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Changes in global (ocean and land) precipitation are among the
most important and least well-understood consequences of cli-
mate change. Increasing greenhouse gas concentrations are thought
to affect the zonal-mean distribution of precipitation through two
basic mechanisms. First, increasing temperatures will lead to an in-
tensification of the hydrological cycle (“thermodynamic” changes).
Second, changes in atmospheric circulation patterns will lead to
poleward displacement of the storm tracks and subtropical dry
zones and to a widening of the tropical belt (“dynamic” changes).
We demonstrate that both these changes are occurring simulta-
neously in global precipitation, that this behavior cannot be
explained by internal variability alone, and that external influ-
ences are responsible for the observed precipitation changes.
Whereas existing model experiments are not of sufficient
length to differentiate between natural and anthropogenic
forcing terms at the 95% confidence level, we present evidence
that the observed trends result from human activities.
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Water is the single most important natural resource, and
many societal and natural impacts of climate change will

depend on the response of the hydrological cycle to anthropo-
genic warming. Several large-scale changes in precipitation,
inferred from theoretical understanding, observations, and cli-
mate model predictions, are expected in a warming world (1). To
first order, anthropogenic forcings are expected to influence the
hydrological cycle through two basic mechanisms. “Thermody-
namic” changes follow from the Clausius–Clapeyron relation,
which dictates that saturation-specific humidity increases roughly
exponentially with temperature, and from the vertical warming
profile (2, 3). In the absence of other changes, this increase in
tropospheric water vapor will make wet regions wetter and dry
regions drier. Tropospheric water vapor is indeed increasing in
response to human activities (4), and there is evidence that this
increase has contributed to the moistening of wet regions and
drying of dry regions (5–7). Existing large-scale studies (7–9) are
constrained over land, and thus neglect the 77% of precipitation
that falls over oceans. Thermodynamic changes are expected to
be even stronger over ocean, because evaporation is limited over
dry land regions, and trends in ocean salinity may indicate an
intensification of the global hydrological cycle (10). However, no
study has yet detected a signal of climate change in global (land
and ocean) precipitation.
“Dynamic” changes result from shifts in atmospheric circula-

tion, which in turn affect the horizontal and vertical transport of
water vapor. Numerous observational and model-based studies
have detected circulation shifts using various metrics (ref. 11 and
references therein). Models indicate that increasing greenhouse
gases, in the absence of other external forcing terms, result in
a poleward expansion of the tropical Hadley cell and subtropical
dry zones (12). However, stratospheric ozone depletion can also
lead to similar circulation shifts (13) and is likely the dominant
contributor to the observed poleward movement in Southern
Hemisphere circulation patterns in austral summer (14).
Any study of anthropogenic influences on global precipitation

must therefore consider both thermodynamic and dynamic mech-
anisms (15). Detection of the climate change signal is complicated
by the muted response of global-mean model precipitation to

a temperature increase (compared with the increase in water
vapor) and the zonal nature of the predicted changes (in both
sign and displacement). Additional difficulties exist: first, it is well-
known that interannual and interdecadal modes of natural vari-
ability such as the El Niño/Southern Oscillation (ENSO) have
considerable impacts on precipitation, potentially obscuring
any climate change signal. Second, global precipitation cli-
matologies exhibit strong spatial gradients, and model errors
in representing the locations of these gradients are common.
Consequently, averaging precipitation over latitude bands and
over many simulations (as in refs. 7 and 9), which is generally
performed to reduce the influence of internal variability, may
also obscure physically robust simulated precipitation shifts.
Finally, total precipitation is also strongly influenced by orography,
cloud formation, and other small-scale processes that may not be
well-simulated in climate models.
In this paper, we argue that the presence of two physically

robust, interlinked mechanisms necessitates the use of multivar-
iate detection techniques (16). We propose a method to simul-
taneously detect the intensification and latitudinal redistribution
of global precipitation, test these changes against model estimates
of natural internal variability, and investigate the roles of various
relevant external forcings.

