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Although there exists a vast literature on the dynamic comminution
or fragmentation of rocks, concrete, metals, and ceramics, none of
the known models suffices for macroscopic dynamic finite element
analysis. This paper outlines the basic idea of the macroscopic model.
Unlike static fracture, in which the driving force is the release of
strain energy, here the essential idea is that the driving force of
comminution under high-rate compression is the release of the local
kinetic energy of shear strain rate. The density of this energy at
strain rates>1,000/s is found to exceed themaximum possible strain
energy density by orders of magnitude, making the strain energy
irrelevant. It is shown that particle size is proportional to the −2/3
power of the shear strain rate and the 2/3 power of the interface
fracture energy or interface shear stress, and that the comminution
process is macroscopically equivalent to an apparent shear viscosity
that is proportional (at constant interface stress) to the −1/3 power
of this rate. A dimensionless indicator of the comminution intensity
is formulated. The theory was inspired by noting that the local ki-
netic energy of shear strain rate plays a role analogous to the local
kinetic energy of eddies in turbulent flow.
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The previous studies of high-rate dynamic fracture of rocks,
concretes, ceramics, composites, and metals have dealt mainly

with the nucleation, propagation, and branching of dynamically
propagating cracks, their interference with elastic or shock waves,
and the mechanism of development of the zones of densely distrib-
uted fractures, called the Mescall zones (1–7). However, a commi-
nutionmodel in the form of amacroscopic constitutive equation that
could be used in large dynamic finite element programs for global
response of structures is apparently still unavailable.
Seeking such a constitutive model, we begin with the analysis of

a simple idealized process in which the solid is comminuted to
identical particles (Fig. 1). Among simple space-filling regular
subdivisions in the plane of maximum shear, regular hexagons are
the most likely because they give the smallest surface-to-volume
ratio (Fig. 1A) and thus require the minimum energy to form. In
the direction normal to the hexagons, we assume the particles to
be prismatic.
Consider that, at a certainmoment, the strain rate (shown in Fig.

1B as a displacement regarded as infinitesimal) becomes high
enough for the kinetic energy of shear strain rate to suffice for
creating the fractures and interface slips that separate the particles
of as yet unknown size. As that happens, the particles release their
local kinetic energy, slip against each other, and regain their orig-
inal undeformed shape, while the particle centers conform to the
same macroscopic velocity field (Fig. 1C).
For the sake of simplicity and clarity, we will first outline a 2D

analysis of comminution in the plane of maximum shear strain rate
denoted as _eD, and leave the 3D generalization for later discussion.
Before comminution or slip, the displacement velocities in the
directions of current (Eulerian) coordinates x and y, whose origin is
attached to the particle centroid, are _u= _u0 − _ωy+ _eDy and _v=
_v0 + _ωx+ _eDx, in which the superior dots denote time derivatives.
After comminution or slip, these velocities become _u+ = _u0 − _ωy

and _v+ = _v0 + _ωx. Assuming particle symmetry with respect to
axes x and y, we have

R
AxdA=

R
AydA=

R
AxydA= 0, and for the

drop of kinetic energy of the hexagonal prisms per unit volume
we obtain

ΔK= −
h
Vp

 

Z
A

ρ

2

�
_u2 + _v2 − ð _u+Þ2 − ð _v+Þ2

�
dxdy= − ckρh2 _e2D: [1]

Here A = particle area, ρ = mass density, ck = Ip=ð2hVpÞ, Vp =
ð3 ffiffiffi

3
p

=8Þh3 = particle volume, and Ip = ð ffiffiffi
3

p
=32Þh4 = polar mo-

ment of inertia of each hexagonal prism of side h and length h.
Note that the macroscopic velocities of material rotation ω and
displacements u0 and v0 have no effect on K, which means that
the local kinetic energy density is separable from the kinetic
energy density of the macroscopic 2D motion defined by the
velocities of particle centroids.
It is interesting that the kinetic energy Kshear of a particle

deforming by pure shear at rate _eD happens to be the same as the
kinetic energy Keddy of an eddy rotating as a rigid body of the
same size at angular rate _ω= _eD (Fig. 2). Thus, we see a partial
analogy with turbulence (8), which is what inspired the present
theory. In both comminution and turbulence, the microlevel ki-
netic energy augments the kinetic energy of the macrolevel
motion. The microlevel kinetic energy is dissipated by fluid vis-
cosity in the eddies of turbulent flow, or by the energy, Γ, of
interface fracture or subsequent frictional slip. However, unlike an
eddy, the local shear strain motion cannot continue indefinitely.

