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Abstract
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result
in both ATP producing and non-ATP producing end-points for each class of energy substrates.
The most salient feature of the network is the metabolic flexibility demonstrated in response to
various stimuli, including developmental changes and nutritional status. The heart is also capable
of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in
modulations of myocardial energetics and contractile function. In a quest to understand the
complexity of the cardiac metabolic network, pharmacological and genetic tools have been
engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of
therapeutic interventions have been tested clinically to target substrate preference, insulin
sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to
growth, survival, and other signaling pathways through the production of metabolic intermediates
has been increasingly noted. In this review, we provide an overview of the cardiac metabolic
network and highlight alterations observed in cardiac pathologies as well as strategies employed as
metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth
and survival are also discussed.
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Introduction
The mammalian heart must contract incessantly, thus, the requirement for energy to fuel
optimal function is immense. As the high energy phosphate storage within the
cardiomyocyte is minimal, only sufficient to sustain the heart beat for a few seconds, a tight
coupling of ATP production and myocardial contraction is essential for normal cardiac
function. Central to the coordinated energy transduction function is the multi-purpose
organelle mitochondrion which not only generates more than 95% of ATP utilized by the
heart but also regulates intracellular calcium homeostasis, signaling and cell death. While a
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constant supply of substrates through the metabolic network is paramount for mitochondrial
conversion of ATP, it is increasingly recognized that metabolites generated by both ATP-
producing and non-ATP producing pathways can become critical regulators of cell function.
Thus, the importance of substrate metabolism to cardiac pump function is beyond the scope
of only modulation of energy supply. In this article, we will provide an overview of changes
in cardiac fuel metabolism under pathological conditions followed by recent progress on
targeting cardiac metabolism for improving myocardial energetics and function. In addition,
we will summarize the emerging role of cardiac metabolism in governing myocardial
growth and survival pathways.

Characteristics of Fuel Metabolism in the Heart
The capacity and flexibility of substrate metabolism for ATP production

The heart is capable of utilizing all classes of energy substrates, including carbohydrates,
lipids, amino acids and ketone bodies, for ATP production in the mitochondrion (Figure 1,
for details see reviews1-3). Mitochondria occupy one third of the cell volume in cardiac
myocytes making them the cell type with the highest mitochondria content.4 The robustness
of cardiac metabolism is reflected by its highest oxygen consumption rate on the per unit
weight basis. For a human heart, the amount of ATP turned over during a one-day period is
15-20 times of its own weight. In a normal heart, mitochondria are largely fueled by fatty
acyl-CoA and pyruvate, which are the primary metabolites of fatty acids and carbohydrates,
respectively. The entry of long-chain acyl-CoA into the mitochondrion is a regulated
process; with the rate-limiting step at the muscle form of the carnitine-palmitoyl transferase
I (mCPT-1) reaction. The oxidation of pyruvate is regulated at the pyruvate dehydrogenase
(PDH) reaction. Other substrates, including lactate, ketone bodies and amino acids, can enter
mitochondria directly for oxidation. Metabolism of ketone bodies yields acetyl-CoA while
amino acid catabolism yields keto-acids which are further metabolized to enter the TCA
cycle. The contribution of ketone bodies and amino acids to overall cardiac oxidative
metabolism is considered to be minor due to the low availability of these substrates under
normal physiological conditions.5-7

It is widely accepted that fatty acids are the predominant substrate utilized in the adult
myocardium. However, the cardiac metabolic network is highly flexible in utilizing other
substrates when they become abundantly available (Figure 1). For example, cardiac
extraction and oxidation of lactate becomes predominant during exercise as skeletal muscle
lactate production increases.8,9 Prolonged fasting or ketogenic diet increases the blood level
of ketone bodies and results in enhanced utilization by the heart.7 In isolated perfused hearts,
the addition of lactate or ketone bodies in the perfusate significantly reduces the oxidation of
glucose and fatty acids.5,10,11 These studies support the concept of metabolic flexibility that
confers the advantage of adequately supplying ATP for continual cardiac contraction under
a variety of physiological conditions.

Apart from substrate availability, complex regulatory mechanisms contribute to metabolic
flexibility at multiple levels, including transcriptional regulation and post-translational
modification of key proteins involved in each metabolic pathway as well as allosteric
regulation by substrates and their metabolites (Table 1). For example, transcriptional
regulation of the proteins involved in fatty acid oxidation (FAO) by the PPAR/ERR/PGC-1
circuit is a major mechanism in the transition of the glycolysis-dependent fetal heart to
oxidative metabolism in the adult heart.12-14 Likewise, transcriptional regulation by HIF1α
is responsible for the metabolic adaptation to hypoxic and ischemic conditions.15 While
transcriptional mechanisms contribute to the establishment of the network, post-translational
modifications of key enzymes in the metabolic pathways regulate the fluxes.
Phosphorylation and inactivation of PDH by pyruvate dehydrogenase kinase 4 (PDK4) plays
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a key role in the shift of substrate oxidation between glucose and fatty acid in the heart.16

The phosphorylation of the branched-chain-α-ketoacid dehydrogenase (BCKD), regulated
by BCKD kinase and a mitochondrial localized phosphatase (PP2Cm), governs the
oxidation of branch amino acids.17,18

