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Targeted therapeutics that block signal transduction through the
RAS–RAF–MEK and PI3K–AKT–mTOR pathways offer significant
promise for the treatment of human malignancies. Dual inhibition
of MAP/ERK kinase (MEK) and phosphatidylinositol 3-kinase (PI3K)
with the potent and selective small-molecule inhibitors GDC-0973
and GDC-0941 has been shown to trigger tumor cell death in pre-
clinical models. Here we have used phosphomotif antibodies and
mass spectrometry (MS) to investigate the effects of MEK/PI3K dual
inhibition during the period immediately preceding cell death. Upon
treatment, melanoma cell lines responded by dramatically increasing
phosphorylation on proteins containing a canonical DNA damage-
response (DDR) motif, as defined by a phosphorylated serine or
threonine residue adjacent to glutamine, [s/t]Q. In total, >2,000
[s/t]Q phosphorylation sites on >850 proteins were identified by
LC-MS/MS, including an extensive network of DDR proteins. Linear
mixed-effects modeling revealed 101 proteins in which [s/t]Q phos-
phorylation was altered significantly in response to GDC-0973/GDC-
0941. Among the most dramatic changes, we observed rapid and
sustained phosphorylation of sites within the ABCDE cluster of DNA-
dependent protein kinase. Preincubation of cells with the inhibitors
of the DDR kinases DNA-dependent protein kinase or ataxia-tel-
angiectasia mutated enhanced GDC-0973/GDC-0941–mediated
cell death. Network analysis revealed specific enrichment of pro-
teins involved in RNA metabolism along with canonical DDR pro-
teins and suggested a prominent role for this pathway in the
response to MEK/PI3K dual inhibition.
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Dysregulation of the RAS–RAF–MAP/MEK and PI3K–AKT–
mTOR pathways represents a common theme in human can-

cer. The importance of these interconnected pathways is highlighted
by the frequency of mutational activation of pathway members
including RAS, RAF, and PI3K, as well as inactivation of the
inhibitory phosphatase and tensin homolog (PTEN) (1, 2).
Targeted therapies that block signaling through the RAS–RAF–
MEK pathway, including specific inhibitors of oncogenic forms
of BRAF (e.g., BRAF-V600E, which is observed in ∼50% of
melanomas) and of the downstream effector MEK have shown
clinical efficacy in melanoma and other tumor types (3, 4).
Likewise, suppression of cell-survival signaling through inhibition
of PI3K has been shown to kill cancer cells (5, 6). Although in-
hibition of either pathway individually can elicit measureable
responses, feedback through signal-transduction networks often
limits the effectiveness of single-agent therapies. Mounting evi-
dence suggests that dual inhibition of the RAS–RAF–MEK and
PI3K–AKT–mTOR pathways will demonstrate improved effi-
cacy over single-agent therapies.
At the heart of the RAS–RAF–MEK and PI3K–AKT–

mTOR pathways is a web of phosphorelay networks in which
individual phosphorylation sites serve as nodes. Many key
nodes reside on protein kinases, where phosphorylation in-
dividually and in aggregate modulates the amplitude and

specificity of downstream signaling. Our understanding of these
networks has been shaped by studies using phosphospecific
antibodies against these individual, site-specific phosphorylation
events including ERK1/2 at Thr202/Tyr204 (7, 8) and AKT at
Thr308 (9, 10). Although this strategy has proven successful,
the generation of sensitive phosphospecific reagents capable of
reading out signal unambiguously remains a challenge. Like-
wise, multiply phosphorylated sequences or those occurring
adjacent to other posttranslational modifications can confound
data interpretation. A key limitation is that phosphospecific
antibodies are intended to interrogate only a single node in
a signal-transduction network, so that even when multiplexed
they provide only a narrow portal through which to view the
dynamic system.
Mass spectrometry (MS) proteomics provides a platform to