Significance

Fragmentation, crushing, and pulverization of solids, referred to
as comminution, has long been of keen interest for mining,
tunneling, explosions, meteorite impact, missile impact, ground
shock, terrorist attacks, and various industrial processes. Recently,
interest surged in comminution of gas or oil shale as a way to
enhance the permeability of shale mass by orders of magnitude.
Particularly intriguing is a proposed, environmentally friendlier,
alternative to hydraulic fracturing in which the fracturing would
be achieved by shock waves from explosions or electrohydraulic
pulsed arc in a horizontal borehole. The discharge of contami-
nated water would, in this case, be negligible. In all these prob-
lems the energy dissipation density is a key parameter to predict.
Here a theory to do so is outlined.
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In reality, particle sizes h vary randomly, according to a cer-
tain distribution, for which the following cumulative distribution
[Schuhmann’s power law (9–12)] is adopted:

FðsÞ= sk − hk

Hk − hk
�
s∈ ðh;HÞ;FðsÞ∈ ð0; 1Þ�: [2]

Here k = empirical constant ðk≈ 0:5Þ, s = variable particle size,
and h and H = minimum and maximum particle sizes (usually
H=h= 10 to 100). Because the macroscopic quasi-static constitu-
tive law with nonlocalized strain softening includes the energy
dissipation corresponding to material crushing into particles of
the size da of the largest material inhomogeneities, such as the
maximum aggregate size in concrete, H should be considered to
be one order of magnitude smaller (i.e., about 0:1da). The aver-
age particle size is s=

RH
h s  dFðsÞ= ch, the combined interface

area per unit volume is S=Cs=h, and the loss of kinetic energy
of the shear strain rate of the particles of all sizes per unit
volume is ΔK= −

RH
s=h ckρs

2 _e2D   dFðsÞ= −Ckρh2 _e2D, where c;Cs;
and Ck are dimensionless constants. For H=h= 100 and for hex-
agonal or cubical particles, Cs = 0:331 or 0:300, and Ck = 92:60 or
138:9, respectively (the values for cubical particles are included
to show that the particle shape does not make much difference).
Assuming that all of a kinetic energy decrement ΔK is dissi-

pated by an interface fracture energy increment ΓΔS, the energy
balance condition is δðΔKÞ=ΓδS ; Γ = shear fracture energy or,
after break, the work of friction per unit interface area (which is
considered as constant because its dependence on the confining
pressure and slip velocity is not known. So, the interface fracture
(or frictional slip) can occur when

−
∂ðΔKÞ
∂S

= −
∂ðΔKÞ=∂h
dS=dh

=Γ: [3]

After substitutions into Eq. 3 one gets

h=

 
CaΓ
ρ  _e  2D

!1=3
; [4]

where Ca is a dimensionless constant. If H=h= 100, then Ca =
0:032 for hexagonal prisms and 0.019 for cubical particles. Again,
the precise particle shape does not make a major difference.
It should be mentioned that Eqs. 4 and 3 are similar to Grady’s

(13) equation, derived and experimentally verified for tensile com-
minution caused by a high volumetric strain rate driven by ex-
plosion within a hollow sphere. Later, Grady (14) verified empiri-
cally (although not theoretically) that h∝ _e

−2=3
D holds also for the

impact of missiles, in which the role of volume expansion is

negligible. This fact serves as one experimental verification of
the present theory (Eq. 4).
Note that, more generally, and specifically for a single dy-

namically propagating crack in two dimensions, the dynamic
energy release rate involving both the elastic strain energy U
and the kinetic energy with inertial effects was rigorously for-
mulated in equations 5.3.2 and 5.3.20 of Freund’s book (7). Eq. 3
may be regarded as a simplification of these equations to the case
of negligible U and at the same time a generalization and adap-
tation to a smeared continuum representation of many diffuse
cracks characterized by their combined surface S.
Substitution of Eq. 4 into Eq. 1 further yields

