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Ionotropic glutamate receptors play important roles in spinal processing of nociceptive sensory signals and induction of central sensi-
tization in chronic pain. Here we applied highly sensitive freeze-fracture replica labeling to laminae I-II of the spinal dorsal horn of rats
and investigated the numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual postsynaptic
membrane specializations with a high resolution. All glutamatergic postsynaptic membranes inlaminae I-II expressed AMPA receptors,
and most of them (96%) were also immunoreactive for the NR1 subunit of NMDA receptors. The numbers of gold particles for AMPA and
NMDA receptors at individual postsynaptic membranes showed a linear correlation with the size of postsynaptic membrane specializa-
tions and varied in the range of 8-214 and 5-232 with median values of 37 and 28, whereas their densities varied in the range of
325-3365/um? and 102-2263/um?” with median values of 1115/um? and 777/um?, respectively. Virtually all (99%) glutamatergic
postsynaptic membranes expressed GluR2, and most of them (87%) were also immunoreactive for GluR1. The numbers of gold particles
for pan-AMPA, NR1, and GluR2 subunits showed a linear correlation with the size of postsynaptic surface areas. Concerning GluR1, there
may be two populations of synapses with high and low GluR1 densities. In synapses larger than 0.1 ;m %, GluR1 subunits were recovered
in very low numbers. Differential expression of GluR1 and GluR2 subunits suggests regulation of AMPA receptor subunit composition by
presynaptic mechanism.
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Ca** influx into the postsynaptic spinal neurons and the conse-
quent development of central sensitization, which presents com-

Introduction
Fast excitatory neurotransmission in the CNS is mainly mediated

by glutamate. In the superficial spinal dorsal horn, glutamate is
released by nociceptive primary afferents and local axon termi-
nals of spinal excitatory neurons and, by activating ionotropic
and metabotropic glutamate receptors, plays major roles in no-
ciceptive information processing. In case of their repetitive stim-
ulation, central terminals of nociceptive primary afferents dis-
charge glutamate together with neuropeptides and
neurotrophins. The interplay of glutamate, neuropeptide, and
neurotrophin receptor mechanisms then results in increased
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mon features with the early phase of long-term potentiation
(LTP). The propagation of enhanced activities of spinal nocicep-
tive circuits to higher brain centers then leads to hyperalgesia and
various pain syndromes (Woolf and Salter, 2000). A long line of
evidence indicates that AMPA and NMDA receptors are involved
in the induction of spinal LTP and consequent pain (for review,
see Ji et al., 2003).

It has been demonstrated extensively that AMPA and NMDA
receptors are expressed in high densities in the superficial spinal
dorsal horn (Furuyama et al., 1993; Pellegrini-Giampietro et al.,
1994; Tachibana et al., 1994; Jakowec et al., 1995a,b; Harris et al.,
1996; A. Popratiloff et al., 1996, 1998; S. A. Popratiloff et al., 1998;
Kerr et al., 1998). The majority of AMPA receptors in the dorsal
horn consist of GluR2 and GluR1 subunits that may form func-
tional AMPA receptor ion channels in both homomeric and het-
eromeric arrangements. In contrast, the expression of GluR3 and
GluR4 subunits and their mRNAs was found to be weak (Sato et
al., 1993; Tolle et al., 1993, 1995).

Although a long line of experiments have been performed to
detect AMPA and NMDA receptors in the spinal dorsal horn,
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these studies could reveal the receptors mostly, if not exclusively,
in the cytoplasm and not at synaptic appositions. Postsynaptic
membranes are poorly accessible for antibodies in preembedding
immunostaining protocols because of the presence of extensive
protein meshwork in the synaptic cleft and postsynaptic density
(Baude et al., 1995; Ottersen and Landsend, 1997; Fritschy et al.,
1998; Watanabe et al., 1998). Although postembedding immu-
nogold labeling has also been used to investigate synaptic AMPA
and NMDA receptors in the spinal cord (A. Popratiloff et al.,
1996, 1998; S. A. Popratiloff et al., 1998; Ragnarson et al., 2003),
the pattern of AMPA and NMDA receptor expression at individ-
ual synapses remains largely elusive.

Recently an SDS-digested freeze-fracture replica labeling
(SDS-FRL) method was developed to investigate AMPA recep-
tors at individual synapses (Tanaka et al., 2005; Masugi-Tokita et
al., 2007). By removing attached molecules from the fractured
plasma membranes, thus making intramembrane proteins di-
rectly accessible for antibodies, the SDS-FRL method seems to be
ideal for immunocytochemical investigation of membrane-
bound molecules, including neurotransmitter receptors
(Masugi-Tokita and Shigemoto, 2007). In the present study, we
applied the SDS-FRL method for AMPA and NMDA receptors in
the superficial spinal dorsal horn of rats, which allowed us to
examine the numbers, densities, and colocalization of these re-
ceptors at individual postsynaptic membranes with a high
resolution.