Intermediates of glucose metabolism
Although glucose catabolism through glycolysis primarily yields pyruvate for subsequent
oxidation, glycolytic intermediates can participate in several additional pathways that do not
lend to ATP generation (Figure 2). These pathways are of biological significance in the heart
despite the small fluxes. Glucose 6-phosphate (G6P) produced by the hexokinase reaction
enters the Pentose Phosphate Pathway (PPP), yielding NADPH during the oxidative phase
and 5-carbon sugars in the subsequent non-oxidative phase.19 The supply of NADPH from
the PPP is important for antioxidant defense as NADPH is required for maintaining the level
of reduced glutathione.20 It has been shown that deficiency of G6P dehydrogenase (G6PD),
the first and rate-limiting enzyme of the PPP, exacerbates ischemia-reperfusion injury in
mice,21 indicating a protective role of the PPP against oxidative injury. End products of the
non-oxidative phase of the PPP are also of significance as ribose 5-phosphate becomes a
substrate for nucleotide or nucleic acid synthesis22 while xylulose 5-phosphate has been
suggested as a transcriptional signaling molecule.23,24

An alternative fate of G6P is the production of sorbitol, via the enzyme aldose reductase
(AR), in the polyol pathway. The role of the polyol pathway in normal cardiac metabolism is
unknown. However, increased flux has been noted in diabetic patients and has been
associated with abnormal glucose metabolism and cardiac dysfunction.25,26 Increased AR
flux has also been implicated in the myocardial response to ischemia-reperfusion injury.27,28

Elucidation of the role of the polyol pathway in mouse models should be used with caution
as both expression and activity of AR are significantly lower in mice than in humans;
however, the use of transgenic mice overexpressing human AR could be translatable.28

The glycolytic intermediate fructose 6-phosphate (F6P) can diverge into the hexosamine
biosynthetic pathway (HBP), yielding uridine diphosphate-N-acetylglucosamine
(UDPGlcNAc), via the enzyme glutamine fructose 6-phosphate amidotransferase (GFAT).29

UDPGlcNAc is used as the substrate for O-linked-GlcNAc transferase (OGT) which
catalyzes the OGlcNAcylation of proteins.30 Increases in protein O-linked GlcNAcation
have been observed in diabetes and proposed to be responsible for altered insulin sensitivity
and FAO.30,31 Recent studies show that protein O-linked GlcNAcation is enhanced during
ischemia-reperfusion and represents a cardioprotective mechanism against injury.32-34

The turnover of endogenous substrates
The heart stores fuel in the form of glycogen and triacylglycerol (TAG, Figure 1). The
turnover rate of the cardiac glycogen pool is rather low under normal conditions in the adult
heart.35,36 Glycogen metabolism has an essential role in the fetal heart as the absence of
glycogen due to the deletion of glycogen synthase (GYS), causes abnormal cardiac
development.37 Glucose derived from glycogenolysis also provides a critical energy supply
for cell survival during ischemia.38 Glycogen is also a key energy source to support
metabolism during acute increases in cardiac workload.35

The turnover of cardiac TAG is more robust compared to the glycogen pool although its
functional role has been less understood until recently.39,40 It has been postulated that fatty
acids derived from the myocardial TAG pool can be oxidized and contribute ~10% to the
total ATP production under normal physiological conditions.41,42 A significant loss of TAG
turnover was observed in hearts from failing rats41 while accelerated turnover was noted in
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diabetic rats.43 These results suggest that the intracellular TAG pool is a dynamic entity but
the functional significance of altered TAG turnover under pathological conditions is poorly
understood.

Recent studies suggest that the turnover of TAG pool is an important regulatory mechanism
of fatty acid metabolism in the myocardium. Genetic manipulation of diacylglycerol
acyltransferase (DGAT), the final enzyme in synthesis of TAG from diacylglycerol (DAG),
or adipose triglyceride lipase (ATGL), the enzyme responsible for TAG hydrolysis, leads to
significant changes of fatty acid uptake and oxidation in the mouse heart. Although deletion
of DGAT1, the major isoform of DGAT in the heart, did not significantly decrease total
cardiac TAG content, it was associated with decreased FAO and increased glucose uptake.44

Conversely, DGAT1 overexpression resulted in a two-fold increase in cardiac TAG with
both increased uptake and oxidation of exogenous fatty acids.45 Global deletion of ATGL
resulted in massive lipid accumulation and severe cardiomyopathy associated with
decreased FAO.46,47 However, cardiac-specific overexpression of ATGL also led to
decreased rates of FAO with increased rates of glucose oxidation suggesting a non-linear
relationship between TAG turnover and FAO.48

Modulation of Contractile Function by Cardiac Metabolism Under
Pathological Conditions
Pathological hypertrophy and failure

It is well established that cardiac metabolism undergoes a reprogramming in response to
pathological hypertrophy, characterized by increased reliance on glucose metabolism and
decreased FAO (Figures 2 and 3).49-52 Increased glucose utilization in the hypertrophied
heart is predominantly characterized as an upregulation of glucose uptake and
glycolysis50,53 with either no change or a decrease in glucose oxidation.36,54-56 These
changes, combined with decreases in overall FAO, likely represent reduced capacity for
mitochondrial oxidative metabolism. In small animal models, the shift in substrate
preference is associated with downregulation of the transcriptional mechanisms for FAO and
mitochondrial biogenesis mediated via PPARα and PGC-1.57 Because these changes
resemble a reversal of metabolic maturation during the transition from a fetal to adult heart,
many have considered the metabolic changes in hypertrophied and failing hearts as a
reappearance of the fetal metabolic profile. Is there any advantage of switching to a fetal-
like metabolism in the hypertrophied and failing myocardium? A shift from FAO to glucose
utilization improves oxygen efficiency for ATP synthesis and is thus considered
beneficial.58,59 This becomes particularly important for heart failure caused by chronic
ischemic cardiomyopathy where oxygen supply is limited. There have been concerns
whether increased glucose uptake and utilization in adult heart impairs cardiac function
since cardiomyocytes cultured in high glucose media develop “glucotoxicity”.60-63

