
Keratin 16 regulates innate immunity in response to
epidermal barrier breach
Juliane C. Lessarda, Sylvia Piña-Paza, Jeremy D. Rottya, Robyn P. Hickersonb, Roger L. Kasparb,c, Allan Balmaind,
and Pierre A. Coulombea,e,f,1

aDepartment of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; bTransDerm, Inc., Santa Cruz,
CA 95060; cDepartment of Pediatrics, Stanford University, Stanford, CA 94305; dHellen Diller Comprehensive Cancer Center, University of California, San
Francisco, CA 94158; and eDepartment of Biological Chemistry and fDepartment of Dermatology, School of Medicine The Johns Hopkins University, Baltimore,
MD 21205

Edited by Terry Lechler, Duke University, Durham, NC, and accepted by the Editorial Board October 17, 2013 (received for review May 21, 2013)

Mutations in the type I keratin 16 (Krt16) and its partner type II
keratin 6 (Krt6a, Krt6b) cause pachyonychia congenita (PC), a dis-
order typified by dystrophic nails, painful hyperkeratotic calluses
in glabrous skin, and lesions involving other epithelial appen-
dages. The pathophysiology of these symptoms and its relation-
ship to settings in which Krt16 and Krt6 are induced in response to
epidermal barrier stress are poorly understood. We report that
hyperkeratotic calluses arising in the glabrous skin of individuals
with PC and Krt16 null mice share a gene expression signature
enriched in genes involved in inflammation and innate immunity,
in particular damage-associated molecular patterns. Transcriptional
hyper-activation of damage-associated molecular pattern genes
occurs following de novo chemical or mechanical irritation to ear
skin and in spontaneously arising skin lesions in Krt16 null mice.
Genome-wide expression analysis of normal mouse tail skin and
benign proliferative lesions reveals a tight, context-dependent
coregulation of Krt16 and Krt6 with genes involved in skin barrier
maintenance and innate immunity. Our results uncover a role for
Krt16 in regulating epithelial inflammation that is relevant to
genodermatoses, psoriasis, and cancer and suggest a avenue for
the therapeutic management of PC and related disorders.

intermediate filament | epidermis

The skin is a highly specialized organ designed to actively
prevent and react to a variety of environmental insults such

as mechanical trauma, chemical irritation, and exposure to path-
ogens. Maintaining this first and vital line of defense requires
intact structural and immunological barriers, specifically in the
stratum corneum, to avoid dehydration and quickly address ex-
terior threats locally. An inadequate or excessive response to an
epidermal barrier challenge not only affects the process of acute
wound healing, but also can eventually lead to both chronic in-
flammation and/or tumor development (1). The nature and ex-
tent of damage perceived by the epidermis and any downstream
actions must therefore be tightly regulated.
Keratinocytes play a special role in sensing epidermal barrier

challenges and produce the first signals, known as damage-
associated molecular patterns (DAMPs) or “alarmins,” to initiate
the inflammatory response in the event of a barrier breach (1, 2).
Alarmins are a diverse group that includes members of the S100
family of proteins, antimicrobial peptides, and select cytokines
and chemokines (3, 4). Most DAMPs, in particular the group of
alarmins, are secreted from keratinocytes and act by directly
attacking invading pathogens, attracting and activating a wide
range of immune cells (e.g., dendritic cells, neutrophils, macro-
phages, T-cells) and modulating cytokine production (1, 5, 6).
In addition to DAMPs, stressed keratinocytes rapidly induce

de novo transcription of keratins (Krt) 6, 16, and 17, whose
normal expression pattern in stratified epithelia is restricted to the
epidermis of glabrous skin, the oral mucosa, and several appen-
dages (7). Aside from their mechanical properties, these keratins
have specialized functions in the progression of inflammation and

wound healing. Krt6 impacts cell migration by interacting with Src
kinase (8), whereas Krt17 promotes keratinocyte survival (9),
growth (10), and a Th1/Th17-dominated immune environment
contributing to the development of basaloid skin tumors (11). By
contrast, the significance of Krt16 induction in response to envi-
ronmental stressors in epithelial cancers and in chronic inflam-
matory disorders (12) is largely unknown.
Inherited dominant mutations in KRT6, KRT16, and KRT17

are causative for pachyonychia congenita (PC), a clinically het-
erogeneous disorder characterized by dystrophic nails and hy-
perkeratotic lesions in glabrous skin and oral epithelia (13). In
mice, loss of Krt16, but not Krt6a/b or Krt17, results in prominent,
chronic lesions on front and hind paws that closely resemble
palmoplantar keratoderma (PPK) in PC patients (14). Kerati-
nocyte fragility in these calluses appears sporadic and modest
relative to the amount of hyperkeratosis, suggesting an addi-
tional, nontraditional role for Krt16 in glabrous skin. Here, we
report that Krt16 participates in the regulation of early in-
flammation and innate immunity in a broad range of settings
involving skin, revealing a newly defined role relevant for several
diseases including PC, psoriasis, and cancer.