Materials and Methods

Animals and preparation of tissue sections. Experiments were performed
on three adult male Wistar rats, two GluR2 knock-out (Hartmann et al.,
2004), one GluR1 knock-out (Hartmann et al., 2004), and two wild-type
mice. Care and handling of the animals before and during the experi-
ments followed European Union and Japanese regulations and was ap-
proved by the animal care and use committees of the authors’ institu-
tions. The animals were deeply anesthetized by sodium pentobarbital
(3.5 mg/100 g of body weight, i.p.), and transcardially perfused with
isotonic saline solution for 10—15 min followed by a fixative containing
2% paraformaldehyde and 15% saturated picric acid dissolved in 0.1 M
phosphate buffer (PB; pH 7.4). The perfusion with the fixative lasted for
30—40 min, and then the lumbar segments (L2-L5) of the spinal cord
were immediately excised and hemisected along the midline. The he-
misected cords were transferred into 0.1 M PB, pH 7.4, for 1-2 h. Then
150-um-thick parasagittal sections were cut from the hemisected cords
with a vibratome. After extensive washes in 0.1 M PB, the sections were
cryoprotected in 30% glycerol dissolved in 0.1 M PB overnight. The fixed
tissues were kept at 4°C until they were cryopreserved by freezing.
SDS-digested freeze-fracture replica labeling. The sections were frozen
quickly by a high-pressure freezing machine (HPM 010; Bal-Tec). The
frozen slices were then freeze fractured and coated with carbon (5 nm),
shadowed by platinum (2 nm), and then coated with carbon (15 nm)
again in BAF 060 (Bal-Tec). After thawing, tissue debris attached to the
replicas was digested with gentle stirring at 80°C overnight in a solution
containing 2.5% SDS and 20% sucrose dissolved in 15 mwm Tris buffer,
pH 8.3. The replicas were washed in 25 mm Tris-buffered isotonic saline
(TBS; pH 7.4) washing buffer containing 0.05% bovine serum albumin
(BSA) and incubated in a blocking solution containing 5% BSA in 25 mm
TBS for 1 h. Subsequently, the replicas were reacted with the following
primary antibodies: (1) pan-AMPA receptor (GluR1-4) antibody raised
in rabbit (1 ug/ml) (Nusser etal., 1998), (2) mouse monoclonal antibody
against the NRI subunit of NMDA receptor (1 ug/ml; Millipore Bio-
science Research Reagents), (3) mixture of the pan-AMPA and NR1
antibodies, (4) antibody against the GluR1 subunit of AMPA receptor
raised in rabbit (8 wg/ml), or (5) mouse monoclonal antibody against the
GluR2 subunit of AMPA receptors (15 ug/ml; Millipore Bioscience Re-
search Reagents), diluted in 25 mm TBS containing 1% BSA at +15°C (in
case of 1-3) or at room temperature (in case of 4-5) for 2 d. The rabbit
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Figure 1. Photomicrograph of an SDS-FRL replica on a 100-mesh copper grid. The replica
was prepared from a paramedian—sagittal section of the dorsal aspect of the rat lumbar spinal
cord. White lines indicate the presumed outer and inner borders of laminae I-II. Scale bar, 100

m.

antibody against GluR1 was raised against an extracellular epitope
(amino acid residues 345-362) of the rat GluRl (C-
RFEGLTGNVQEFNEKGRRT), followed by affinity purification with the
same peptide. Subsequently, the antibody was absorbed twice by GluR2-
specific peptide (C-QVEGLSGNIKFDQNGKRI) to avoid undesired
contamination of GluR2-reacting antibodies. After several washes, the
replicas were reacted with goat anti-rabbit (for pan-AMPA and GluR1)
and goat anti-mouse (for NR1 and GluR2) IgGs coupled to 5 nm gold
particles (1:30; BioCell Research Laboratories) diluted in 25 mm TBS
containing 5% BSA overnight at room temperature. In the double-
labeling protocols, one of the secondary antibodies was conjugated to 5
nm gold particle, whereas the other was coupled to 10 nm gold particle.
The replicas were then washed, picked up on 100-mesh grids (Fig. 1),
examined with an electron microscope (JEOL1010), and photographed
at a magnification of 40,000X.

Controls. To test the specificity of antibodies raised against GluR1 and
GluR2 subunits of AMPA receptors, replicas of spinal cord sections ob-
tained from GluR1 and GluR2 knock-out and wild-type mice were im-
munolabeled according to the procedure described above. Replicas of
GluR2 knock-out mice were almost negative for GluR2 in the postsyn-
aptic membrane specialization. On the average, the density value for
GluR?2 in the knock-out mice was 3.3 particles/um 2, whereas that in the
wild-type animals was 219 particles/wm?. On the other hand, the anti-
body raised against GluR1 appeared to be highly specific and reacted
selectively with GluR1 subunits in Western blot analysis (supplemental
Fig. 1, available at www.jneurosci.org as supplemental material) How-
ever, labeling density for GluR1 at individual postsynaptic membrane
specializations in wild type (144 £ 13.9; n = 58) was only three times
higher than that in knock-out mice (54 = 7.1; n = 50), although the
difference was statistically significant ( p < 0.001, Mann—Whitney U test)
(supplemental Fig. 2, available at www.jneurosci.org as supplemental
material). Therefore, we subtracted the density of non-GluR1 labeling
from the labeling in wild type, thus making the density 63% of the orig-
inal value.