Transgenic mice with cardiac-specific overexpression of insulin-independent glucose
transporter (GLUT1) showed substantial increases of glucose uptake and glycolysis but
maintained normal cardiac function and lifespan suggesting that increased glucose
utilization does not harm the adult heart in the longterm.64 A key question remaining is
whether metabolic remodeling is adaptive or maladaptive to the high energy demand in the
hypertrophied and failing heart. It is known that pathological cardiac hypertrophy is
associated with depletion of energy reserves manifested as maintained ATP levels but a
reduction of the energy reserve compound, phosphocreatine (PCr).65,66 This is reflected as a
decreased PCr/ATP ratio and eventually, as compensated hypertrophy advances to overt
heart failure, significant decreases of ATP are observed.67,68 The PCr/ATP ratio has been
shown to be a superior predictor of mortality as compared to ejection fraction in heart failure
patients 69 which is in agreement with the longstanding hypothesis that energy starvation
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contributes to the pathogenesis and progression of heart failure (See reviews67,68,70). These
observations suggest that the fetal-like metabolic profile in cardiac hypertrophy is
maladaptive for sustaining myocardial energetics and function (Figure 3).

Animal studies have shown that metabolic remodeling in hypertrophied heart is associated
with decreases in the overall ATP synthesis by oxidative metabolism.50 Although glycolysis
is increased, its contribution to total ATP synthesis is limited as glycolytic ATP accounts for
less than 5% of total energy used by the heart.50 Furthermore, glucose entry in the adult
heart is controlled by insulin; the co-existing insulin resistance in heart failure would limit
the glucose availability and hence compromise the capacity for ATP synthesis.71,72 A proof
of concept study shows that increasing glucose uptake capacity in mouse heart via an
insulin-independent mechanism delays the transition of cardiac hypertrophy to failure.73

Other studies show that cardiac energetics and function can also be preserved in rodent
models of heart failure by sustaining FAO or by enhancing ATP synthesis and transfer via
the creatine kinase reaction.74-76 Therefore, the ATP synthesis capacity appears to be more
important than the substrate selection for sustaining cardiac energetics and function in these
models.

In addition to glycolysis and pyruvate oxidation, multiple accessory pathways of glucose
metabolism (Figure 2) have also been altered in the hypertrophied myocardium. Increased
flux of the anaplerotic pathway, primarily via increased malic enzyme, have been reported in
hypertrophied rodent heart.76-78 Such a change is considered maladaptive as it “short-
circuits” pyruvate into the second half of the TCA cycle and hence produces less NADH for
oxidative phosphorylation. The regulatory enzyme of the PPP, G6PD, was upregulated in
the hearts of animals subjected to pressure-overload.19,74 Increased activity of G6PD in
heart failure was linked to excessive NAPDH and increased superoxide production.79,80 On
the other hand, G6PD deficiency deprived NADPH supply for glutathione reduction leading
to increased redox stress and exacerbated LV dilation and cardiac dysfunction in mice.81 It
is likely that either excessive or deficient production of NADPH through the G6PD reaction
impairs the redox regulation. It is also proposed that increased glucose utilization will
augment HBP flux resulting in enhanced O-GlcNAcation.82 Increased glucose metabolism
also elevates the citrate level in the cytosol providing more acetyl-CoA for the acetylation of
proteins.83,84 It remains to be determined whether these changes contribute to the
maladaptive nature of increased glucose utilization in heart failure. These pathways have
been less investigated because their fluxes are small and they do not contribute to the once
ultimate goal of cardiac metabolism, ATP production. However, given the emerging
significance of non-ATP producing pathways in cardiac biology, this paradigm is rapidly
changing. We shall expect a wealth of information in this regard in the future.

Metabolic cardiomyopathy associated with obesity and diabetes
In obese or diabetic individuals, cardiac dysfunction observed independent of macro- and/or
microvascular disease is considered a consequence of “diabetic cardiomyopathy”. Increased
fatty acid uptake and oxidation associated with reduced glucose oxidation have been
observed in both animal models and patients of type 2 diabetes.85-87 Cardiac dysfunction in
obesity and diabetes has been associated with increased myocardial oxygen consumption
(MVO2), reduced cardiac efficiency, and increased oxidative stress suggesting that increased
rates of FAO are detrimental to cardiac function (Figure 3).85,88,89 As discussed above, one
mechanism for the undesirable effect of high FAO is the lower O2 efficiency,58,59 as well as
the increased presence of fatty acid derivatives that may further reduce the efficiency by
uncoupling the mitochondria.90 In skeletal muscle, increased influx of fatty acid to
mitochondria was associated with incomplete oxidation and development of insulin
resistance.91 However, this was not observed in the mouse heart during high fat feeding92 or
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with increased import of long chain fatty acids to the mitochondria due to deletion of acetyl-
CoA carboxylase 2 (ACC2).76