Results
Molecular Convergence Between Krt16−/− Front Paw Calluses and
Human Palmoplantar Keratoderma Lesions. Skin lesions in adult
Krt16−/− front paws have an impaired outside–inside epidermal
barrier, correlating with loss of the stratum corneum protein
filaggrin, induction of the wound healing-associated Krt17, and
hyperproliferation (14). We now confirm the presence of in-
flammation by showing that CD4+ T-cells, monocytes, macro-
phages, and neutrophils accumulate in lesional Krt16−/− front-paw
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skin (Fig. 1A). CD207+ Langerhans cells (LCs), normally rare in
murine glabrous skin, are also markedly increased in Krt16−/−

calluses, especially in areas immediately adjacent to tissue showing
hyperproliferation (Fig. 1A) (14).
Genome-wide association and gene expression profiling stud-

ies have linked Krt16 to key players in cutaneous inflammation
and cancer susceptibility (15–18). We used quantitative RT-PCR
(qPCR) to look at a panel of proinflammatory signature mRNAs
(Table S1) relevant to these settings. At 8 wk after birth, Krt16−/−

front paws feature prominent lesions whereas hind-paw pads still
appear normal (Fig. S1). Using hind-paw–derived data as an
internal control for each mouse, we observe prominent expres-
sion of several DAMPs and proinflammatory cytokines in Krt16−/−

front-paw skin (Fig. 1B and Fig. S1). Particularly notable are the
high levels of Sprr2d, Sfn, and Krt6a mRNAs as they are selectively
induced in keratinocytes at the wound edge (10, 15, 19), are
connected to each other in cancer susceptibility networks (20),
and, in the case of Sprr2d, possess antioxidant properties (21, 22).
Krt16−/− front-paw lesions also feature high transcript levels for
Stfa1 and SerpinB3a, which are keratinocyte-specific protease
inhibitors associated with proliferation, differentiation, and in-
creased susceptibility to skin cancer (23, 24). Up-regulation of
DefB3 and DefB4 further suggests an impairment of both the
permeability and the antimicrobial barrier in Krt16−/− glabrous
skin. By comparison, genes involved in LC trafficking (Ccr6,
Ccl20), apoptosis (Casp8), the inflammasome (Nlrp3), and the
amplification and coordination of the adaptive immune response

(IL-22) are only moderately induced in Krt16−/− front-paw lesions
(Fig. 1B). Of note, the rupture or lysis of keratinocytes is not
a predominant feature in Krt16−/− glabrous epidermis as con-
firmed by transmission electron microscopy (Fig. S1).
We next analyzed global gene expression in plantar keratoderma

biopsies from human PC patients carrying mutations in KRT16,
KRT6, or KRT17 and normalized the data to nonlesional glabrous
skin from the same individuals. Interestingly, although expression
of proinflammatory cytokines was generally low, several genes
encoding for S100s, Sprr proteins, and β-defensins were among the
most abundant transcripts in lesional tissue (Fig. 1C). Expression
of KRT6 paralogs (a and b) was also markedly elevated (Fig. 1C),
consistent with their wound-inducible nature (25) and their newly
proposed status as DAMPs (26). Such a DAMP-centric profile
occurs independently of the disease-causing mutation and is
strikingly similar to our findings in Krt16−/− front-paw calluses,
suggesting that the misregulation of barrier-related genes is a
general feature of PC-related palmoplantar keratoderma. These
data validate the Krt16−/− mouse as a relevant model in which to
study the pathogenesis of PPK.

