as follows.

Upstream activity in the entorhinal cortex (EC) reaches CA1
through two separate pathways: a direct entorhinal input from
layer 3 cells and an indirect input via CA3 from layer 2 cells
(Witter et al., 2000). We propose that the direct EC input mainly
provides trajectory information that depends on immediate pre-
vious experience, consistent with previous studies that found that
some layer 3 EC cells may function as a path integrator (Sargolini
et al., 2006) and thus display trajectory-dependent firing (Frank
et al., 2000; Lipton et al., 2007). The indirect CA3 input may
mainly provide current spatial information to CAl place cells,
consistent with the data that normal CA3 is essential for working
memory tasks and for rapid formation of place cells in CA1 (Brun
et al., 2002; Lee and Kesner, 2002; Nakazawa et al., 2002, 2003;
Cravens et al., 2006). In this model, the firing rate dynamics we
observed can be explained by a bias toward stronger CA3 input to
CA1 during early learning that shifts toward direct EC input after
learning.

Our model, as well as that of Hasselmo and Eichenbaum
(2005), which considers CA3 as a temporal information proces-
sor and proposes that learning mainly involves activity within the
EC network, provides a different view from a class of models in
which the recurrent CA3 network is considered as a sequence
associator (Blum and Abbott, 1996; Jensen and Lisman, 1996;
Levy, 1996; Wallenstein et al., 1998). Because our study did not
record from CA3, the data did not allow us to differentiate these
models. Future experiments should clarify the precise mecha-
nism for trajectory learning in the hippocampus.
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