A unique aspect of cardiac metabolism in obesity and diabetes is that the supply of
substrates exceeds the need for ATP synthesis. Despite increased FAO, hearts of obese and
diabetic individuals accumulate a significant amount of lipid (Figure 3). A positive
correlation of cardiac lipid accumulation and cardiac dysfunction has been shown giving rise
to the term “lipotoxic cardiomyopathy”.93-95 Additional studies show that increases of lipid
supply in animal models of cardiac lipotoxicity exceed the increases in the rate of oxidation,
which eventually leads to downregulation of FAO, accumulation of toxic lipid
intermediates, and contractile failure.95,96 Genetic manipulations in mice that reduce fatty
acid uptake or increase the storage capacity of neutral lipids in the heart rescue the lipotoxic
phenotype.45,97,98 These results suggest that the metabolic derangements in lipotoxic
cardiomyopathy are rooted in the inappropriate matching of lipid supply and oxidation
rather than a simple increase of FAO. The molecular mediator(s) of the cardiomyopathy in
this case are largely elusive and likely multifactorial in nature. Although the accumulation of
neutral lipids correlates closely with functional phenotype whether it is the cause or a mere
reporter of lipotoxicity is not clear. Increases in intramuscular lipid are not always
associated with detrimental effects. Both animals and humans increase triglyceride content
in the heart and skeletal muscle in response to exercise training, which is associated with
improved function.45,99,100

Although glucose uptake and utilization for ATP synthesis is reduced, due to insulin
resistance and increased FAO, increased flux of the accessary pathways of glucose
metabolism has been identified in the diabetic myocardium. In the polyol pathway,
increased AR gene expression was observed while AR inhibition improved cardiac function
in diabetic patients.25 In models of diabetic cardiomyoapathy, elevated levels of
UDPGlcNAc, O-GlcNAc, and OGT were associated with impaired EC coupling suggesting
a role of increased HBP flux in diabetic cardiac dysfunction.63,101,102 Consistent with these
observations, increased expression of O-GlcNAase, the antagonist of OGT, improved
cardiac function in diabetic mice.103

Metabolic Therapies for Heart Failure
Targeting substrate preference

The shift of substrate preference to glucose in pathological hypertrophy was considered
adaptive based on the theoretical higher oxygen efficiency of ATP synthesis from
glucose.104 Therefore, various metabolic therapies focusing on the promotion of glucose
oxidation have been utilized (Table 2). One strategic target has been mCPT1, the enzyme
that is the gateway for long chain fatty acid uptake into the mitochondria. The mCPT1
inhibitors, such as etomoxir, perhexiline, and oxfenicine, have been associated with reduced
cardiac FAO and elevated glucose oxidation in both animal models and humans. Etomoxir
has been shown to increase expression and activity of the sarcoendoplasmic reticulum (SR)
calcium ATPase (SERCA).105,106 Long term treatment with etomoxir in pressure
overloaded hearts improved functional capacity and myocardial performance.107 The first
human clinical trial evaluating etomoxir in patients with chronic heart failure showed
improved stroke volume and ejection fraction (EF).108 A clinical trial evaluated the effect of
perhexiline in heart failure patients and observed improved VO2max, EF, and tolerance to
dobutamine stress.109 In hypertrophic cardiomyopathy, perhexiline, in conjunction with
medical management, increased the PCr/ATP ratio, corrected energy dependent LV diastolic
relaxation, increased VO2, and improved quality of life.110 Although not available for
human use, oxfenicine treatment in pacing-induced heart failure in dogs, when provided
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early, slowed the development of heart failure, prevented LV chamber dilation and LV wall
thinning compared to placebo.111

Dichloroacetate (DCA) increases PDH activity by inhibiting PDK, and as a consequence
promotes glucose oxidation. The efficacy of DCA treatment in functional recovery during
reperfusion has been shown in multiple animal models.112-115 DCA also improves cardiac
function in right ventricular hypertrophy and failure.116,117 In a recent study examining
hyperthyroidism and cardiac hypertrophy in rats, DCA administration completely reversed
reductions in PDH flux, and significantly reduced cardiac hypertrophy without affecting
cardiac output.118 Although human data are limited due to the chronic neurotoxicity of
DCA,119-121 one study in patients with angina and coronary artery disease revealed that
infusion of DCA during left heart catheterization was associated with increased stroke
volume and myocardial efficiency index (LV work/myocardial oxygen consumption).122

Malonyl CoA decarboxylase (MCD) is a key regulator of malonyl CoA degradation and,
thus, its activity relieves the inhibition of fatty acid entry into the mitochondria.
Pharmacological inhibition or cardiac-specific deletion of MCD has been shown to limit
FAO, increase glucose oxidation and improve cardiac function after ischemia/reperfusion
injury in both rodent 123,124 and porcine models.125 Although clearly effective in treatment
of cardiac ischemia, it has not been shown whether targeted inhibition of MCD in heart
failure is likewise protective.

While enhancing glucose utilization appears to be beneficial for the failing heart, decreasing
fatty acid supply to hypertrophied and failing hearts seems to be detrimental. Acipimox is a
nicotinic acid derivative that acutely inhibits lipolysis in adipose tissue and hence decreases
plasma free fatty acids (FFA) level. When administered to patients with idiopathic dilated
cardiomyopathy, myocardial FFA uptake was reduced by >80% with enhanced glucose
uptake. Unfortunately, cardiac work and efficiency declined after acipimox treatment.126 In
long term treatment of heart failure patients with acipimox, increases in whole body glucose
utilization and decreased lipid utilization rates were noted, but myocardial function, exercise
capacity, and cardiac index scores remained unaffected.127 These studies suggest that
promoting glucose utilization via restriction of fatty acid delivery to the myocardium is not
an ideal strategy for enhancement of cardiac function via the optimization of cardiac
metabolism.