ΔK = −
�
C0Γ2ρ

�1=3
  _e

2=3
D ; [5]

where C0 is a certain dimensionless constant; C0 = 822 for hex-
agonal prisms and 1,013 for cubical particles. This expression
suggests how to implement the energy sink owing to comminu-
tion in macroscopic structural analysis. Note that ΔK has the
dimension of stress and can be interpreted as such.
To obtain a 3D generalization, it is convenient to introduce

equivalent viscosity ηD such that the viscous stress strain relation
sAij = ηD _eDij would give the same energy dissipation density as Eq. 5
for any deviatoric strain rate tensor _eDij , in the variational sense;
here sAij is the additional deviatoric stress caused by the commi-
nution. Now we note that the energy density is the same as the
stress, that sA12 must be equal to ΔK when all other tensorial
components vanish, and that ΔK must be a tensorial invariant. To

satisfy these three conditions, it is necessary that −ΔK=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAij s

A
ij =2

q
.

Because sAij = ηD _eDij in terms of viscosity, we may write
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAij s

A
ij =2

q
=

ηD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_eDij _eDij=2

q
= ηD _eD, where now _eD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_eDij _eDij=2

q
, which sim-

plifies to pure shear _eD when _eD12 is the only nonzero component.
Therefore, the energy sink owing to the comminution process may
be modeled by the equivalent viscosity

ηD =
�
C0Γ2ρ

�1=3
_e
−1=3
D : [6]

Unlike Eq. 1, this 3D generalization is only approximate be-
cause, in three dimensions, the local kinetic energy density of
strain rate is not separable from the total kinetic energy density.
There is an energy cross-term involving both _eDij and general
rotation tensor _ωij, which is here neglected. However, calcu-
lations indicate that this cross-term is not important.
Viscosity ηD can easily be implemented in the constitutive

relation in a finite element program. It may be noted that the
enhancement of dissipative viscous resistance to shearing is again
a feature analogous to the enhancement of viscous resistance
caused by eddies in turbulent flow.

Fig. 1. Example of comminution of material into prismatic hexagonal particles; the velocities are shown as infinitesimal displacements (in which case the
gaps at the hexagon corners are second-order small and thus negligible). (A) Undeformed material, (B) sheared material, and (C) comminuted material.
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In view of the partial analogy with turbulence (Fig. 2), can one
formulate a dimensionless indicator analogous to the Reynolds
number, which would decide when the comminution dominates
the energy dissipation? One can. The strain energy density stored
in the material may be expressed as U = τ2=2G, where G is the
elastic shear modulus and τ is the shear stress. When ΔK � U,
then obviously the comminution cannot be caused by the release
of strain energy and the release of kinetic energy is the only
possible energy source for the comminution. Therefore, we may
define the dimensionless number Ba =−ΔK=U or

Ba =
G

Cgτ2
�
Γ2ρ  _e2D

�1=3
; [7]

which has the property that the comminution is

kinetic energy driven  if  Ba � 1
in transition  if  Ba ≈ 1

static or absent  if  Ba � 1:
[8]

Substituting τ = τ0 = maximum shear stress that can be resisted
by the material (i.e., the yield strength), one has the sufficient
condition for the comminution to be driven by the kinetic energy
release. The equivalent viscosity may also be uniquely expressed
in terms of Ba.
Note that exponent −1=3 in Eq. 6 is only an approximation for

constant Γ. Although no relevant data exist at present, Γ as
a characteristic of postfracture frictional work is likely to de-
crease with the slip rate; if it decreases as a power law it would
reduce the exponent in Eq. 6 below −1=3. Further note that if,
after comminution, _eD further increases, particles already com-
minuted are getting comminuted to smaller sizes. However, if _eD
decreases while remaining in the comminution range according
to Eq. 7, energy balance requires the frictional slip to be con-
centrated into interfaces between groups of particles moving as
virtually rigid bodies (h then represents the size of these groups).
Finite element simulations indicate that, in practical applica-

tions such as impact, the rate of expansive volumetric strain rate,
eEx, plays no significant role. For explosions in a shale mass,
however, the rates of shear strain and of volumetric expansion
may both be important. One can show that, in that case, the
foregoing theory can be easily generalized; for example, _e−1=3D
in Eq. 6 needs to be replaced by ð _eD + _eV Þ−1=3.