Thermodynamic and Dynamic Indicators
We use the Global Precipitation Climatology Project (GPCP)
global observational dataset (17) spanning 1979–2012. In this
paper, we focus on boreal winter (December–February; hereaf-
ter DJF). We begin by smoothing observed DJF seasonal pre-
cipitation climatologies so that spatial structure on scales less
than 5° is removed (18). Fig. 1A shows the result of this
smoothing process for a single representative year (1990). The
smoothed, zonally averaged precipitation field has five local ex-
trema, excluding the polar-most points. Physically, these corre-
spond to (from left), the Southern Hemisphere (SH) midlatitude
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storm track peak, SH subtropical dry zone trough, equatorial
tropical peak, Northern Hemisphere (NH) dry zone trough, and
NH storm track peak. In the observations, the zonally averaged
smoothed DJF precipitation has exactly five local extrema in
every year.
For each year, we calculate the latitude and intensity (i.e., the

value of the smoothed precipitation field) at each extremum. We
then calculate the six “half-max” latitude points, defined as the
latitudes where the smoothed zonally averaged precipitation is
equal to the average of the nearest peak and trough. This process
yields 1) a dynamic time series DoðtÞ with 11 spatial dimensions
representing variations in peak, trough, and half-max latitudes, and
2) a thermodynamic time series ToðtÞ with five spatial dimensions
representing variations in the intensity at each peak and trough.
(The terminology used here represents an oversimplification: dy-
namical strengthening or weakening of the circulation can also
contribute to changes in precipitation intensity, whereas large-

scale changes in precipitation may have consequences for atmo-
spheric circulation.) We then calculate the anomaliesDo′ðtÞ (Fig. 1B)
and To′ðtÞ (Fig. 1C) relative to 1980–2012 observed time means.
This allows us to characterize total changes in zonally averaged
precipitation using intensification and shifts simultaneously.
We apply the same methods to climate model precipitation

data from the third and fifth phases of the Coupled Model In-
tercomparison Project (CMIP3/CMIP5). To obtain model data
spanning the observational period, we splice “historical” exper-
iments with 21st-century experiments in which changes in
greenhouse gas and aerosols are specified according to Repre-
sentative Concentration Pathway 8.5 (RCP8.5, used in CMIP5)
or Scenario A1B (used in CMIP3) (SI Appendix, S2). For each
model, we perform the same smoothing and peak detection
procedure. Anomalies DH′ ðtÞ and TH′ ðtÞ are now calculated with
respect to the model 1980–2012 average peak/trough and half-
max latitude and intensity. This technique effectively preserves

A C

B

Fig. 1. Illustration of the methods used to generate thermodynamic and dynamic indicators. (A) Smoothed, zonally averaged boreal winter precipitation in
the observational GPCP dataset for 1990. Local extrema are marked in dark blue (midlatitude storm tracks), red (subtropical dry zones), and green (equatorial
tropical peak). Cyan, purple, and yellow circles indicate half-max points: latitudes where the smoothed zonally averaged precipitation is equal to the average
of neighboring extrema. (B) Observed peak intensity anomalies (mm/d) in the observational dataset. Best-fit trends obtained by linear regression are shown as
black dotted lines. (C) Observed peak and half-max point location anomalies in the observational dataset. Best-fit trends are drawn as black dotted lines.
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and highlights the changes in intensity and displacement that
likely would be obscured in the multimodel average of zonal-
mean precipitation. The procedure is then repeated for yearly
seasonal DJF climatologies in the CMIP5 preindustrial con-
trol (PIC) runs, yielding control anomaly time series DC′ ðtÞ and
TC′ðtÞ, which are then concatenated into a single time series (SI
Appendix, S1).