As oxidation of fatty acids is the predominant and critical energy source for cardiac
function, promotion of cardiac FAO would seem to be desirable for long-term treatment.
Targeting PPARα, the major regulator of cardiac lipid metabolism, however, has yielded
mixed outcomes. Overall, in various animal models of cardiac hypertrophy and heart failure,
PPARα agonism maintained expression of genes involved in FAO with significantly
improved,128,129 relatively modest,130,131 or no benefit on cardiac function.52 Furthermore,
PPARα agonism has been shown to exacerbate post-ischemic injury.132,133

Activation of PPARα-mediated transcription has broad effects on lipid metabolism
including lipid uptake. Excessive fatty acid uptake relative to the oxidation would contribute
to lipotoxicity.97 In this regard, direct activation of FAO at the level of the mitochondria
may provide a more effective therapeutic strategy for sustaining myocardial energetics.
Although no drug is available for clinical studies, several proof-of concept studies have been
performed in mice. Overexpression of PDK4 in mice promoted cardiac FAO at the expense
of glucose but had no effect on cardiac function either under normal or ischemic
conditions.134 However, introduction of the PDK4 transgene into mice expressing a
constitutively active form of the phosphatase calcineurin failed to rescue cardiac dysfunction
and led to an increase in mortality.135 In contrary, deletion of ACC2 increased myocardial

Kolwicz et al. Page 7

Circ Res. Author manuscript; available in PMC 2014 August 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FAO in normal mice and prevented the switch to increased glucose reliance during pressure
overload induced hypertrophy.76 Cardiac function and myocardial energetics were also
sustained suggesting a benefit of maintaining FAO during pathological hypertrophy. Several
recent studies have also demonstrated the effectiveness of high fat diets in protection against
the development of heart failure in animal models.74,136,137

Taken together, the evidence thus far suggests that enhancing glucose utilization in the
hypertrophied and failing heart improves cardiac function and symptoms of heart failure in
the short term. Clinical application of metabolic therapy of this kind depends on the ultimate
test of its impact on the long-term mortality. However, strategies of enhancing glucose
utilization by removing the contribution of fatty acids appear to be less promising.
Moreover, recent preclinical studies suggest that sustaining FAO in the hypertrophied heart
may be suitable for the preservation of myocardial energetics and function.74,76,137

Targeting insulin sensitivity
Insulin resistance has been shown to precede and predict the development of heart failure,
independent of established diabetes.138 Moreover, insulin resistance is positively correlated
with NYHA functional class.139 Since glucose uptake in the adult heart is largely controlled
by insulin-sensitive mechanisms, insulin resistance would be an obstacle for measures that
seek to enhance myocardial glucose utilization. Although not directly tested, insulin
sensitizing agents have been used in heart failure patients with metabolic disturbances
(Table 2) and have yielded auspicious results.

Thiazolidinediones (TZD), PPAR gamma agonists including rosiglitazone and pioglitazone,
are used as oral hypoglycemic and insulin sensitizing agents. TZDs successfully enhance
glucose uptake and oxidation, especially in diabetic animal models, and improve functional
recovery after ischemia.140,141 However, one study showed that rosiglitazone increased
mortality post-MI in rats without alterations in LV remodeling.142 Similarly, rosiglitazone
was associated with a higher risk of cardiovascular events including congestive heart failure
in the ADOPT trial, as compared to cohorts treated with glyburide or metformin.143 In the
PROACTIVE trial, pioglitazone decreased all-cause mortality, non-fatal MI and stroke, but
significantly increased rates of symptomatic edema and CHF in patients with diabetes and
cardiovascular disease.144

Another widely used insulin-sensitizing drug is metformin that is often used as first line
therapy for diabetics. Metformin acts as an AMPK activator in the liver145 and has been
shown to increase glucose uptake both in basal and insulin-stimulated conditions in insulin
resistant cardiomyocytes.146 Of note, activation of AMPK by metformin in human heart has
not been reported. In animal studies, metformin improved left ventricular function and
remodeling while reducing myocardial lipid accumulation and fibrosis.147148 Masoudi et al.
performed a retrospective cohort analysis on subjects with congestive heart failure and
diabetes and found that metformin use for 1 year was associated with a 13% lower mortality
compared to sulfonylurea or insulin therapy.149 Although these results are promising,
randomized perspective trials are still needed to evaluate the potential clinical benefits of
metformin in heart failure patients with and without diabetes.

Glucagon like peptide-1 (GLP-1) is secreted by intestinal cells in response to the presence of
nutrients. Once in the circulation, it stimulates insulin secretion, enhances insulin sensitivity,
and promotes glucose utilization in the myocardium. In a canine model of pacing-induced
dilated cardiomyopathy, GLP-1 treatment increased myocardial glucose uptake and was
associated with decreased LV end-diastolic pressure, increased stroke volume, and increased
cardiac output.150 In heart failure patients, GLP-1, in addition to standard medical therapy,
led to improvements in EF and maximal aerobic capacity compared with controls who
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received standard medical therapy alone.151 A study examining patients with an acute
myocardial infarction and EF <40% after successful angioplasty treated with 72 hours of
GLP-1 infusion demonstrated significantly greater EF associated with improved global and
regional wall motion score indices compared to controls.152

Targeting mitochondrial function
It is well known that heart failure is associated with mitochondrial dysfunction but therapies
specifically targeted to improving mitochondrial function are rather limited. The nitric oxide
pathway is a potential stimulator of mitochondrial biogenesis.153 Modulation of this
pathway with phosphodiesterase 5 inhibitors (PDE5I) was related to increased mitochondrial
biogenesis.154 Treatment with the PDE5I, sildenafil, improved cardiac index and right
ventricular EF in heart failure patients155 but additional studies are required to determine
whether the benefit can be attributed to increased mitochondrial biogenesis and function.