Specificity of primary antibodies against NR1 and pan-AMPA was
extensively characterized previously (Siegel et al., 1994; Nusser et al.,
1998; Masugi-Tokita et al., 2007).

To test the specificity of the immunolabeling procedure, replicas were
incubated according to the protocol described above with primary anti-
bodies omitted or replaced with 1% normal goat serum. Labeling densi-
ties on clusters of intramembrane particles were <2.8 particles/um? in
these cases.

Quantitative evaluation of the immunolabeling. Immunogold particles
were counted in excitatory postsynaptic areas indicated by clusters of
intramembrane particles (IMP clusters) (Harris and Landis, 1986) on the
exoplasmic fracture face (E-face) of plasma membranes. Aggregations of
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intramembrane particles were regarded as IMP
clusters if the particles showed a compact ar-
rangement in which the distances among adja-
cent particles were not larger than 15 nm. We
considered an IMP cluster as postsynaptic
membrane specialization if the cluster con-
tained at least 30 particles. Confirming the find-
ings of Masugi-Tokita et al. (2007), all of the
postsynaptic areas on E-face were labeled with
the antibody raised against pan-AMPA. Immu-
nogold particles were regarded as associated
with the postsynaptic membrane specialization
if they were above or in the immediate vicinity
(not further than 20 nm from the edge) of the
IMP cluster (Matsubara et al., 1996).

Measurements were performed in three ani-
mals, and results were pooled because the den-
sity for immunogold particles on IMP clusters
was not significantly different in the different
animals. Immunogold particles on the proto-
plasmic fracture face (P-face) of plasma mem-
branes should not be labeled with antibodies
directed against extracellular epitopes, and thus
were defined as background labeling, which
turned out to be 3.2 particles/um? on the aver-
age. The extent of IMP clusters on electron mi-
crographs was calibrated by using a calibration
grid (Ted Pella). The outline of postsynaptic
active zones (IMP clusters) was demarcated
freehand, and the area of synaptic sites was
measured by Scion Image. The numbers of gold
particles marking receptor molecules at synap-
tic sites were counted manually.

Statistical analysis of distribution pattern of
immunogold particles. To evaluate the distribution pattern of gold parti-
cles labeling receptors within a synapse, we used point pattern analysis
using Ripley’s K-function (Ripley, 1977, 1979; Prior et al., 2003). Elec-
tron micrographs of six randomly selected IMP clusters labeled for NR1,
pan-AMPAR, GluR1, and GluR2 were digitized with an image scanner. A
rectangular area that covered at least 50% of particles at individual IMP
clusters was selected, and the x—y coordinates of individual particles in
the area were obtained by iTEM image analysis software (Soft Imaging
System). Distribution patterns of immunogold particles were analyzed
with the L(r) — r values, which express the second-order spatial pattern
of particle distribution based on the interparticle distances within the
studied area, by using a program kindly provided by John Hancock,
University of Queensland, Brisbane, Australia (Prior et al., 2003). To
define whether the distribution patterns of immunogold particles were
homogeneous or clustered, 99% confidence envelopes for complete spa-
tial randomness (CSR) were generated from 100 Monte Carlo simula-
tions and plotted with the L(r) — r curve (see supplemental Fig. 3, avail-
able at www.jneurosci.org as supplemental material). When the L(r) — r
curve was above the envelope at more than one point, distribution was
classified as clustered. When all points of the L(r) — r curve were below
the envelope, its distribution was classified as CSR and as homogeneous.
For more detailed information about the application of this statistical
approach to immunoparticle-labeled replicas, please see Fujita et al.
(2007).

Figure 2.

Results

Numbers and densities of AMPA receptors at individual
synaptic contact areas

Using the SDS-FRL method, we analyzed the numbers, distribu-
tion, and densities of AMPA receptors at individual synaptic con-
tact areas in the superficial spinal dorsal horn of rats with an
antibody against highly conserved extracellular amino acid resi-
dues of GluR1-4 (pan-AMPA). The pan-AMPA antibody has
been shown to react selectively with all AMPA receptor subunits
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a-d, Electron micrographs of SDS-FRL replicas immunolabeled with an antibody that recognizes all subunits of
AMPA-type glutamate receptors (pan-AMPA) (a, ¢) or with an antibody raised against the NR1 subunit of NMDA-type glutamate
receptors (b, d). The micrographs illustrate postsynaptic membrane specializations (IMP clusters) that show strong immunore-
activity for pan-AMPA (a, ¢) or NR1 (b, d) in the superficial spinal dorsal horn of rats. All subunits are labeled with 5 nm gold
particles. Scale bars, 0.1 m.

GluR1-4, but not with kainate receptor subunits (Nusser et al.,
1998).

The border between the dorsal column and the dorsal horn
was easily identified on the replicas with both light and electron
microscopy (Fig. 1). The border between laminae IT and III was
also clear because almost no myelinated axons were found in
lamina IT, but many were in lamina III. Immunoreactivity of IMP
clusters on E-face profiles of the replicas was investigated in a
band between these two boundaries (Fig. 1), in a zone that had
earlier been identified as a layer of the gray matter corresponding
to laminae I and II of the spinal dorsal horn (McClung and Cas-
tro, 1978; Molander et al., 1984; McNeill et al., 1988).