Keratinocytes Lacking Krt16 Hyper-Activate Alarmin Expression in
Response to Chemical and Mechanical Challenges to the Epidermis.
To test the hypothesis that the absence of Krt16 alters the course
of acute cutaneous inflammation, we treated ear skin of 8-wk-old
WT or Krt16+/− and Krt16−/− mice twice with 12-O-tetradeca-
noylphorbol-13-acetate (TPA). TPA is a well-known activator
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Fig. 1. Krt16−/− front-paw lesions and PPK biopsies from pachyonychia congenita patients share a DAMP-enriched gene expression signature. (A) Langerhans
cells (CD207+), CD4+ T-cells, and CD11b+ neutrophils, macrophages, and monocytes are highly abundant in Krt16−/− lesions. White arrowheads indicate presence
in the dermis, yellow arrowheads highlight immune cells present in the epidermis (scale bar, 100μm). (B) qPCR profile of front-paw gene expression relative to
hind paws, normalized to control mice. DAMPs, protease inhibitors, and select cytokines are significantly up-regulated in Krt16−/− lesions. Each bar represents
the mean + SD of five to eight biological replicates. *P < 0.05, **P < 0.01, Mann-Whitney test, two-tailed. (C) Excerpt of qPCR microarray data obtained from
plantar biopsies of pachyonychia congenita patients. Data are shown as fold changes of lesioned skin relative to unlesioned skin from the same individual.
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of protein kinase C that initiates epidermal inflammation and
promotes tumor formation (27). Topical TPA application to mouse
ear skin causes epidermal thickening, hyperproliferation, up-regu-
lation of Krt16 and Krt17 proteins, and recruitment of wound-as-
sociated immune cells (10) (Fig. 2A and Fig. S2). Before TPA
treatment, histology and epidermal thickness are normal in Krt16−/−

ear skin (Fig. 2A). At 48 h following the last of two TPA treatments,
expansion of the postmitotic suprabasal layers is modestly but sig-
nificantly greater in Krt16−/− relative to control (Fig. 2A). The origin
of this expansion is unknown, as the mitotic index remains the same
in Krt16−/− and control TPA-treated ears (Fig. 2A). Onset of
Krt16 expression precedes epidermal thickening and thus can
be uncoupled from hyperproliferation in such settings (19, 28).
TPA treatment of ear skin tissue also results in the increased

expression of a group of proinflammatory and barrier-related
gene targets similar to Krt16−/− front-paw lesions (Fig. S2).
Normalization of gene expression fold changes to the control
genotype highlights a significant over-induction of several genes
in Krt16−/− TPA-treated skin, in particular several DAMPs

(TSLP, S100A7A, DefB4), select cytokines (Ccl5, IL-1a), Sprr2d,
HO-1, and Sfn (Fig. 2B). We do not observe a significant increase
in Nlrp3 mRNA indicative of inflammasome activation (18, 29),
suggesting that this aspect of the inflammatory response may not
be a major contributor to the molecular phenotype of TPA-
treated Krt16−/− skin, despite enhanced levels of IL-18 mRNA.
We note that IL-18 secretion from keratinocytes was recently
shown to depend on Krt1 (30), whereas IL-1b production is
enhanced in the skin of newborn Krt5−/− mice (31).
At 48 h after the topical application of acetone as the vehicle

control, which in itself elicits a mild epidermal barrier disruption
in mouse skin (32), we find that neither Krt16 nor Krt17 are
detectable in ear interfollicular epidermis (Fig. 2A and Fig. S2)
and that most of the transcripts analyzed show similar levels
between genotypes (Fig. S2). This is significant because it sug-
gests a similar basal state of adult Krt16−/− and control epider-
mis. This said, we observed a modest decrease in mRNA levels
for IL-1b, Ccl2, Ccl5, and HO-1 in acetone-treated Krt16−/− ear
epidermis (Fig. S2). However, these changes do not overlap with
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Fig. 2. Chemical and mechanical irritation leads to hyper-activation of DAMPs and cytokines in Krt16−/− skin. (A) Phorbol ester (TPA) treatment of ear skin in
8-wk-old mice induces Krt17 expression in suprabasal keratinocytes and infiltration by nonresident immune cells (CD11b+). epi, epidermis; hf, hair follicle.
(Scale bar, 50 μm.; the first scale bar refers to the IF stainings, the second to the H&E stainings.) H&E stainings illustrate the epidermal expansion in response to
TPA. (Scale bar, 25 μm.) Insets show ears treated with acetone vehicle. Note the equal epidermal thickness as well as the absence of Krt17 or immune cell
staining in the interfollicular epidermis of vehicle-treated ears. Krt16−/− mice develop significantly more epidermal thickening in response to TPA than
controls without a change in the mitotic index. *P < 0.05, n.s., not significant, one-way ANOVA with Bonferroni correction. (B) qPCR data from TPA-treated
ear skin represented as fold changes (TPA/acetone) and normalized to control mice. Krt16−/− mice show a significant over-induction of alarmins and cytokines.
Each bar represents the mean + SD of 5–10 biological replicates. *P < 0.05, **P < 0.01, Mann–Whitney test, two-tailed. (C) Mechanical disruption of the
epidermal barrier via tape stripping also leads to an over-induction of DAMP and cytokine RNA in Krt16−/− mice. Data represent the mean fold changes
(stripped ear/normal ear) + SD of three biological replicates relative to control mice.
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findings in hind-paw skin epidermis (Fig. S1), normal ear epi-
dermis (Fig. S3), or newborn keratinocytes in primary culture (Fig.
S3) and could be related to the very low steady-state levels of these
mRNAs in normal skin. Consistent with Krt17’s proposed role as
a proinflammatory immunomodulator (11) and in contrast to our
findings in Krt16−/− skin, DAMP mRNA levels are essentially
unchanged in Krt17−/− ear skin after TPA treatment (Fig. S2). An
over-reaction to external stimuli is a wide-ranging characteristic of
Krt16−/− epidermis because tape stripping of ear skin—a superfi-
cial mechanical insult that removes the stratum corneum and
induces Krt16 mRNA and protein expression (33)—also consis-
tently leads to exaggerated expression of several alarmins, IL-1b,
Sprr2d, HO-1, and Krt6a in Krt16−/− ear skin (Fig. 2C).
Unbalanced DAMP expression in response to trauma has