dissect signaling networks in breadth and depth. Although the-
oretically the phosphorylated peptides can be profiled directly
from digested cell lysates, interrogating signal-transduction net-
works requires enrichment of modified peptides from the cellular
milieu. One approach involves immunoaffinity enrichment (IAE)
with antibodies recognizing classes of phosphopeptides, such
as phosphotyrosine (11). IAE methods also have been reported
for assaying phosphorylation in the AKT (12) and DNA
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damage-response (DDR) signaling networks (13, 14), using anti-
bodies that recognize phosphorylation within a local sequence
context. For substrates of AKT family kinases, phosphorylation
occurs within an RXRXX[s/t] sequence, where X represents any
amino acid and [s/t] refers to the phosphorylated serine or threo-
nine (12). For substrates of ataxia-telangiectasia mutated (ATM)
and other DDR kinases, phosphorylation occurs on serine or
threonine adjacent to glutamine, [s/t]Q (15). In contrast to
phosphospecific antibodies directed against a single sequence,
motif-specific antibodies recognize a degenerate motif and permit
enrichment of an array of peptides. Likewise, these reagents
provide a readout for screening conditions by immunoblot be-
fore phosphopeptide enrichment and LC-MS/MS.
In the current study, we noticed that MEK/PI3K dual in-

hibition in melanoma lines resulted in a marked DDR. Using
motif-directed IAE and MS proteomics, we investigated the sig-
naling elicited by small-molecule inhibitors of MEK and PI3K
currently in clinical development to establish a molecular un-
derstanding of this response.

Results
Published studies have shown that the compounds GDC-0973
(MEKi) and GDC-0941 (PI3Ki) potently and selectively inhibit
kinase activities of MEK and PI3K, respectively (16, 17). Recent
work indicates that concurrent inhibition of the RAS–RAF–
MEK and PI3K–AKT–mTOR pathways is more potent at killing
cells than individual agents (17, 18). In 4-d viability assays, A2058
(BRAF-V600E, PTEN-deficient; EC50: 2.5 μM GDC-0973, 2.5
μM GDC-0941) and 888MEL (BRAF-V600E; EC50: 0.05 μM
GDC-0973, 2.5 μM GDC-0941) cells displayed synergistic de-
creases in cell number after combined pathway inhibition (17).
To investigate the mechanism of cell death, A2058 and 888MEL
cells were treated with 4× EC50 concentrations of MEKi and
PI3Ki (hereafter referred to as “combo” treatment). After 6-h
treatment, cell lysates were subjected to multiplexed Western
blot profiling. Consistent with PI3K inhibition, permissive (RXX
[s/t]) and rigid (RXRXX[s/t]) AKT-substrate motif antibodies
showed robust decreases for the majority of observable bands
(Fig. 1A). Diminished signal also was observed for the PXtP,
PXsP, and MAPK substrate motifs, consistent with MEK in-
hibition blocking canonical MAPK signaling. Also striking
were elevated levels of DDR phosphorylation reported by two
ATM-substrate motif antibodies, [s/t]Q and [s/t]QG (Fig. 1A).
To understand the individual contributions of MEK and PI3K
inhibition, A2058 cells were left untreated or were treated with
MEKi, PI3Ki, or the combination (4× EC50). AKT-substrate
motif phosphosignals were decreased by PI3Ki alone or in
combination with MEKi. ATM-substrate phosphomotif blots
showed a single, low molecular weight feature which similarly
decreased in cells when PI3K was inhibited (i.e., in cells
treated with PI3Ki alone or combo). With this exception,
immunoblots showed increased DDR signaling in cells treated
with combo but not in cells treated with either single agent
alone (Fig. 1B).
Given that neither GDC-0941 nor GDC-0973 causes geno-

toxicity or directly damages DNA in mutagenicity, clastogenicity,
or micronucleus formation assays, we speculated that increased
[s/t]Q motif phosphorylation was a consequence of cell death. In
a dose–response experiment, we first confirmed that pThr202/
pTyr204 ERK1/2 and pThr308 AKT were reduced by MEKi or
PI3Ki as single agents, respectively (Fig. 1C). Immunoblots
against pSer15 p53 and pSer139 of the histone variant H2AX
(γH2AX) revealed dose-dependent activation of DDR signaling,
most notably in combo-treated cells. H2AX and p53 phosphor-
ylation correlated with increased poly-ADP ribose polymerase
(PARP) cleavage in both dose–response (Fig. 1C) and time-
course (Fig. S1A) experiments. Increased signals for cleaved
PARP, pSer15 p53, pSer139 H2AX, and [s/t]Q phosphomotif
blots were also notable across five of six additional melanoma
cell lines (C32, 888MEL, Colo829, Hs695T, and G361, but not
LOX-IMVI), all carrying the BRAF-V600E mutation (Fig. S1B