Postsynaptic membrane specializations were clearly indicated
by aggregations of IMPs on E-faces (see Figs. 2, 5, 6), as described
previously (Landis and Reese, 1974; Harris and Landis, 1986). We
defined IMP clusters as those containing at least 30 intramem-
brane particles. Immunogold particles for AMPA receptors were
found almost exclusively on IMP clusters, and all IMP clusters on
E-face profiles were immunoreactive for the pan-AMPA anti-
body (Fig. 2a,c). In the majority of postsynaptic membrane spe-
cializations, immunogold particles were distributed over the en-
tire field of individual IMP clusters with no apparent clustering
(Fig. 2a; supplemental Fig. 2, available at www.jneurosci.org as
supplemental material), although the density of labeling varied
considerably from cluster to cluster (Fig. 3a). The number of
immunogold particles was counted in both complete (n = 97)
and incomplete (partially fractured; n = 65) postsynaptic mem-
brane specializations. In complete postsynaptic membrane spe-
cializations, the number of gold particles varied in the range of
8-214 with a median value of 37. The number of gold particles
labeling AMPA receptor showed a linear correlation (r = 0.86)
with the size of the postsynaptic surface areas (Fig. 4a). Because
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from cluster to cluster (Fig. 3b; supple-
mental Fig. 3, available at www.jneurosci.
org as supplemental material). In com-
plete postsynaptic membrane specializa-
tions (n = 99), the number of gold parti-
cles varied in the range of 5-232 with a
median value of 28. The number of gold
particles for NR1 showed a linear correla-
tion (r = 0.87) with the size of the postsyn-
] aptic surface areas (Fig. 4b). Because of the
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Figure3.

receptors.

densities of immunogold labeling for the pan-AMPA antibody
obtained from complete and incomplete postsynaptic active
zones were not significantly different (supplemental Fig. 4, avail-
able at www.jneurosci.org as supplemental material), they were
pooled. The density values varied in the range of 325-3365 par-
ticles/uwm? with a median of 1115 particles/um? (Fig. 3a). The
mean density values for the extrasynaptic sites on E-face and
background estimated on P-face were 2.7 and 3.2 particles/um?,
respectively.

Numbers and densities of NMDA receptors at individual
synaptic contact areas

To investigate the numbers, distribution, and densities of NMDA
receptors at individual synaptic contact areas in the superficial
spinal dorsal horn, replicas were reacted with a monoclonal an-
tibody against the NR1 subunit, which is a constituent of all
functional NMDA receptor ion channels [for review, see Cull-
Candy et al. (2001) and Gibb (2004)]. The antibody was directed
against a fusion protein corresponding to amino acid residues
660—811, representing the extracellular loop between transmem-
brane regions Il and IV of the NR1 subunit (Siegel et al., 1994). It
has been extensively documented that the antibody is highly spe-
cific and reacts selectively with NMDA receptors (Siegel et al.,
1994).

Immunogold particles for NR1 were found almost exclusively
on IMP clusters. The majority (96%) of IMP clusters that con-
tained at least 30 intramembrane particles and thus were re-
garded as postsynaptic membrane specialization on E-face pro-
files were immunoreactive for the NRI antibody (Fig. 2b,d).
Similarly to the AMPA receptor labeling, immunogold particles
were randomly distributed over the entire field of IMP clusters
without forming clusters, although the density of labeling varied

400 800 1200 1600
density of gold particles (p.mE]

20 20 random distribution of gold particles
(supplemental Fig. 3, available at www.
jneurosci.org as supplemental material),
data obtained from complete (n = 99) and
incomplete (n = 48) postsynaptic mem-
brane specialization were pooled for the
calculation of densities of immunogold la-
beling for the NR1 antibody. The density
values varied in the range of 102-2263 par-
ticles/m * with a median of 777 particles/
wm? (Fig. 3b). The shape of the density
distribution histogram of NRI labeling

GluR1

Ay
200 400 600 8OO 1000 1200 1400 1600
density of gold particles (lez)

a-d, Histograms showing the distribution of densities of gold particles that label various subunits of AMPA- (a, ¢, d)
and NMDA- (b) type glutamate receptors in SDS-FRL replicas of individual postsynaptic membrane specializations in the superfi-
cial spinal dorsal horn of rats. Replicas from which data were obtained were immunolabeled with antibodies that recognize all
subunits (pan-AMPA) (a) of AMPA receptors, NRT subunits of NMDA receptors (b), and GluR2 (c) and GIuR1 (d) subunits of AMPA

was very similar to that of pan-AMPA
labeling.

Colocalization of AMPA- and NMDA-
type glutamate receptors at individual
synaptic contact areas

A synchronized train of repeated nocicep-
tive input evokes a period of facilitated
transmission in spinal dorsal horn neu-
rons that resembles LTP in other parts of the CNS. This activity-
dependent form of central sensitization (spinal cord equivalent of
LTP) is the consequence of activation of multiple intracellular
signaling pathways that involves activation of both AMPA- and
NMDA-type glutamate ionotropic receptors [for review, see
Wolf and Salter (2000) and Ji et al. (2003)]. Because of its func-
tional importance, we investigated the colocalization of AMPA
and NMDA receptors at individual postsynaptic membrane spe-
cializations by simultaneous double labeling of replicas with pan-
AMPA and NRI antibodies.