Fingerprints
We estimate the expected response of the dynamic and thermo-
dynamic indicators to external forcing using a leading “finger-
print” method (16, 19). We begin by first averaging the anomaly
time series DH′ ðtÞ and TH′ ðtÞ over an individual model’s spliced

historical and RCP8.5 realizations, and then averaging over
all models. Because internal variability is uncorrelated across
models, this reduces the effect of climate noise, yielding a clearer
picture of the climate system’s response to external forcing: the
fingerprint of climate change.
To examine simultaneous thermodynamic and dynamic changes,

we calculate the leading multivariate empirical orthogonal func-
tion (EOF) FmðD;TÞ, determined from the cross-covariance matrix
of the multimodel average DH′ ðtÞ and TH′ ðtÞ (Fig. 2A). This finger-
print reveals that the multimodel response of the climate system to
external forcing is characterized by two physical effects: a wet-get-
wetter, dry-get-drier pattern in precipitation intensity, and an at-
tendant poleward expansion in both hemispheres in zonal-mean

A B

C D

Fig. 2. Multivariate fingerprint of forced precipitation change and the primary noise mode. (A) Fingerprint FmðD,TÞ, or leading eigenvector of the cross-co-
variancematrix of themultimodel averageDH′ ðtÞ and TH′ ðtÞ. Both time series are scaled to unit variance before input. Thermodynamic EOF loading is plotted on the
vertical axis; the direction and magnitude of dynamic EOF loading are displayed as arrows. The horizontal axis is the multimodel average latitude of detected
peak/trough and half-max points. For visual clarity the arrows exaggerate the actual shift in latitude by a factor of 50. This EOF explains 49%of the total variance.
(B) Principal component associatedwith thefingerprint FmðD,TÞ. (C) Leading noise eigenvector of the cross-covariancematrix of the concatenatedmodel PIC runs
DC′ ðtÞ and TC′ðtÞ. As in A, the y axis shows thermodynamic EOF loading, whereas arrows, scaled by a factor of 50, show dynamic EOF loading. The x axis shows the
multimodel average latitude of detected points. This EOF explains 38% of the total variance. (D) Principal component associated with the leading noise EOF.
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precipitation. The associated first principal component (PC) (Fig.
2B) shows a distinct positive trend over the observational time pe-
riod. By contrast, Fig. 2C shows the leading noise EOF of the
concatenated PIC runs, and Fig. 2D the associated PC. This EOF
resembles the fingerprint FmðD;TÞ except, instead of the poleward
expansion observed in the forced case, it displays the equatorial
contraction expected in the zonal-mean response to ENSO (20, 21).
This suggests that ENSO, the primary mode of natural variability,
will not project well onto the multivariate fingerprint FmðD;TÞ. In
other words, using this fingerprint will improve signal-to-noise ratios
by effectively filtering out climate noise (SI Appendix, S8).
Even though both thermodynamic and dynamic responses are

based in fundamental physics, and therefore robust across mul-
tiple independent climate models, model errors may mask even
strong responses. The fingerprint, or characteristic response to
external forcing, is often obtained by averaging over multiple
models to eliminate internal variability. This response may be
diluted if models disagree on the locations of important features.
For example, two models projecting strong subtropical drying
trends may yield a smaller trend when averaged if the model dry
zones are sufficiently far apart. Additionally, estimates of in-
ternal variability are often obtained by concatenating the pre-
industrial control runs of multiple models into a single long time
series. However, variations in the principal components of the
concatenated control runs may reflect model biases, not the
amplitude of internal variability in the models. Previous attempts
to control for model errors have included coarse zonal averaging
(7), focus on a single region (5, 6), the use of a warping function
for feature bias correction (22), and the model-by-model ap-
proach described in ref. 23. The method we use (SI Appendix, S4)
is designed to capitalize on robust model features even in the
presence of feature biases. This method allows for the simulta-
neous detection of dynamic and thermodynamic changes in
zonal-mean precipitation and demonstrates that these changes
are inconsistent with internal climate variability, as we now show.

Detection of Changes
To determine if these changes in intensity and location are present
in the observations, we project the combined observed anomaly
fields DO′ðtÞ and TO′ðtÞ, normalized to unit variance, onto the mul-
tivariate fingerprint FmðD;TÞ. This projection yields the spatial
covariance between the observed pattern and the fingerprint at
time t and measures the similarity between the observed and fin-
gerprint patterns. If the externally forced fingerprint is present and
growing in the observations, then the projection should increase
with time and display an overall positive trend (19). By contrast,
the fingerprint should not be expressed in precipitation changes
originating from climate noise alone, except by chance. We use this
characteristic to assess whether observed trends can be explained
by internal variability. To do so, we calculate the distribution of
33-y nonoverlapping trends in the concatenated model PIC pro-
jections onto the fingerprint FmðD;TÞ. The SD of this distribution,
denoted ∈, constitutes a measure of internal climate variability.
The signal-to-noise (S/N) ratio is then obtained by dividing the
observed trend by ∈.
If observed trends are incompatible with internal variability, we

can claim to have detected a signal. To attribute a signal to ex-
ternal forcing, we need to assess whether it is compatible with