and Table S1). To confirm that induction of the DDR was not
unique to these particular inhibitors, experiments were carried out
using combinations of either GDC-0973 and the PI3K/mTOR
inhibitor GDC-0980 (19) or GDC-0941 and the BRAF inhibitor
PLX-4720 (20). As expected, inhibition of various signaling nodes
resulted in a similar extent of PARP cleavage, DDR signaling, and
p53/H2AX phosphorylation (Fig. S1C). Additionally, caspase in-
hibition by z-Val-Ala-Asp-fluoromethylketone partially protected
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Fig. 1. Dual inhibition of MEK and PI3K induces phosphorylation of DDR
substrates. (A) A2058 or 888MEL melanoma cells were treated for 6 h with
DMSO or GDC-0973+GDC-0941 (MEKi/PI3Ki combo; 4× EC50) and were sub-
jected to KinomeView Profiling. A2058 and 888MEL cells were treated with
10 μM GDC-0973 + 10 μM GDC-0941 or 0.2 μM GDC-0973 + 10 μM GDC-0941,
respectively. Blots were probed using an antibody mixture recognizing pRSK,
pAKT, pERK, and pS6 or phosphomotif antibodies (e.g., DDR substrates with
the [s/t]Q motif and AKT substrates with the RXX[s/t] and RXRXX[s/t] motifs).
(B) A2058 lysates probed with the [s/t]Q and RXX[s/t] antibodies after
treatment with DMSO, 10 μM GDC-0973 (MEKi), 10 μM GDC-0941 (PI3Ki),
or the combination. (C) Dose response of A2058 cells to increasing concen-
trations of MEKi and PI3Ki alone or in combination. Blots were performed
against DDR (p53 pSer15, histone 2AX pSer139), cell survival/cell death (AKT
pThr308, cleaved PARP), and cell signaling (ERK1/2 pThr202/Tyr204) markers
and controls. Actin and GAPDH served as loading controls.
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cells from the effects of dual inhibition, decreasing PARP cleavage
and H2AX phosphorylation (Fig. S1D). Taken together, activation
of DDR signaling was dependent on efficient and sustained in-
hibition of the MEK/PI3K pathway and was coincident with the
induction of apoptosis across multiple treatments, time points, and
cell lines.
We next used IAE and MS proteomics to profile DDR sig-

naling at the level of individual substrates (Fig. 2A). In total,
1,066 unique phosphopeptides were identified via 4,314 phos-
phopeptide spectral matches (phosphoPSMs) with false discov-
ery rates (FDRs) of 0.74% and 2.07% at the peptide (pepFDR)
and protein (protFDR) levels, respectively (Fig. S2A). Using the
Ascore algorithm (AScore) to optimize phosphorylation-site lo-
calization (21), we identified 690 unique phosphopeptides (3,072
PSMs) in which the phosphorylation was assigned to a serine or
threonine residing immediately adjacent to a glutamine [Ascore
algorithm values (AScore) >13; 95% confidence score for locali-
zation]. Filtering the data to contain only the 1,004 phosphopep-
tides (4,219 PSMs) bearing either a [s/t]Q motif phosphorylation
event or an available [S/T]Q motif (unphosphorylated) was
sufficient to eliminate the remaining decoy peptides from the
dataset. Conversely, identified phosphopeptides lacking an
[S/T]Q motif (62 unique, 95 PSMs) displayed an FDR of >33%.
This result suggests that the majority of 314 unique phospho-
peptides which carry a [S/T]Q motif but in which the modifi-
cation is not explicitly localized within the motif represent
high-confidence hits in which reassignment of the phosphory-
lation event may be appropriate even when localization scores
remain ambiguous.
For a subset of identified proteins, the number of phos-

phoPSMs increased dramatically after combo treatment relative
to no treatment (control) or treatment with either single agent.
Among these proteins were known DDR substrates including the
DNA-dependent protein kinase (PRKDC), Nucleolin (NUCL),
high-mobility group AT-hook 1 (HMGA1), and K1967 (Dataset
S1). For each, no phosphoPSMs were observed in untreated
cells. A total of five phosphorylation sites were assigned to the
ABCDE cluster of PRKDC (22–24); many were based on both