The colocalization studies appeared to be very consistent. Al-
though, because of spatial competition among the simulta-
neously applied antibodies, the signal intensity in double labeling
for a given antibody was approximately one-half of that in single
labeling, we found very similar distribution patterns of density in
single and double labeling (data not shown). Regardless of
whether AMPA receptors were labeled with 5 nm and NR1 sub-
units with 10 nm gold particles or vice versa, the majority of
complete postsynaptic membrane specializations (179 of 186;
96.2%) displayed positive labeling for both receptors (Fig. 5a,b,
Table 1). Seven of the 186 postsynaptic membranes (3.8%) inves-
tigated in this study were positive for pan-AMPA but negative for
the NR1 (Fig. 5¢, Table 1). However, postsynaptic membranes
positive for NR1 and negative for pan-AMPA were not detected
(Table 1).

Numbers and densities of GluR2 subunits at individual
synaptic contact areas

A long line of experimental evidence suggests that the most
prominently expressed AMPA receptor subunit in the spinal dor-
sal horn is GluR2 (Furuyama etal., 1993; Henley et al., 1993; Tolle
etal., 1993,1995). To investigate the distribution and densities of
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GluR2 subunits at individual synaptic
contact areas in the superficial spinal dor-
sal horn of rats, replicas were reacted with
a monoclonal antibody directed against a
recombinant fusion protein correspond-
ing to amino acid residues 175430, rep-
resenting the N-terminal portion of the re-
ceptor molecule. The antibody proved to
be highly specific and appeared to react
selectively with GluR2 subunits, because
the application of the antibody to replicas
of GluR2 knock-out mice did not result in
any labeling (Fig. 6a), whereas strong im-
munolabeling was observed at IMP clus-
ters on replicas of wild-type animals (Fig.
6b).

Immunogold particles for GluR2 sub-
units were found almost exclusively on
IMP clusters, and virtually all IMP clusters
on E-face profiles were immunoreactive
for the GluR2 antibody (Fig. 6¢). The en-
tire field of IMP clusters was densely but
randomly labeled without clustering (sup-
plemental Fig. 3, available at www.
jneurosci.org as supplemental material),
although the density of immunogold par-
ticles over individual IMP clusters was very
variable (coefficient of variation = 0.437)
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Figure 4. a—d, Scatter plots showing the correlation between surface areas of postsynaptic membrane specializations and

numbers of gold particles labeling all subunits (pan-AMPA) (a) of AMPA receptors, NR1 subunit of NMDA receptors (b), and GluR2
(¢) and GluR1 (d) subunits of AMPA receptors. Open circles in d label data from postsynaptic membrane specializations that are
larger than 0.06 um % and present low numbers of gold particles. These synapses were excluded from the calculation of the value

(Fig. 3c). In complete postsynaptic active  Oflinear correlation.

zones (n = 62), the number of gold parti-

cles varied in the range of 4—162 with a median value of 21. The
number of gold particles for GluR2 showed a linear correlation
(r = 0.92) with the size of postsynaptic surface areas (Fig. 4c).
Because of the random distribution of gold particles, data ob-
tained from complete (n = 62) and incomplete (n = 24) postsyn-
aptic membrane specializations were pooled for the calculation
of densities of immunogold particles for the GluR2 antibody. The
density values varied in the range of 144—1422 particles/um?
with a median of 733 particles/um?. The shape of the density
distribution histogram of GluR2 labeling showed a prominent
peak at the median value (Fig. 3¢).

Numbers and densities of GluR1 subunits at individual
synaptic contact areas

With a little lag behind GluR2, the second most abundantly ex-
pressed AMPA receptor subunit in the superficial spinal dorsal
horn is GluR1 (Furuyama et al., 1993; Télle et al., 1993; Popratil-
off et al,, 1996; Engelman et al., 1999; Brown et al., 2002; Hart-
mann et al., 2004). Analogous to the predominant role of GluR1
in hippocampal LTP (Zamanillo et al., 1999) and spatial memory
consolidation (Reisel et al., 2002), the presence of GluR1 subunit
is required also for a rapid sensitization of glutamatergic synaptic
events in the spinal dorsal horn (Hartmann et al., 2004). To in-
vestigate the distribution of GluR1 subunits, replicas were reacted
with an antibody that was directed against residues 345-362, rep-
resenting the putative N-terminal extracellular portion of GluR1.
The antibody appeared to be highly specific and reacted selec-
tively with GluR1 subunits in Western blot analysis (supplemen-
tal Fig. 1, available at www.jneurosci.org as supplemental mate-
rial). However, the application of the antibody to replicas of
GluR1 knock-out mice showed substantial amount of labeling at
IMP clusters (supplemental Fig. 2, available at www.jneurosci.
org as supplemental material). Therefore we subtracted the re-

maining density of labeling in GluR1 knock-out animals from the
labeling observed in rat samples. Thus, we reduced the numbers
of gold particles and density of labeling to 63% of the original
values (see Materials and Methods). These reduced values can be
found in the next paragraph.