long-term implications for an organism. Patients with atopic der-
matitis (AD) overreact to injury with increased production and
secretion of DAMPs (34). Likewise, chronically elevated levels
of thymic stromal lymphopoietin (TSLP) in mouse epidermis
trigger the formation of AD-like lesions (35), and overexpression
of S100A7A leads to an immunological overreaction to mechan-
ical stress (36). In addition to their PPK-like paw lesions, older
Krt16−/− mice also develop spontaneous chronic dermatitis, which
is fully penetrant yet variable in onset, severity, and location (Fig.
S4). Such lesions appear in areas where Krt16 is not normally
expressed and show markedly elevated levels of Krt6, Krt17,
TSLP, and S100A7A mRNAs and proteins (Fig. S4).
The analyses of our TPA and tape-stripping experiments were

conducted at 48 h posttreatment, which allows for the arrival of
systemic immune cells at the site of inflammation (Fig. 2A and
Fig. S2). These immune cells likely make a contribution to the
elevated mRNA levels for several genes, including S100A8,
S100A9, and IL-1b (6, 37). Induction of targets such as the ep-
ithelial-specific Krt6a and Sprr2d, however, suggests a keratino-
cyte-autonomous component in this phenomenon. To test this
hypothesis, newborn skin keratinocytes were seeded in primary
culture, treated once with TPA, and processed for qPCR anal-
ysis. In this setting, DAMP gene expression peaks at 3–6 h
posttreatment and returns to baseline within 24 h (Fig. 3A).
Relative to controls, Krt16−/− but not Krt17−/− keratinocytes
overexpress several DAMPs after TPA exposure (Fig. 3B). Be-
fore TPA treatment, Krt16−/− and control keratinocytes express
similar levels of all mRNAs tested (Fig. S3). Other keratins do
not appear to compensate for the loss of Krt16 in the primary
culture setting (Fig. S3). At this time, we cannot comment on
whether the absence of Krt16 alters the secretion of DAMPs
from keratinocytes. The induction of alarmin transcription 3 h
after TPA addition is largely mediated by the Erk1/2 arm of
MAPK signaling and does not appear to require IL-1–dependent

amplification (Fig. 3C and Fig. S3). The ex vivo findings strongly
suggest that the specific induction of Krt16 in skin keratinocytes
subject to cellular stress is critical for the proper transcriptional
regulation of innate danger signals.