singly and multiply modified forms (Fig. 2B). In line with spec-
tral-count data, extracted ion chromatograms for the doubly
phosphorylated pThr2609/pSer2612 peptide from PRKDC in-
creased >10-fold in combo-treated cells compared with either
single agent (Fig. 2C). Enhanced phosphorylation of pThr2609
and pSer2612 on PRKDC following MEKi + PI3Ki was ob-
served in six additional melanoma lines (Fig. S2B). In contrast,
many proteins (e.g., G3P/GAPDH; >90phosphoPSMs per sample)
displayed little or no difference in the frequency of [s/t]Q phos-
phoPSMs between untreated and treated groups.
To interrogate phosphopeptide results systematically, we as-

sembled a filtered list of phosphoPSMs from confidently identi-
fied spectra containing an [S/T]Q motif, regardless of whether
phosphorylation was formally assigned to the motif. Areas under
the curve (AUCs) were determined using the VistaQuant algo-
rithm (25) in either direct or cross-quantitation (XQuant) mode.
To identify proteins most significantly affected by the stimulus
and to address the challenges posed by missing values, we used
linear mixed-effects modeling (LiME). LiME, an improvement
over ad hoc cutoffs or simple feature averaging, takes advantage
of inherent replicate structure of the data and leverages in-
formation from a series of biological conditions to identify the
significantly affected proteins (26, 27). For PRKDC, LiME
analysis revealed a systematic increase in peak area for the [s/t]Q
containing phosphoPSMs, with >100-fold increase (P < 0.001)
between combo and control treatments (Fig. 2D). This change
and other protein-level fold changes were calculated for each
treatment group relative to the control using a mixed-effect
model, with P values determined based on the fit between in-
dividual phosphoPSMs and the model. Volcano plots show that
PRKDC, NUCL, HMGA1, and K1967 each displayed >30-fold
change and a P value < 0.001 between combo and control
treatments (Fig. 2E). Although less pronounced, similar trends
were observed for PRKDC and NUCL in lysates from cells
treated with GDC-0973 (MEKi) or GDC-0941 (PI3Ki) as single
agents (Fig. 2E). These LiME plots, their associated fold changes,
and P values are provided in Dataset S2.
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Fig. 2. Characterization of DDR signaling by LC-
MS/MS and LiME analysis. (A) Diagram of IAE and
MS analysis of [s/t]Q motif phosphopeptides in the
combined-effects experiment. (B) PRKDC protein
(4,128 residues), including domains and the five [s/t]
Q phosphorylation sites from the combined-effects
experiment. (C) Normalized extracted ion chroma-
tograms (± 10 ppm) for duplicate injections of
819.0374 m/z ion from PRKDC pThr2609/pSer2612.
(D) LiME plot showing label-free AUC for peaks
from each phosphopeptide (black lines). The LiME
model is shown in red. Fold changes and P values
are reported for each treatment (MEKi, PI3Ki, or
combo) relative to DMSO treatment. (E) LiME data
displayed as volcano plots. The log10 fold change
versus T−10*log10 (P value) is shown for each pro-
tein in a treatment group (MEKi, PI3Ki, or combo)
relative to DMSO treatment. Selected proteins are
identified, including several top hits denoted by
orange symbols.
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Examining the original [s/t]Q immunoblot results (Fig. 1 A and
B), we noted an abundant band which decreased following PI3K
inhibition and combo treatment. In the spectral-counting data
(Dataset S1) and the LiME results (Dataset S2), we noted a
similar pattern among a subset of [s/t]Q phosphopeptides. Two
notable examples were pSer1799 on AFAD/MLLT4 (Fig. S3 A
and C) and pSer836 on AFF4 (Fig. S3 B and D). The [s/t]Q
phosphomotif of these phosphopeptides is nested within an ad-
jacent AKT-substrate motif (RXRXX[s/t]). Given the effects of
PI3Ki on AKT-substrate phosphorylation, these data indicate
that features that decrease in ATM-substrate motif blots likely
represent inhibited phosphorylation within these nested motifs.
In total, 192 proteins were found to carry phosphoPSMs nested
within an RXX[s/t]Q motif, including several others that simi-
larly decreased upon PI3K or dual inhibition (e.g., UCKL1 and
IF4B/EIF4B; Dataset S2).
To confirm our initial findings and build a temporal un-