Mitochondrial dysfunction in heart failure is associated with increased oxidative stress
making mitochondria-targeted ROS scavenging an attractive therapeutic strategy. Several
antioxidants that accumulate in the mitochondrial matrix have demonstrated cardioprotective
effects in animal models. Mitoquinone (MitoQ) improved functional recovery from ischemia
in the isolated rat heart156 as well as prevented doxorubicin-induced cardiac dysfunction,
fibrosis, and apoptosis.157 MitoTEMPO, a superoxide and alkyl scavenger, demonstrated
cardioprotective effects in hypertension and diabetes models.158,159 EUK–8, a superoxide
dismutase and catalase mimetic, rescued cardiac dysfunction in genetic models of increased
oxidative stress.160,161 Finally, Szeto-Schiller (SS) peptides have shown cardiac protection
in guinea pig hearts subjected to ischemia-reperfusion injury and mouse models of
hypertrophy and failure, in part, by reducing oxidative stress.162,163 So far, clinical studies
using such a strategy are rather limited. However, a Phase IIa clinical trial on the safety and
efficacy of the SS-peptide, Bendavia, on reperfusion injury is ongoing.164

While mitochondrial specific antioxidants have shown promising results for the treatment of
heart failure, general antioxidants in clinical trials have not. Vitamin E, also known as alpha
tocopherol, has been extensively studied in heart failure. Large clinical trials revealed that
Vitamin E can actually increase the risk of developing heart failure after myocardial
infarction.165 The HOPE and HOPE-TOO trials also suggested that long term vitamin E
supplementation increases the risk of heart failure and heart failure exacerbations with no
improvement in other cardiovascular outcomes.166 Further work is needed in order to
elucidate the differences between mitochondrial-specific and general antioxidant therapy for
heart failure.

Dietary strategies
The benefits of polyunsaturated fatty acids (PUFAs) in decreasing the incidence of coronary
artery disease and sudden cardiac death are well accepted. PUFAs also improve various
factors related to heart failure including lipid metabolism, mitochondrial function,
endothelial function, and inflammation. Clinical evidence now suggests that PUFAs can
prevent the development or progression of heart failure. A 12-year study following over
4700 adults found an inverse correlation between incidence of heart failure and dietary
consumption of tuna and other fish, with the highest intake of dietary long-chain n-3 fatty
acid offering a 37% lower risk of heart failure.167 A randomized double-blind, placebo
controlled trial (GISSI-HF) showed that heart failure patients treated with low dose
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for a median time of 3.9
years had a significantly lower mortality rate and decreased hospital admissions for
cardiovascular causes.168 A recent meta-analysis involving 7 trials found that fish oil
supplementation in non-ischemic heart failure significantly increased left ventricular EF.169
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In contrary, high levels of long chain monounsaturated fatty acids (LCMUFA) were
associated with a greater incidence of congestive heart failure, suggesting potential cardiac
toxicity of this lipid species.170

Metabolic Modulation of Growth and Survival Pathways
The effects of metabolism on growth, proliferation, and survival pathways have been
increasingly recognized in recent years, especially in cancer biology. Although a large
fraction of the metabolic fluxes in the heart is devoted to oxidative metabolism for ATP
synthesis, substrate metabolism has significant impact on multiple aspects of cardiac
biology. Closely related to the topic of cardiac hypertrophy and failure discussed above, here
we present the recent development on the role of metabolism in the regulation of
cardiomyocyte growth, survival and autophagy (Figure 4).

Regulation of mTOR signaling
Recently, an interesting finding regarding the influence of fatty acids on cardiac myocyte
growth was made in Burmese pythons.171 Elevations in three fatty acids (palmitic acid,
myristic acid, and palmitoleic acid) were identified as inducers of reversible cardiac
hypertrophy during the feeding period and were associated with increased mammalian
Target of Rapamycin (mTOR) phosphorylation. This effect of fatty acids on mTOR has
been previously shown in skeletal muscle and liver tissue of rats fed a high fat diet.172,173 In
addition, incubation of myotubes with palmitate increased phosphorylation of S6 kinase
(S6K), a downstream target of mTOR.173 Transgenic mouse models of enhanced lipid
metabolism are generally associated with cardiac hypertrophy,95,96,174,175 but whether the
increased uptake of fatty acids contribute to cardiac growth via the mTOR pathway has not
been determined.

It has been shown that glucose phosphorylation is required for insulin-dependent activation
of mTOR in the heart.176 A recent study suggested that accumulation of glucose 6-
phosphate during mechanical overload activated mTOR and caused contractile dysfunction
by triggering ER stress.177 Since glucose metabolism is increased in the hypertrophied and
failing heart it is tempting to hypothesize that altered glucose metabolism is causally linked
to the development of hypertrophy and dysfunction.