A

B

C

Fig. 3. (A) Projection (gray) of the observed thermodynamic and dynamic
indicators onto the multivariate fingerprint, and best-fit line (red). (B) Best-fit
normal probability distribution functions (PDFs) for trends in the projection of
model data onto the fingerprint. All trends have been normalized by ∈, the SE
of the control distribution to obtain S/N ratios. The blue line shows the PDF of
nonoverlapping 33-y trends from the concatenated model PIC runs. The green
line shows the PDF for individual CMIP5 historical/RCP8.5 model projection
trends. Yellow/cyan lines show the PDF for CMIP3 models excluding/including

stratospheric ozone depletion. For all PDFs, the two-sided 95% confidence
intervals are shaded. The red line indicates the observed S/N ratio, and the
shaded red box ± 1 SE in estimating the trend from assumed independent
annual samples. The observed S/N ratio, located near the mean of the forced
distributions, is incompatible with internal variability at 95% confidence.
(C) As in B, but for 26-y trends and including historicalNat experiments. The
observed S/N ratio is located near the mean of the forced distributions and
in the tail of both control and historicalNat distributions.
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forced model results. Whereas all models in the CMIP5 archive
incorporate the effects of ozone depletion in addition to other
human and natural forcings, only half of those in the previous
generation (CMIP3) do so (14). This allows us to determine the
relative weight of greenhouse gas and ozone depletion con-
tributions to changes in precipitation. We therefore calculate the
projections onto the fingerprint for the spliced CMIP5 models
(ALL5), and spliced CMIP3 models including (ALL3) or ex-
cluding (NoOz3) anthropogenic stratospheric ozone depletion.
Fig. 3A shows the projection of the observed dynamic and

thermodynamic indicators, normalized to unit variance, onto the
fingerprint FmðD;TÞ. The corresponding S/N ratio is shown in
Fig. 3B, as well as fitted probability density functions for the PIC,
ALL5, ALL3, and NoOz3 S/N ratios. A strong positive trend is
evident in the observed projection. As expected, the distribution
of 33-y nonoverlapping control run trends is centered around
zero. The observed S/N ratio of 2.4 is well above the 5% sig-
nificance threshold, suggesting that the observed covariability
between location and intensity is incompatible with internal cli-
mate noise alone. The ALL3 and ALL5 trends do not differ
significantly from each other, nor do they differ from the NoOz
distribution (SI Appendix, Table S1). The observed S/N ratio is
located near the mean of all three externally forced distributions.
This indicates that the combined amplification and shift in zonal
precipitation is externally forced and present even in the absence
of anthropogenic ozone depletion.
To differentiate between natural and anthropogenic forcing

terms, we repeated the analysis over the shorter time period
spanned by the “historicalNat” experiments in the CMIP5 da-
tabase (1980–2005). These experiments incorporate solar vari-
ability and volcanic eruptions over the historical period, but
contain no anthropogenic forcings. The results, now using 26-y
trends, are shown in Fig. 3C. The observed trend lies in the tail
of the historicalNat and piControl distributions, but the S/N
ratio is not significant at the 95% confidence level. This is likely
due to the shortened period over which we calculate trends. How-
ever, the similarity between the historicalNat trend distribution and
the PIC trend distribution, and the fact that these distributions
significantly differ from those obtained using anthropogenically
forced models, strongly suggest that natural external forcings
alone are unlikely to explain the observed changes.