Immunogold particles for GluR1 subunits were found almost
exclusively on IMP clusters, and 87% of IMP clusters on E-face
profiles were considered immunoreactive for GluR1 (Fig. 6f).
The entire field of IMP clusters was randomly labeled, and no
clustering of immunoparticles was detected (supplemental Fig. 3,
available at www.jneurosci.org as supplemental material), al-
though the density of immunogold particles over individual IMP
clusters was very variable (coefficient of variation = 0.67). In
complete postsynaptic active zones (1 = 66), the number of gold
particles varied in the range of 2—47 with a median value of 9. The
number of gold particles for GluR1 showed a less linear correla-
tion (r = 0.14) than that for GluR2 with the size of the postsyn-
aptic surface areas. Searching for an explanation for this poor
linear correlation, we found that there might be two populations
of synapses, one with high and another with very low GluR1
densities. When we selected synapses larger than 0.06 pwm?, they
could be clearly separated into two groups, one with a high mean
density of GluR1 (240—696 particles/wm?* with a median of 349
particles/wm?) and another with <10 particles/synapse (12-96
particles/uwm? with a median of 52 particles/um?) (labeled with
open circles in Fig. 4d). Synapses larger than 0.1 wm? were all
within the second group with very low particle density. Separat-
ing all synapses that showed low particle density and were larger
than 0.06 um?* (labeled with open circles in Fig. 4d) from the total
population, the number of gold particles for GluR1 in the rest of
the synapses showed a nice linear correlation (r = 0.74) with the
size of postsynaptic surface areas (Fig. 4d).



Antal et al. e Synaptic Localization of AMPA and NMDA Receptors

Figure 5.

Sizes of postsynaptic membrane specializations

Finally, we pooled all complete postsynaptic membrane special-
izations that showed any kind of positive labeling for AMPA
and/or NMDA receptor subunits. Thus we collected 740 postsyn-
aptic membrane specializations of glutamatergic synaptic con-
tacts in laminae I-II of the spinal dorsal horn of rats, and mea-
sured their surface areas by Scion Image. Although the types of
neurons that presented the postsynaptic membrane specializa-
tions as well as the origin of presynaptic axon terminals that were
associated with the investigated postsynaptic membranes could
be very heterogeneous in our sample, the distribution histogram
of surface areas of postsynaptic membrane specializations
showed only one peak (Fig. 7). The surface areas of individual
postsynaptic membrane specializations varied in the range of
0.0026—-0.3609 wm? (median, 0.0419 wm?); only 26 (3.5%) of
the 740 postsynaptic membrane specializations were larger than
0.15 wm?.

Discussion

Applying the SDS-FRL method, which has almost one gold par-
ticle—one functional channel sensitivity (Tanaka et al., 2005) to
laminae I-1II of the spinal dorsal horn of rats, we showed that
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virtually all glutamatergic postsynaptic
membranes in laminae I-II expressed
AMPA and NMDA receptors. Further-
more, most of them were immunoreactive
for GluR2, whereas GIuR1 is expressed in
selective populations of the synapses. In
synapses larger than 0.1 um?, GluR1 sub-
units were recovered in very low numbers.
This differential expression of GluR1 and
GluR2 subunits was encountered even at
synapses that were located in a close vicin-
ity to each other on the very same neuron
(supplemental Fig. 5, available at www.
jneurosci.org as supplemental material).
Nevertheless, the numbers of gold parti-
cles for AMPA and NMDA receptors
showed linear correlations with the size of
postsynaptic surface areas.

Itis very likely that in our present study
we investigated the postsynaptic mem-
brane specializations of a quite heteroge-
neous population of synaptic contacts. C-
and Ad-type primary afferents as well as
excitatory local interneurons all form glu-
tamatergic synaptic contacts with various
types of neurons in laminae I-1I of the spi-
nal dorsal horn. Despite this heterogene-
ity, however, the densities of AMPA and
NMDA receptor subunits as well as surface
areas of the postsynaptic membrane spe-
cializations showed homogeneous distri-
butions. Synapses could be clearly divided
into two groups only on the basis of their
GluR1 subunit densities.

NR1 +

Electron micrographs of SDS-FRL replicas simultaneously double immunolabeled with antibodies raised against the
NR1 subunit of NMDA-type glutamate receptors and an amino acid sequence that is common in all subunits of AMPA-type
glutamate receptors (pan-AMPA). a— ¢, AMPA receptors are labeled with 10 nm gold particles, and NR1 subunits are marked with
5nm gold particles in @, whereas 5 nm gold particles label AMPA receptors, and 10 nm gold particles mark NRT subunits in b and
¢. Postsynaptic membrane specializations in the micrographs in @ and b show immunoreactivity for both antibodies, whereas
postsynaptic membrane specializations in the micrograph in care positive for pan-AMPA but negative for NR1. Scale bars, 0.1 um.