The effects of amino acids on protein synthesis have been well-studied in cultured cells,
animal models, and humans.178-183 Although the exact mechanisms are not known, the
presence of amino acids have been shown to activate the mTOR complex and its
downstream effectors.180,182 It has been suggested that amino acids activate mTOR through
a calcium dependent mechanism involving class III PI3K, or hVps34, which would combine
the interaction of protein synthesis with inhibition of autophagy.181 Previous work
demonstrated that mTOR and its downstream targets are affected by the availability of
intracellular amino acids.184 Additional studies have specifically implicated the branched
chain amino acid (BCAA), leucine, in the stimulation of the mTOR pathway.178,185,186 This
has been particularly important in accounting for increased skeletal muscle protein synthesis
during the post-exercise recovery period 183,187 and in atrophy associated with aging.188,189

The above evidence offers strong support to the notion that mTOR behaves as a “nutrient
sensor”. It remains to be determined whether one or multiple metabolites of the
aforementioned substrates have a direct binding affinity for the mTOR complex. It is also
not known whether different metabolic pathways affect mTOR signaling through distinct
mechanisms or via a unifying effector.
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Apoptosis and autophagy
Ceramides, a sphingolipid composed of sphingosine and a fatty acid, have been purported to
function as a signal which triggers apoptosis in lipotoxic cardiomyopathy.190 Elevated
ceramide levels were found in the hearts of mice overexpressing enzymes of lipid
metabolism, including acyl CoA synthetase (ACS),45,96 lipoprotein lipase (LPL),174 and
PPARγ175, which was associated with increased apoptosis and/or cardiac dysfunction.
However, high fat feeding in rodent models have not consistently recapitulated this
observation. Although content of cardiac ceramides was increased in rats fed a high fat diet,
no evidence of apoptosis191 or cardiac dysfunction192 was found. In addition, 10 or 12
weeks of a high fat diet fed to mice failed to significantly increase ceramide levels.193,194

Ceramides were elevated in rat hearts subjected to coronary artery ligation but provision of a
high fat diet during that interval did not further increase ceramide content.131

In studies using cultured cells195-197 or neonatal rat ventricular myocytes (NRVM),198,199

addition of palmitate to the media significantly increased measures of apoptosis. Similar
findings were observed with addition of stearate, suggesting long chain saturated fatty acids
as the culprit.197,198 Interestingly, co-incubation with the unsaturated fatty acid, oleate,
significantly reduced apoptosis measures in cells.195,198,199 Since the metabolic rate of
quiescent cells is vastly different from that of the beating heart, the observation could be
confounded by the low oxidation rate of fatty acids in cell culture. However, cells exposed
to different species of fatty acids showed differential outcomes suggesting that the chain
length and/or the degree of saturation influence the survival of cardiomyocytes under
conditions of lipid overload. In rodents fed a high fat diet, a lower ceramide content and
reduced apoptotic events were observed in cardiomyocytes from the group receiving
predominantly unsaturated versus saturated fatty acids.137 These studies suggest that
elevated cytosolic levels of palmitate are associated with increases in lipid species that have
the potential to promote apoptosis. It is also suggested that oleate facilitates palmitate
accumulation into the TAG pool,195 and provision of unsaturated fats in conjunction with
saturated fats could promote survival by attenuation of apoptosis.

Recent work in mice demonstrated that a high milk fat based diet resulted in elevated supply
of the 14 carbon (C14) saturated fat, myristic acid, which increased the presence of C14-
ceramide, and was associated with cardiac hypertrophy, dysfunction, and increased
autophagy.200 However, other studies using high fat feeding models in mice have suggested
that autophagy is impaired during the lipid overload condition.201,202 Furthermore, hearts
from a porcine model exposed to a high fat or atherogenic diet revealed progressive
decreases in autophagy combined with increases in apoptosis.203 Whether metabolic
derangement in the heart causes cardiac injury via inhibition of autophagy is an open
question. Autophagy is critical for protein quality control, cellular homeostasis and survival.
However, increased autophagy can be adaptive or maladaptive to cardiac pathologies
depending on the circumstances (see for recent reviews204-208). While autophagy is known
as an evolutionarily conserved response to metabolic stress, the metabolic mediators of
autophagy are poorly understood at the molecular level. An expanded knowledge of the
metabolic control of autophagy will facilitate targeting autophagy for therapeutics.

In summary, the knowledge on cardiac metabolism and its role in human diseases has
increased explosively in recent years. Multi-disciplinary approaches in both experimental
and clinical research seem to converge on the concept that the capacity and flexibility of the
metabolic network is essential for cardiac function. Although energy transfer is a primary
function of cardiac metabolism, the sophistication of the system is being appreciated for its
regulatory role through the interactions of the ATP-producing and non-ATP producing
pathways. Future advances of the field will elucidate novel disease mechanisms and identify
new targets for metabolic therapy.
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Non-standard Abbreviations and Acronyms