derstanding of this unique DDR, we initiated a time-course ex-
periment using A2058 cells (Fig. 3A). Two groups of control cells
were left untreated, and four groups were dosed with the combo
treatment (4 × EC50, 10 μM each) concurrent with the addition
of fresh medium. For treated cells, lysates were prepared after 1,
2, 4, and 8 h. To ascertain the effects of cell proliferation in this
context, untreated cultures were lysed 4 and 8 h after the addi-
tion of fresh medium. Immunoblots against the [s/t]Q motif,
pSer15 p53, and pSer139 H2AX confirmed the effectiveness of
the treatment (Fig. S4A). Phosphopeptides bearing the [s/t]Q
motif were captured and analyzed, yielding 3,100 unique phos-
phopeptides and 932 proteins with a pepFDR and a protFDR of
0.26% and 2.15%, respectively (Fig. S4B). Using the presence of
an [S/T]Q motif as an orthogonal filter decreased the pepFDR
to 0.05% (protFDR 0.47%; 2,898 unique phosphopeptides).
Among these, the AScore localized phosphorylation to the [s/t]Q
motif within 1,916 unique phosphopeptides.
Increases in [s/t]Q motif-containing phosphoPSMs were ob-

served again after MEK/PI3K dual inhibition (Dataset S1). In
addition to the initial five sites on PRKDC, three additional [s/t]Q
sites (pThr398, pThr1865, and pThr4102) residing outside the
KIP-binding domain were identified (Fig. S4C). Notable was the
triply phosphorylated pThr2638/pThr2645/pThr2647 PRKDC,

which was not detectable in untreated cells but increased in a
time-dependent manner after treatment (Fig. S4 D and E). In
contrast to the initial experiment, [s/t]Q phosphoPSMs were
detected on PRKDC and other DDR substrates in untreated cells
(Dataset S1). This finding is consistent with data showing that
pSer15 p53 and pSer139 H2AX were detectable in both 4-h and
8-h DMSO samples and increased in a time-dependent manner
following treatment. The [s/t]Q immunoblots displayed a single
dominant feature in control cells to such an extent that it ob-
scured most other [s/t]Q phosphorylated species (Fig. S4A). Al-
though the additional phosphoPSMs in this experiment may be
explained by the enhanced sensitivity of the Orbitrap Velos, the
increased levels of phosphorylation on certain proteins at base-
line was attributed to cell proliferation and the DDR-associated
replicative stress (28).
The XQuant algorithm was used again to generate label-free

areas for LiME analysis (Fig. S5 and Dataset S2). For proteins
with significant increases in the combined effects experiment,
time-dependent increases in label-free AUC were observed be-
ginning 1 h after MEK/PI3K dual inhibition (Fig. 3B). For each
protein, the mixed-effect model increased by >10-fold at 4 h and
>30-fold at 8 h relative the respective control values. Elevated
[s/t]Q phosphorylation of other proteins, such as embryonic le-
thal, abnormal vision (Drosophila)-like 1 (ELAV1), was delayed
until later timepoints. Volcano plots from individual timepoints
(relative to 4-h DMSO) show PRKDC, NUCL, HMGA1, and
K1967 emerging after 2 h and becoming among the most sig-
nificantly altered proteins 4 h after MEK/PI3K dual inhibition
(Fig. 3 C–F). Elevated phosphorylation was not observed when
comparing DMSO at 8 h vs. 4 h (Fig. S4F). Ingenuity Pathway
Analysis was used to generate a network-level view of proteins
with [s/t]Q motif phosphopeptides and P values less than 1E−5
(−10*log, P >5; 8-h combo vs. 4-h DMSO treatment). Although
the proteins observed to change upon MEK/PI3K dual inhibition
were highly interconnected, a series of central nodes including
PRKDC, ATM, H2AX, and ELAV1 emerged (Fig. S6). In ad-
dition, several proteins were highly interconnected with the
phosphorylation dataset despite not having [s/t]Q phosphopep-
tides detected within this analysis. Among these were p53/tumor
protein 53 (TP53), PARP1, sirtuin 7 (SIRT7), and lamin A (Fig. S6).
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Fig. 3. Temporal profiling of DDR signaling upon
MEK/PI3K dual inhibition. (A) Diagram depicting
IAE of [s/t]Q motif phosphopeptides and MS anal-
ysis in the time course. (B) LiME plots for PRKDC,
NUCL, K1967, and ELAV1 in each sample (black
lines). The LiME model (red) was used to determine
protein-level fold changes and P values relative to
4-h DMSO treatment (D4). *P < 0.01, **P < 0.001
relative to 4-h DMSO. (C–F) LiME data for 1-, 2-, 4-,
and 8-h combo samples displayed as volcano plots
vs. 4-h DMSO treatment. Selected proteins are
identified, including several top hits denoted by
orange symbols.
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Although immunoblotting demonstrated time-dependent eleva-
tion of pSer15 p53/TP53 and PARP cleavage (Fig. S1A), addi-
tional work is required to understand the potential roles of SIRT7
and lamin A.
Because PRKDC and ATM are important after DNA damage,