Systems Genetics Analysis Independently Links Krt16 to Alarmin and
Skin Barrier Genes. In 2009, Quigley et al. reported an unbiased
systems genetics analysis yielding genome-wide expression and
association networks for adult mouse skin during normal ho-
meostasis and different stages of carcinogenesis (20). Here, we
reanalyzed this data set for genes correlated with Krt16. In
normal tail epidermis, Krt16 expression is constitutive (similar to
glabrous epidermis) and strongly positively correlated with sev-
eral DAMPs and other regulators of skin barrier function (Fig.
4A, top 30 hits shown). Many of the top-scoring genes in this
Krt16-anchored network—e.g., Krt6a, S100A8, S100A9, DefB3,
SerpinB3a, and Stfa1 (Fig. 4A)—are markedly misregulated in
Krt16−/− mouse skin subject to barrier challenges and in PC-
related PPK (Figs. 1–3). Krt16 expression in benign papillomas
sampled from back skin in the same set of mice is notably higher
and more uniform relative to normal tail skin (Fig. 4B). A striking
proportion of the top-scoring genes lose their correlation with
Krt16 in papillomas (Fig. 4A), suggesting that the interrelation-
ships between Krt16 and barrier-related genes may differ in set-
tings of chronic inflammation. These findings significantly extend
the notion that Krt16 is an integral part of a genetic network that
includes DAMP-encoding and skin barrier-associated genes.

Discussion
We show here that when the epidermal barrier is experimentally
challenged by acute proinflammatory and mechanical stimuli,
keratinocytes lacking Krt16 fail to properly regulate the pro-
duction of innate danger signals and overactivate the expression
of DAMPs, cytokines, and other regulators of skin barrier func-
tion. Our results imply a role for Krt16 in this form of innate
immunity, provide an innovative framework to understand the
complex pathogenesis of several chronic inflammatory skin dis-
eases, and, finally, may have direct implications for the treatment
of the painful and debilitating palmoplantar keratoderma asso-
ciated with PC and related genodermatoses. Early activation of
Krt16 expression after various types of insults to the skin is
therefore functionally relevant to the progression of cutaneous
inflammation. We infer that loss of Krt16 eliminates an impor-
tant inflammatory checkpoint, leaving the organism vulnerable
to inappropriate immune responses, and we further speculate
that loss of Krt16 function, whether complete or partial, impairs
the resolution of PPK-like calluses in glabrous skin.
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Fig. 3. Misregulation of innate danger signals is specific to Krt16−/− keratinocytes. (A) DAMP expression peaks at 3–6 h post-TPA treatments in newborn
keratinocytes in primary culture and returns to baseline by 24 h. (B) Cultured Krt16−/− primary keratinocytes retain the ability to hyper-activate alarmins 3 h
after TPA treatment. Krt17−/− cells do not show a difference compared with controls. Data represent the mean + SD of three to eight biological replicates.
*P < 0.05, Mann–Whitney test, two-tailed. (C) DAMP transcription in Krt16−/− keratinocytes in response to TPA is mediated by the Erk arm of MAPK sig-
naling. Data represent the mean + SD of four biological replicates. *P < 0.05, Student t test, two-tailed.
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Recent advances in the field support the modulation of innate
immunity by select keratins and their necessity for epidermal bar-
rier maintenance. Krt1, a type II keratin constitutively expressed
in the differentiating layers of the epidermis, is essential for con-
trolling inflammasome activity, specifically the amount of IL-18,
S100A8, and S100A9 secretion from keratinocytes (30).
The preferential development of PPK and Krt16−/− paw

lesions in areas of high mechanical pressure suggests that Krt16’s
function could be related to mechanically activated signal trans-
duction in keratinocytes. For example, intermediate filaments are
required for hemidesmosome function in mice (38). Hemi-
desmosomal integrins can transduce mechanical signals (39) and,
like Krt16, are inducibly expressed in suprabasal keratinocytes
during wound healing, chronic inflammation, and in response to
phorbol esters (40). Keratinocyte-specific loss of murine Rac1,
which interacts with hemidesmosomal integrins, causes epidermal
hypersensitivity to proinflammatory stimuli (41), similar to TPA-
treated Krt16−/− ear skin. Phorbol esters heighten keratinocyte
sensitivity to outside stressors and potentiate EGF receptor
(EGFR) activation via Erk1/2 signaling, resulting in the increased
production of IL-1a (42). IL-1a is known to interact functionally
with MAPK signaling to activate and amplify keratinocyte pro-
liferation and epidermal inflammation, creating an autoimmune
feedback loop (37, 43). Integrins, the IL-1 receptor, and the EGF
receptor are all located in focal adhesion complexes at the plasma
membrane (44), which are altered in epidermal keratinocytes null
for Krt6, the type II keratin partner for Krt16 (8). In addition,
focal adhesion kinase links mechanical stress to Erk1/2 signaling
and cytokine production in dermal fibroblasts (45). Possibly,
Krt16 may be involved in regulating a pathway that is activated

when the skin experiences increased or altered mechanical forces,
e.g., in normal glabrous skin or at the wound edge.
DAMP and cytokine transcription in cultured keratinocytes