EF ejection fraction

FAO fatty acid oxidation

mCPT1 carnitine palmitoyl transferase 1, muscle form

NADPH nicotinamide adenine dinucleotide phosphate

PDH pyruvate dehydrogenase

PDK4 pyruvate dehydrogenase kinase 4

PPARα peroxisome proliferator-activated receptor alpha

TAG triacylglycerol

TCA cycle tricarboxcylic acid cycle
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Figure 1. Overview of the Metabolic Network
The energy-yielding substrates (fatty acids, glucose, ketones, and amino acids), via specific
catabolic pathways, converge on acetyl CoA production with subsequent entry into the
tricarboxylic acid (TCA) cycle. The final step of energy transfer is accomplished through
oxidative phosphorylation (OxPhos), supplying greater than 95% of ATP consumed by the
heart. The boxes (in pink) above each metabolic pathway indicate the pathological and/or
physiological condition in which the specific substrate becomes a predominant contributor
to metabolism. TAG, triacylglycerol; DGAT, diacylglycerol acyltransferase; ATGL, adipose
triglyceride lipase; mCPT1, muscle form of carnitine palmitoyl transferase; PDH, pyruvate
dehydrogenase; TCA, tricarboxcylic acid; O2, oxygen.
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Figure 2. Accessory Pathways of Glucose Metabolism
Multiple accessary pathways of glucose metabolism result in the production of metabolites
that do not directly contribute to energy supply but are of important biological function.
Evidence has suggested that these pathways are altered in the hypertrophied, failing,
ischemic, and/or diabetic heart as indicated. Glycolysis: G6P, glucose 6-phosphate; F6P,
fructose 6-phosphate; F1,6BP, fructose 1,6-biphosphate; G3P, glyceraldehyde 3-phosphate.
Pentose Phosphate Pathway (PPP): G6PD, glucose 6-phosphate dehydrogenase; 6-PGL, 6-
phosphoglucono-δ-lactone; NADPH, nicotinamide adenine dinucleotide phosphate; 6-PG, 6-
phosphogluconate; Ribulose 5-P, ribulose 5-phosphate; X5P, xylulose 5-phosphate, R5P,
ribose 5-phosphate. Polyol Pathway: AR, aldose reductase. Hexosamine Biosynthetic
Pathway (HBP): GFAT, glutamine fructose 6-phosphate amidotransferase; Glucosamine 6-
P, glucosamine 6-phosphate; UDPGlcNAc, uridine diphosphate-N-acetylglucosamine; OGT,
O-linked β-N-acetylglucosamine transferase.
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Figure 3. Metabolic Remodeling and the Development of Heart Failure
Pathological hypertrophy in response to mechanical overload, e.g. hypertension, valvular
disease or post-MI, is accompanied by metabolic remodeling characterized by decreases in
fatty acid oxidation (FAO) and increases in glycolysis. This fetal-like metabolic profile
decreases the capacity for ATP synthesis, consistent with the “energy starvation” model. In
contrast, the elevated supply of substrates in the heart of obese and/or diabetic individuals
leads to an upregulation of FAO with a concomitant decrease in glucose oxidation (Glc ox).
This lipid overload condition impairs cardiac efficiency. Regardless of the precipitating
factor, the persistent metabolic derangements elicit commonalities of decreased oxidative
metabolism, increased oxidative stress, insulin resistance, lipid accumulation, and energy
deprivation, all contributing to the progression of heart failure.
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Figure 4. Metabolic Modulation of Growth and Survival Pathways
Interactions of lipids (blue), amino acids (green), and glucose (red) metabolism with
pathways of hypertrophy, autophagy, and apoptosis as represented in the literature from
various cell culture and animal models. SFAs, saturated fatty acids; UFAs, unsaturated fatty
acids; BCAAs, branched chain amino acids; G6P, glucose 6-phosphate; mTOR, Mammalian
Target of Rapamycin.
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Table 1
Regulators of Substrate Metabolism

Known factors of transcription, protein modification, and allosteric regulators involved in the stimulation or
inhibition of metabolic pathways. Numbers indicate relevant references for review. HIF1α, hypoxia-inducible
factor 1-alpha, PPARγ, peroxisome proliferator-activated receptor gamma; AMPK, AMP-activated protein
kinase; F1,6BP, fructose 1,6-biphosphate; Pi, inorganic phosphate; NAD+, nicotinamide adenine dinucleotide;
NADH, nicotinamide adenine dinucleotide, reduced; G6P, glucose 6-phosphate; FOXO1, forkhead box
protein O1; PDK4, pyruvate dehydrogenase kinase 4; PCG-1α, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha; ERRα, estrogen-related receptor alpha; MCD, malonyl CoA decarboxylase;
ACC2, acetyl CoA carboxylase 2; PP2Cm, protein phosphatase 2Cm; BCKDK, branched chain ketoacid
dehydrogenase kinase.

Pathway Stimulation Inhibition

Glycolysis HIF1α15

PPARγ209

AMPK210

Insulin211

Epinephrine212

AMP, ADP, Pi213

NAD+ 213

F1,6BP213

ATP213

NADH213

G6P213

citrate214

Glucose oxidation Insulin215

Epinephrine212

NAD+213

Calcium216

PPARα209

FOXO1217

PDK416

Fatty Acids214

Acetyl CoA, NADH, ATP213

Fatty acid oxidation PPAR/PGC-1α/ERR12-14,209

FOXO1217

AMPK210

MCD218

Adiponectin219,220

Fatty Acids221

ACC2222

Malonyl-CoA223

Glucose214

Lactate11

Ketone bodies10

BCAA catabolism PP2Cm17,18

Glucagon224
BCKDK225

NADH, CoA esters213

Ketone body
oxidation

acetoacetate213
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Table 2
Metabolic Therapies Used in the Treatment of Heart Failure

Italics indicate therapies with reported adverse effects. mCPT1, muscle form of carnitine palmitoyl transferase
1; PDK, pyruvate dehydrogenase kinase; MCD, malonyl CoA decarboxylase; PPAR, peroxisome proliferator-
activated receptor; PDE, phosphodiesterase; AMPK, AMP-activated protein kinase; MitoQ, mitochondrial-
targeted antioxidant; MitoTEMPO, Mitochondria-targeted antioxidant with superoxide and alkyl radical
scavenging properties; EUK-8, superoxide dismutase and catalase mimetic; SS peptide, Szeto-Schiller
peptide; PUFAs, polyunsaturated fatty acids.

Substrate Preference:

 mCPT1 Inhibitors

 Partial β-oxidation inhibitors

 PDK Inhibitors

 MCD inhibitors

  Nicotinic Acid Derivatives

 PPAR Agonists

Insulin Sensitivity:

 Glucagon Like Peptides (GLP-1)

 Metformin

  Thiazolidinediones

Mitochondrial Function:

 PDE inhibitors

 AMPK Activators

 MitoQ

 MitoTEMPO

 EUK-8

 SS peptides

Dietary Modulation:

 PUFAs

  Vitamin E
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