we predicted that their inhibition might enhance the cytotoxic
effects of MEKi and PI3Ki. A2058 cells were pretreated for 1.5 h
with NU7026 (PRKDCi; 15 μM) and/or KU55933 (ATMi; 10 μM)
and then were treated with either DMSO or GDC-0973 and GDC-
0941 combo (1× EC50) for 24 h. In viability assays, cells pretreated
with PRKDCi and/or ATMi showed little change unless treated
with MEKi and PI3Ki. In contrast, the viability of cells treated with
MEKi and PI3Ki decreased by ∼80% even without pretreatment
(Fig. 4A). Viability in combo-treated cells was decreased further
by ATMi alone or in combination with PRKDCi.
To validate these findings, immunoblots were performed to

assess markers of DDR signaling and cell death. Pretreatment
with PRKDCi and ATMi decreased the levels of pThr308 AKT

but did not alter the levels of pSer139 H2AX, pThr202/pTyr204
ERK1/2, or cleaved PARP (Fig. 4B). Dual inhibition of MEK/
PI3K eliminated both pThr202/pTyr204 ERK1/2 and pThr308
AKT signals while increasing the levels of pSer139 H2AX and
cleaved PARP. Bleomycin, a classical DNA-damaging agent,
affected only pSer139 H2AX. As predicted by viability assays,
coadministration of MEKi and PI3Ki with PRKDCi and/or
ATMi enhanced cleavage of PARP (Fig. 4 B and C) and caspase
3 (Fig. 4C). Phosphorylation of H2AX Ser139 increased after
MEKi + PI3Ki to a extent similar to the increase seen in cells
treated with bleomycin (Fig. 4 B and C) and, interestingly, was
unaffected by preinhibition of PRKDC or ATM. Western
blots against pThr2609/pSer2612 PRKDC and pSer1981 ATM
confirmed inhibited phosphorylation in the DDR network, par-
ticularly with coadministration of ATMi/PRKDCi (Fig. 4C).