Some Results and Discussion
Although a practically most intriguing application of dynamic
comminution modeling may be the fracturing of gas or oil shale by
electro-hydraulic pulsed arc (15, 16) or by chemical explosion in
the pipe of a horizontal borehole, no data on this recently dis-
cussed alternative technology exist in the public domain. Never-
theless, a confirmation of the present comminution model can be
obtained by fitting the data on the measured exit velocity, ve, of
projectiles penetrating concrete walls of different thicknesses.
One such set of data is shown in Fig. 3 (17), which shows ve as

a function of the thickness D of the wall. The entry velocity of the
missile is 310 m/s. The ve values are computed with an explicit
dynamic finite element program using the microplane model,
first under the assumption that the only rate effects are the qua-
sistatically calibrated rate effects, which consist of viscoelasticity of
intact concrete between the cracks and of the rate of bond break-
age at the fracture front controlled by activation energy (18). As
seen, this simple assumption leads to a gross overestimation of the
exit velocities. However, when the presently formulated equivalent
viscosity owing to kinetic comminution is included, the data for the
two thicker walls are fitted perfectly (in ref. 17, the strength and
strain limits of the microplane constitutive laws were elevated
horizontally by more than an order of magnitude and vertically
by more than three times, with no physical justification, so as to
fit these data).

Fig. 2. Fields (in the first quadrant) of local velocity vectors giving the same
kinetic energy density for (A) rigid body rotation and (B) pure shear de-
formation of the same magnitude.

Fig. 3. Comparison of measured exit velocities and finite element predictions
using microplane constitutive model M7 (A) with quasi-static strain rate effects
only and (B) with both quasi-static strain rate effects and effect of comminu-
tion of concrete (the experimental data points are taken from ref. 17).
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For the thinnest wall, the exit velocity is still overestimated (Fig.
3). However, this is likely explained by differences in the specific
moisture contents in the nanopores of concrete. For a lower
moisture content, Hopkinson bar experiments have shown a lower
strength in high-rate shear, and this is the case for the thinner wall
because it dries faster. However, analysis of this and many other
questions is beyond the scope of this brief article. A detailed
discussion is given in a separate extensive report (18).
To release gas or oil from the shale mass by means of shock

waves generated by explosions or pulsed arc in a horizontal
borehole, the fragmentation would have to be sufficiently fine
to achieve a drastic increase of permeability (19). Reports on
ongoing dynamic finite element simulations indicate that the
shear strain rates produced by such shock waves exceed _eD =
100 s−1 (20). Does it suffice for sufficient fragmentation? For
a crude assessment, consider that the material parameters of a
typical unconfined shale are G= 15:1 GPa, τ0 = 5 MPa, Γ=
100 N=m, ρ= 2;200 kg=m3 (21–23). This yields Ba ≈ 15 � 1, and

thus suffices for comminution. However, in real situations the
shale is subjected to a large confining pressure, such as 50 MPa,
for which one may expect τ0 ≈ 90 MPa. If again _eD = 100 s−1,
one gets Ba ≈ 1:5, the other parameters remaining the same.
So this situation is at the mere inception of dynamic commi-
nution. A more detailed assessment will require taking into
account the rate of volumetric expansion behind the pressure
shock front, considering shocks due to stronger explosions or
pulsed arcs, and examining the interference of shock fronts from
different sources.
As a final remark, the dynamic erosion of a solid surface by

impinging hard particles (24) is a fundamentally different pro-
cess to which the present analysis does not apply.

ACKNOWLEDGMENTS. This work was supported by Agency for Defense De-
velopment, Korea Grant 32788 from Daejeon University and initially by US
Army Research Office, DurhamGrantW911NF-09-1-0043, both to Northwestern
University.

1. Mescall J, Weiss V (1984) Materials behavior under high stress and ultrahigh loading
rates—Part II. Proceedings of the 29th Sagamore Army Conference (Army Materials
and Mechanics Research Center, Watertown, MA).

2. Doyoyo M (2002) A theory of the densification-induced fragmentation in glasses and
ceramics under dynamic compression. Int J Solids Struct 39:1833–1843.

