Skip to main content
. Author manuscript; available in PMC: 2013 Dec 2.
Published in final edited form as: IEEE Trans Med Imaging. 2012 Nov 27;32(2):10.1109/TMI.2012.2230018. doi: 10.1109/TMI.2012.2230018

Algorithm 1 Hierarchical Sparse Label Propagation
Input: M pelvic-bone-aligned training images and their segmentation groundtruths {(Ii, Si), i = 1,…, M}, and the new treatment image Inew to be segmented.
Output: The final prostate probability map Sfinal of Inew.
1. Perform sparse label fusion based on Equations 4 and 6 to calculate SM A from registered training images, and initialize Sfuse1=SMA.
2. Initialize δp1=0.95 and δn1=0.05.
3. Initialize ψ1 = ∅.
4. FOR voxels xInew
5.    IF Sfuse1(x)δp1 or Sfuse1(x)δn1
6.      Ψ1=Ψ1x.
7.    END IF
8. END FOR
9. FOR k = 2 to K
10.     FOR voxels xΨk1
11.        Calculate Scontextk(x) by Equation 9.
12.        Update Sfusek(x) by Equation 8.
13.     END FOR
14.     Set ψk = ∅.
15.     Update δpk and δnk by Equation 7.
16.     FOR voxels xInew
17.        IF Sfusek(x)δpk or Sfusek(x)δnk
18.          Ψk=Ψkx.
19.        END IF
20.     END FOR
21. END FOR
22. Set Sfinal=Sfusek.
23. Return Sfinal.