Modeled Internal Variability
Detection and attribution (D&A) studies rely on credible model
estimates of internal variability (24, 25). If models systematically
underestimate the amplitude of natural climate noise, this may
lead to spurious detection due to artificially low variability in-
flating the S/N ratio. It is therefore important to compare vari-
ability in observations and spliced CMIP5 historical/RCP8.5
runs. We first detrend modeled and observed time series of
projections onto the multivariate FmðD;TÞ fingerprint and then
apply a band-pass filter to extract variability on scales between
5 and 20 y, as in ref. 25. We also apply a high-pass filter to extract
variability on scales less than 3 y. Fig. 4A shows the performance
of models at simulating medium- and high-frequency variability
in the projection. Model estimates of decadal variability are
more important for D&A applications, and Fig. 4A indicates
a systematic underestimate in decadal variability of the multi-
variate projection. Does this lead to spurious detections by
inflating the S/N ratio? To investigate this possibility, we consider
only those models (FGOALS-s2 and MIROC-ESM-CHEM; see
SI Appendix, Table S2 for full model information) in which the
ensemble average over realizations overestimates 5–20-y vari-
ability in the multivariate projection. Restricting our analysis to
these two models only, we find (Fig. 4B) that the observed trend is
still highly unlikely to occur in these model control runs at the
95% confidence level.

Comparisons with Previous Work
We note that our detection method relies on the covariance ma-
trix measuring the relationship between the dynamic and ther-
modynamic indicators. To calculate the fingerprint and projection,
we normalize each indicator to unit variance, thus removing in-
formation about the amplitude of variability in the individual com-
ponents. Our fingerprint therefore measures the degree of
synchronicity between variations in the thermodynamic and dy-
namic indicators, not their respective amplitudes. This means it is
possible to detect a trend in the projection onto FmðD;TÞ in the

A

B

Fig. 4. (A) Comparison of modeled and observed variability in the multi-
variate projection onto the fingerprint FmðD,TÞ. (B) Normalized histograms
of trends in the multivariate projection onto the fingerprint FmðD,TÞ for the
control runs (blue) and spliced historical and RCP8.5 runs, considering only
models that overestimate decadal variability in the projection (high decadal
variability or HDV models).
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absence of trends in either DoðtÞ or ToðtÞ, if thermodynamic
changes and dynamic changes increasingly occur in tandem.
It is, of course, possible to calculate single-variable fingerprints to

examine changes in DoðtÞ (SI Appendix, S6.1) or ToðtÞ (SI Appendix,
S6.2) separately. The noise filtering aspect of the multivariate
fingerprint is lost in the single-variable cases: natural variability,
ENSO in particular, will project onto these fingerprints and
decrease the S/N ratio (SI Appendix, Fig. S8). However, con-
sidering each variable separately allows for comparisons with
previous studies that have detected changes in the hydrological
cycle or atmospheric circulation.
We find, considering the dynamical indicator alone, that the

observations do show a poleward shift in the main features of
global precipitation. As previous authors (14) have found, the
observed trend is much larger than the trends found in forced
model runs, although including anthropogenic stratospheric ozone
depletion reduces the discrepancy.
Although other studies (7, 26) have found evidence for thermo-

dynamic changes in the hydrological cycle, we do not detect a trend
in the thermodynamic indicator alone. This is due to differences in
datasets and time periods considered (SI Appendix, Figs. S4–S6).
Our method is designed to detect changes in the zonal-mean
structure of global precipitation; other metrics, designed to capture
more local changes, have found evidence for regional thermody-
namic changes (27) that exceed model predictions.

Conclusions
In this paper, we have presented a simple method to track
thermodynamic and dynamic changes in global precipitation.

This method identifies physical effects that are robust across
multiple models, even in the presence of model errors. We have
identified a fingerprint pattern that characterizes the simulta-
neous response of precipitation location and intensity to ex-
ternal forcing and acts as a noise filter. Observed changes in this
multivariate response are incompatible with our best estimates
of natural variability and consistent with model predictions of
externally forced change. The synchronicity of these changes is
key, however: considering either change in isolation does not lead
to detection and attribution (SI Appendix, Fig. S3). By focusing on
both the underlying mechanisms that drive changes in global
precipitation, and by restricting our analysis to the large scales
where we have some confidence in models’ ability to reproduce the
current climate, we have shown that the changes observed in the
satellite era are externally forced, and likely to be anthropogenic
in nature.
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