3. Ko�zar I, O�zbolt J (2010) Some aspects of load-rate sensitivity in visco-elastic micro-
plane material model. Comput Struc 7(4):317–329.

4. Deshpande VS, Evans AG (2008) Inelastic deformation and energy dissipation in ce-
ramics: A mechanism-based constitutive model. J Mech Phys Solids 56:3077–3100.

5. Wei Z, Evans AG, Deshpande VS (2009) The influence of material properties and
confinement on the dynamic penetration of alumina by hard spheres. J Appl Mech 76:
051305-1–051305-8.

6. Ferri E, Deshpande VS, Evans AG (2010) The dynamic strength of a representative
double layer prismatic core: A combined experimental, numerical, and analytical as-
sessment. J of Appl Mech ASME 77:061011-1–061011-7.

7. Freund LB (1990) Dynamic Fracture Mechanics (Cambridge Univ Press, Cambridge, UK).
8. Tennekes H, Lumley JL (1972) A First Course in Turbulence (MIT Press, Cambridge, MA).
9. Schuhmann R, Jr. (1940) Principles of comminution, I. Size distribution and surface

calculation. The American Institute of Mining, Metallurgical, and Petroleum En-
gineers (AIME) Technical Publication 1189 (AIME, Englewood, CO).

10. Charles RJ (1957) Energy-size reduction relationships in comminution. Min Eng 9:
80–88.

11. Ouchterlony F (2005) The Swebrec function: Linking fragmentation by blasting and
crushing. Mining Technology 114(March):A29–A44.

12. Cunningham CVB (1987) Fragmentation estimation and the Kuz-Ram model—four
years on. Proceedings of the 2nd International Symposium on Rock Fragmentation by
Blasting, eds Fourney WL, Dick RD (Society for Experimental Mechanics, Bethel, CT),
pp 475–487.

13. Grady DE (1982) Local inertial effects in dynamic fragmentation. J Appl Phys 53(1):
322–325.

14. Grady DE (1998) Shock-wave compression of brittle solids. Mech Mater 29:181–203.
15. Maurel O, et al. (2010) Electrohydraulic shock wave generation as a means to increase

intrinsic permeability of mortar. Cement Concr Res 40:1631–1638.
16. Hemmert DJ, Smirnov VI, Awal R, Lati S, Shetty A (2010) Pulsed power generated

shockwaves in liquids from exploding wires and foils for industrial applications.

Proceedings of the 16th International Symposium on High Current Electronics (Tomsk,

Russia), pp 537–540.
17. Adley MD, Frank AO, Danielson KT (2012) The high-rate brittle microplane concrete

model: Part I: Bounding curves and quasi-static fit to material property data. Comput

Concr 9(4):293–310.
18. Ba�zant ZP, Caner F (2013) Impact comminution of solids due to local kinetic energy

of high shear strain rate. Report No. 13-06/778i, McCormick School of Eng Appl Sci

(Northwestern Univ, Evanston, IL). arXiv:1306.1120v1.
19. Chen W, et al. (2012) Experimental study on an alternative oil stimulation technique

for tight gas reservoirs based on dynamic shock waves generated by pulsed arc

electrohydraulic discharges. J Petrol Sci Eng 88-89:67–74.
20. Pijaudier-Cabot G (2013) Personal communication on August 19, 2013, on numerical

simulations of shale fracturing at CNRS/Total Institute ISIFoR in Anglet, France.
21. Chong KP, Chen JL, Dana GF, Weber JA (1984) Indirect and direct tensile behavior of

Devonian oil shales. Report DOE/LC/10877-1567, Dept Civil Eng (Univ of Wyoming,

Laramie, WY).
22. Lin W (1983) Mechanical properties of Mesaverde sandstone and shale at high

pressures. Report UCRL-53419, Lawrence Livermore Natl Laboratory (Univ of Cal-

ifornia, Livermore, CA).
23. Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of

the mechanical behavior of Tournemire shale. Int J Rock Mech Min Sci 34(1):3–16.
24. Tilly GP, Sage W (1970) The interaction of particle and material behaviour in

erosion processes. Wear 16:447–465.

19294 | www.pnas.org/cgi/doi/10.1073/pnas.1318739110 Ba�zant and Caner

www.pnas.org/cgi/doi/10.1073/pnas.1318739110