Size of individual postsynaptic
membrane specializations

Synaptic structure plays a key role in syn-
aptic transmission (Walmsley et al., 1998).
In addition to presynaptic mechanisms,
postsynaptic responses may be influenced
by the number and density of postsynaptic
receptors, which in turn may be related to the size of the postsyn-
aptic membrane specializations (Nusser et al., 1997; Lim et al.,
1999; Mackenzie et al., 1999; Nusser, 2000). Because of their
functional importance, morphological parameters of postsynap-
tic active zones have extensively been studied in various brain
regions, and a considerable variability has been observed (Antal
etal., 1992; Pierce and Mendel, 1993; Ryugo et al., 1996; Taschen-
berg et al., 2002). For instance, the sizes of postsynaptic mem-
brane specializations at cerebellar climbing fiber and parallel fi-
ber synapses are among the largest on average (0.14 um?) (Xu-
Friedman et al., 2001), whereas this value has been defined at
around only 0.04—0.07 um* on CA1 dendritic spines (Schikorski
and Stevens, 1997; Shepherd and Harris, 1998). The size distri-
bution of individual postsynaptic membrane specializations that
we encountered in laminae I-II of the spinal dorsal horn of rats
appears to be similar to the ones that have been observed on CA1
dendritic spines.

Numbers and densities of AMPA and NMDA receptors
The number of ionotropic receptors in synapses is an essential
factor for determining the efficacy of fast neural transmission. As
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Table 1. Numbers and percentage of complete postsynaptic membrane specializations immunoreactive for pan-AMPA and/or NR1 subunit of NMDA receptor in the
superficial spinal dorsal horn

pan-AMPA-+, NR1+ pan-AMPA-+, NR1— pan-AMPA—, NR1+ Total
pan-AMPA-10 nm, NRT-5 nm 89 3 0 92
pan-AMPA-5 nm, NR1-10 nm 90 4 0 94
Total 179 7 0 186

(96.2%) (3.8%) (100%)

Figure 6.  Electron micrographs of SDS-FRL replicas immunolabeled with antibodies that recognize GIuR2 or GIuRT subunits. a—f, The micrographs illustrate postsynaptic membrane specializa-
tions (IMP clusters) in the superficial spinal dorsal horn of GIuR2 (a) and GIuR1 (d) knock-out mice and wild-type (wt) mice (b, e) and rats (c, f). SDS-FRL replicas from GluR2 knock-out mice (a) and
wild-type mice (b) and rats (c) were labeled for GluR2. The postsynaptic membrane specializations are free of labeling in the GluR2 knock-out animal (a), and show strongimmunoreactivity for GluR2
in the wild-type mice (b) and rats (c). SDS-FRL replicas from GIuR1 knock-out (d) and wild-type (e) mice were double labeled for GluRT and GIuR2, whereas replicas from a rat were labeled only for
GluR1 (F). The postsynaptic membrane specializations from GIuR1 knock-out animals are positively labeled for GIuR2 but negative for GIuR1 (d). The postsynaptic membrane specialization from
wild-type mice are positive for both GIuR1 and GIuR2 (e), whereas postsynaptic membrane specialization from a rat show strong immunoreactivity for GluR1 (f). GluR2 subunits were labeled with

10nm (b, d, e) and 5 nm (c), whereas GIuR1 subunits were labeled with 5 nm (d, €) and 10 nm (f) gold particles. Scale bars, 0.1 um.

a general rule for both glutamatergic and GABAergic ionotropic
receptors, it appears that the number of functional receptors is pro-
portional to the synaptic area in a particular type of synapse. The
receptor density, however, shows a great deal of variability, which
may derive from difference in types of synapses investigated or quan-
titative methods used in the different studies (Nusser et al., 1998;
Somogyi et al., 1998a; Nusser, 1999; Tanaka et al., 2005; Masugi-
Tokita et al., 2007). The average immunogold particle density that
we observed in laminae I-II of the spinal dorsal horn for AMPA
receptors was close to the figure that was obtained at synaptic con-
tacts between mossy fibers and cerebellar granule cells (~1000 re-
ceptors/um?) (Silver et al., 1996). However, it is important to note

that we investigated a heterogeneous population of synaptic contacts
established by nociceptive primary afferents, segmental and inter-
segmental propriospinal axons with various spinal neurons that may
possess AMPA and NMDA receptors in different quantities. Actu-
ally, our results suggest that the densities of AMPA and NMDA
receptors at individual postsynaptic membrane specializations of
various groups of synaptic appositions in the superficial spinal dorsal
horn of rats can really be heterogeneous. According to the non-
Gaussian distribution of immunogold particle densities (Fig. 4a), the
densityvalues may vary from 400500 to 1800—2000 receptors/um >
for AMPA receptors. Similar variation was also found for NMDA
receptor density.
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Figure 7.  Histogram showing the distribution of surface areas of complete postsynaptic
membrane specializations expressing AMPA- and/or NMDA-type glutamate receptors in the
superficial spinal dorsal horn of rats.

Itis also important to note that extrasynaptic membrane com-
partments showed remarkably weak, if any, immunolabeling for
both AMPA and NMDA receptor subunits, indicating that extra-
synaptic ionotropic receptors may play a negligible role in gluta-
matergic coupling among neurons in the superficial spinal dorsal
horn.