Discussion
In this work we have used motif-specific IAE and MS to assess
known DDR phosphorylation events (13, 14, 29, 30) while si-
multaneously interrogating signals unique to this model in which
coadministration of GDC-0973 with GDC-0941 has proven ef-
ficacious (Fig. 4D and Dataset S3) (17, 18). Initially we were
intrigued by the observation of elevated [s/t]Q motif phosphor-
ylation, given that the DDR is driven by kinases with known
homologies to PI3K including ATM and PRKDC. Early strate-
gies for targeting PI3K coinhibited the activities of ATM and
PRKDC (31, 32). PI3K-mTOR dual inhibitors (e.g., NVP-
BEZ235, PI-103) also reportedly inhibit ATM and PRKDC in
biochemical and cell-culture models (33, 34). Used here, GDC-
0941 is a pan-class I PI3K inhibitor with enzyme IC50 values of
0.003 μM (p110α), 0.033 μM (p110β), 0.003 μM (p110δ), or 0.075
μM (p110γ), making it >400 times more selective for p110α/δ
than PRKDC (16). Instead of inhibition, immunoblotting and
MS suggested activation of PRKDC and ATM as a consequence
of MEK/PI3K dual inhibition. This activation also was seen with
GDC-0941 alone, albeit to a lesser extent. Recent work from
breast cancer models similarly showed that PI3Kα siRNA or the
pan-class I–selective NVP-BKM120 increased polyADP ribosy-
lation, pSer139 H2AX, pSer2056 PRKDC, and pSer1981 ATM
(35, 36). The authors noted the absence of Rad51 foci after
PI3Kα inhibition or knockdown and speculated that PRKDC
activation may represent a feedback response (36). In line with
a previous report that PRKDC controls prosurvival signaling by
modulating pSer473 AKT (37), our data show that PRKDC/
ATM inhibition decreases pT308 AKT (Fig. 4B). When these
data are taken together, one prediction is that loss of pAKT
triggers a feedback loop leading to activation of PRKDC. Al-
ternatively, DNA cleaved during the initial phases of apoptosis
may activate PRKDC to initiate nonhomologous end joining as
a late-stage effort to avoid apoptosis (38). The nature of such
a signal remains to be elucidated, although the consequences of
such signaling might be hypothesized to create an environment in
which acquired resistance may emerge.
Beyond the known roles of p53, PARP, ATM, and H2AX in the

DDR, the [s/t]Q substrates significantly altered by MEK/PI3K dual
inhibition include modules controlling protein acetylation, chro-
matin status, and RNAmetabolism. Notable was the number of [s/t]
Q substrates previously found to associate with SIRT7 (39) and
ELAV1 (40). Several sirtuin family members play roles in the DDR,
including SIRT1 which is controlled by ELAV1 (i.e., HuR) and
affects cell survival after DNA damage (41). ELAV1 and a cluster
of differentially regulated [s/t]Q substrates (e.g., NUCL, NFIP2,
DHX9, HNRPU, K1967) comprise the messenger ribonucleopro-
tein particle complex (Fig. S6, Table S1, and Datasets S1 and S2),
which packages and exports mRNA from the nucleus and itself is
regulated by the mTOR and ribosomal S6 kinase (42). SIRT7 is
associated with the TPR of the nuclear pore complex, THOC2
(which controls RNA export by binding spliced mRNAs), the ri-
bosome biogenesis factor BMS1, and the ribonuclease POP1. Other
[s/t]Q substrates from our study affect transcription by RNA poly-
merase II (RTF1, CCNC, and MED1), RNA transport (FXR1),
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were treated for 24 h with either DMSO or GDC-0973+GDC-0941 (MEKi +
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MEK/PI3K pathways decreases cell-survival signaling leading to apoptosis,
activation of DNA damage-response kinases (DNA-PK, ATM, and ATR), and
phosphorylation of downstream biomarkers H2AX and p53.
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splicing (LSM2), and translation (4EBP1). Considering these in
aggregate, our data suggest that the cell-death program elicited by
GDC-0973 and GDC-0941 may impinge upon multiple aspects
of RNA metabolism.
Despite these advances, several key questions remain. It is

unclear whether the DDR downstream of MEKi + PI3Ki derives
from bona fide double-strand breaks as a consequence of cell
death or instead is a noncanonical response to chromatin re-
modeling or oxidative stress (43, 44). Additional work also will
be required to elucidate the sensors of [s/t]Q phosphorylation
events and to determine whether common themes exist between
subsets of DDR substrates. Understanding the full effects of the
inhibition of the RAS–RAF–MEK and PI3K–AKT–mTOR path-
ways on cell death and acquired resistance remains critical to
development of targeted therapeutic agents.

Materials and Methods
Melanoma cell lines were cultured and protein lysates were prepared
under standard conditions following treatment with GDC-0973 and/or GDC-
0941, as indicated. For MS studies, phosphopeptides were captured using
[s/t]Q phosphomotif antibodies using PTMscan protocols (Cell Signaling Tech-
nology) (14) and were analyzed on an Orbitrap XL or Orbitrap-Velos. Da-
tabase searches were performed using Mascot, peak areas determined using
VistaQuant (25), and protein-level effects were assessed using LiME analysis
(27). A detailed overview of the methods used here is presented in SI
Materials and Methods and in Datasets S1–S3.
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