depends on the MAPK signaling cascade, a major switchboard
for relaying and amplifying stress signals (46 and this study).
Krt16 is a direct target for EGFR and Erk1/2-mediated signal-
ing (47–50), and its overexpression in mice dose-dependently
enhances EGFR activity (51). Following stress, Krt16 could con-
ceivably impact MAPK and/or EGF signaling to modulate the
total level of DAMPs in a keratinocyte-autonomous fashion.
Krt16 is also a direct target for signaling mediated by the Nrf2
transcription factor, a master regulator of ROS levels and the
oxidative stress response in skin (50, 52, 53). In adult mice,
misregulation of Nrf2 levels raises the risk for tumorigenesis (54,
55) and promotes cutaneous inflammation secondary to stratum
corneum abnormalities (22). In utero, Nrf2 stimulates epider-
mal barrier repair via the up-regulation of Sprr2d and Sprr2h
(56). We observe high levels of Sprr2d as well as HO-1 in Krt16−/−

TPA-treated ears, suggesting the activation of the Nrf2-mediated
oxidative stress response and raising the possibility that Krt16
may play a role in this cellular defense mechanism.
Autoantibodies to KRT16 have been tied to an exaggerated

activation of innate immunity signaling pathways in psoriatic
lesions (57, 58). Furthermore, IL-1a treatment of human primary
keratinocytes elicits a transcriptional profile enriched in antimi-
crobial peptides and genes from the epidermal differentiation
complex (59) that is strikingly similar to challenged Krt16−/− skin
and to Krt16’s association with skin barrier-related factors as
revealed by computational analysis. In the absence of Krt16, im-
proper control of the IL-1a–signaling pathway and/or its proin-
flammatory feedback loop could explain the phenotypes that we
observe in both Krt16−/− skin and human PPK lesions. In our
hands, inhibiting IRAK1/4 did not alter DAMP transcription in
response to TPA in Krt16−/− keratinocytes in culture. However, in
vivo cellular architecture and feedback from other cell types, e.g.,
fibroblasts as well as resident and infiltrating immune cells, play
a major role in IL-1a–mediated autoimmune feedback (37). The
lack of an intact tissue microenvironment could thus account for
the modest induction of DAMP expression occurring in newborn
skin keratinocyte cultures compared with adult whole ear tissue.
Various strategies have been applied toward the therapeutic

management of PC (60–62) or for palmoplantar keratoderma of
various etiologies (63, 64) withmixed results and, in the end, limited
relief for the patient. This includes topical treatments (e.g., with
corticosteroids or retinoids) designed to antagonize inflammation
in a broad and rather nonspecific fashion (64–66). A recent trial
involving the use of a mutant Krt6a allele-specific siRNA in plantar
skin led to the recession of calluses and associated pain in one
patient, but the extreme pain associated with the direct injection is
problematic considering the large areas covered by PPK (61). The
development of therapies designed to attenuate the alarmin re-
sponse in skin, especially when combined with keratin mutant al-
lele-specific interventions, could prove beneficial for PC patients.

Materials and Methods
Procedures for the collection, processing, and analysis of patient plantar
biopsies, gene expression correlation analysis, epidermal barrier challenges in
Krt16 and Krt17 null mice, qPCR, cell culture, histology, reagents, and the
system genetics analysis are described in the SI Materials and Methods.
Animal experiments involving mice were approved by The Johns Hopkins
University Institutional Animal Care and Use Committee. Krt16−/− and
Krt17−/− mouse lines (C57BL/6 background) (10, 14) were maintained under
specific pathogen-free conditions and fed chow and water ad libitum. De-
identified plantar human skin samples were obtained, with informed con-
sent, from one affected and one unaffected site of five nonrelated, adult PC
patients harboring a KRT16 R127C, KRT6A N171K, KRT6B E472K, or KRT17
N92S single nucleotide mutation (patients #1009, #1015, #10, #661, and #394
from the International Pachyonychia Congenita Research Registry).
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Fig. 4. Krt16 is a member of a barrier- and DAMP-centric gene network in
skin. (A) Genome-wide expression data set (20) analyzed for correlations
with Krt16. Shown are the top 30 hits that strongly correlate with Krt16 in
normal tail skin and their relative correlation with Krt16 in papilloma of back
skin. (B) Krt16 expression is constitutive yet variable in normal tail skin. By
contrast, papilloma in back skin consistently express high, uniform levels of
Krt16. Each dot represents an individual mouse.
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