Colocalization of AMPA and NMDA receptors

We found that all synaptic contacts that expressed NMDA recep-
tors also contained AMPA receptors in laminae I-II of the rat
spinal gray matter. In addition, none of the postsynaptic mem-
branes recovered in this study carried less than eight gold parti-
cles marking AMPA receptors. These findings confirm earlier
physiological studies, concluding that there is no direct evidence
for the presence of “silent” synapses (NMDA receptor-
containing synapses without functional AMPA receptors) in the
spinal dorsal horn of adult animals, although their presence has
been confirmed in the neonatal rat (Bardoni et al., 1998; Li and
Zhuo, 1998; Baba et al., 2000). Thus, it appears that pure-NMDA
receptor-mediated EPSCs are transient, developmentally regu-
lated phenomena, and although they may have a role in synaptic
refinement in the immature dorsal horn, they are unlikely to be
involved in nociceptive information processing mechanisms in
the adult.

It has been suggested that AMPA and NMDA receptors might
be arranged in functional microdomains within synaptic mem-
branes. The notion is based on results obtained in independent
laboratories, suggesting that the distribution of AMPA receptors
may not be uniform over the postsynaptic density but more con-
centrated laterally, whereas NMDA receptors are located cen-
trally (Matsubara et al., 1996; Kharazia and Weinberg, 1997; So-
mogyi et al., 1998b; He et al., 2001). Other theories, however,
claim just the opposite and argue in favor of a uniform distribu-
tion of ionotropic glutamate receptors over synaptic membrane
specializations (Nusser et al., 1994, 1998, Masugi-Tokita et al.,
2007). Although we cannot exclude the possibility that subsyn-
aptic organization of receptors might have changed during spec-
imen preparation, our present results support the “homogeneous
distribution” theory for spinal cord synapses. The high sensitivity
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and two-dimensional resolution of SDS-FRL have revealed a
rather homogeneous distribution of both AMPA and NMDA
receptors within individual postsynaptic membrane specializa-
tions. This type of receptor distribution may have profound bio-
logical significance; it may make the cooperation between AMPA
and NMDA receptor mechanisms direct and very effective.

Subunit composition of AMPA receptors

AMPA receptors with different subunit composition have char-
acteristic pharmacological and physiological properties (for re-
view, see Harris, 1995). For instance, the presence of GluR2 sub-
units renders heteromeric AMPA receptor assemblies Ca*™
impermeable, whereas receptors lacking GluR2 subunits are
Ca** permeable (Gasic and Heinemann, 1991; Hollmann et al.,
1991; Verdoorn et al., 1991; Burnashev et al., 1992; Sommer and
Seeburg, 1992; Pellegrini-Giampietro et al., 1997; Swanson et al.,
1997). A great deal of earlier experimental evidence indicated that
different populations of neurons in the superficial spinal dorsal
horn show differential AMPA receptor expression. Kainate-
induced cobalt-uptake and immunocytochemical studies
strongly indicated that a majority of neurons immunoreactive for
GABA are positively stained for GluR1 but not GluR2 and do
express Ca®"-permeable AMPA receptors, whereas several sub-
populations of putative excitatory interneurons do not express
Ca*"-permeable AMPA receptors (Kerr et al., 1998; Albuquer-
que et al.,, 1999; Engelman et al., 1999). The contrasting distribu-
tion of GluR1 and GluR2/3 immunoreactivity raised the possibil-
ity that some neurons in the superficial dorsal horn may express
only one of the two receptor subunits. Other studies, however,
suggested that individual dorsal horn neurons can express both
Ca’"-permeable and Ca’"-impermeable AMPA receptors
(Goldstein et al., 1995; Gu et al., 1996; Albuquerque et al., 1999).
This notion was strongly reinforced by a recent immunofluores-
cence study showing that virtually all GluR1-immunoreactive
puncta that were assumed to represent postsynaptic membranes
were also GluR2 immunoreactive throughout the dorsal horn
(Nagy et al., 2004).

Although immunocytochemical colocalization studies pro-
vide only circumstantial evidence regarding the subunit compo-
sition of individual AMPA receptor complexes, our present find-
ings are in agreement with the report of Nagy et al. (2004). We
also found that the majority of complete postsynaptic membrane
specializations (99%) displayed positive immunolabeling for
GluR2, and most of them (87%) were also immunoreactive for
GluR1. On the other hand, however, although the overlap be-
tween GluR1 and GluR2 immunoreactivity was high, the num-
bers of gold particles labeling GluR1 and GluR2 molecules varied
at individual postsynaptic active zones. It is therefore likely that
the targeting of AMPA receptor subunits to individual postsyn-
aptic membranes is remarkably complex. Different AMPA recep-
tor ion channels within the same postsynaptic membrane may
present different subunit composition. Ca*"-permeable AMPA
receptors can be intermingled with GluR2-containing receptors
within the same postsynaptic active zones, and the ratio between
Ca**-permeable and Ca’"-impermeable AMPA receptors may
vary in a wide range. Moreover, we encountered this differential
expression of GluR1 and GluR2 subunits even at postsynaptic
membrane specializations that were located in a close vicinity to
each other on the same neuron, indicating that the targeting of
AMPA receptor subunits to postsynaptic membranes might be
regulated by presynaptic mechanisms.
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