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Abstract
Point matching is crucial for many computer vision applications. Establishing the correspondence
between a large number of data points is a computationally intensive process. Some point
matching related applications, such as medical image registration, require real time or near real
time performance if applied to critical clinical applications like image assisted surgery. In this
paper, we report a new multicore platform based parallel algorithm for fast point matching in the
context of landmark based medical image registration. We introduced a non-regular data partition
algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the
number of available processing cores, which optimize the memory usage and data transfer. We
have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results
demonstrated a significant speed up over its sequential implementation. The proposed data
partition and parallelization algorithm, though tested only on one multicore platform, is generic by
its design. Therefore the parallel algorithm can be extended to other computing platforms, as well
as other point matching related applications.

1 Introduction
Point matching is crucial for many computer vision and image analysis applications, such as
medical image registration. It is a computationally intensive process due to the calculation of
the correspondence among a large number of data points. However, the medical image
registration, when used for critical applications for instance the image assisted surgery, often
requires real time or near real time performance. A lot of efforts have been made to speed up
the point matching method and its related application such as medical image registration. To
our knowledge, there has no reports about parallelization of the landmark based image
registration algorithm on the multicore platform, the IBM Cell Broadband Engine. As we
will show the proposed algorithm indeed contains a distinctive advantage for parallelization
by its design.

Image registration is the process to determine the linear/nonlinear mapping between two
images of the same object or similar objects acquired at different time, or from different
perspectives. Image registration is widely used in remote sensing, image fusion, image
mosaic and especially in medical image analysis. It is very common that the images taken
under different acquisition conditions, such as shifting of the patient’s positions or changing
of the acquisition parameters, show different appearance. Image registration can be
separated as rigid registration [1,2] and non-rigid registration [3,4]. Given two images taken
at different time (usually one is called fixed image and the other is moving images), the
problem can be described as finding a linear/nonlinear transformation which maps each
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point in the fixed image to a point in the moving image. For nonlinear registration, some of
them describe the transformation based on elastic deformations, such as fluid deformation
based algorithm [5,6] and Demon’s algorithm [7,8]. The others model the transformation by
a function with some parameters, such as B-spline based image registration algorithm [9].

Nonrigid image registration in general is computationally expensive. With the advent of
unprecedented powerful computing hardware, it becomes possible for fast nonlinear image
registration using the multicore platform. In this paper, we will introduce a parallelization of
a fast and robust image registration algorithm using a multicore processor platform, the IBM
Cell/B.E. The algorithm starts by automatically detecting the landmarks in the fixed image
followed by a coarse-to-fine estimation of the linear and nonlinear mapping. A landmark
point is characterized by an affine invariant local descriptor, the multi-resolution orientation
histograms. The corresponding landmarks in the moving images are identified by matching
the local descriptors of candidate points. The point matching procedure is the most time-
consuming therefore was accelerated by the proposed parallelization algorithm on the IBM
Cell/B.E. RANdom SAmple Consensus (RANSAC) [10] is used as a robust estimator to
reject outliers in the corresponding landmarks. The final refined inliers are used to estimate a
Thin Spline Transform (TPS) [11] to complete the final nonlinear image registration. The
algorithm is completely unsupervised and computationally efficient. We have tested the
method with several different types of images. The experimental results have shown
significant speed up over the sequential implementation. The parallelized algorithm has the
ability to handle very large transformations and deformations, while still providing accurate
registration results. The proposed image registration algorithm is explained in Section 2. In
Section 3, we describe the parallelization implementation using a IBM Cell Broadband
Engine (Cell B./E.) multi-core processor. The experimental results are shown in Section 4.
We briefly survey the related work in Section 5. Section 6 concludes the paper.

2 Landmark Based Image Registration
The proposed nonlinear image registration algorithm can handle large scale of
transformations. It begins by automatically detecting a set of landmarks in both fixed and
moving images, followed by a coarse-to-fine estimation of the nonlinear mapping using the
landmarks. Robust estimation is used to find the robust correspondence between the
landmarks in the fixed and moving image. The refined inliers are used to estimate a
nonlinear transformation T and also wrap the moving image to the fixed image.

2.1 Landmark Detection
The automatic landmark detection is the procedure used to accurately detect the prominent
and salient points in the image. Harris corner detector was applied to find the points with the
large gradients in both directions (x and y for 2D images). The original computation in the
Harris corner detector involves the computation of eigenvalues. Instead, the determinant and
trace are used in our algorithm to find the corners where α is chosen as 0.1.

(1)

Some representative landmark detection examples are shown in Figure 1.

2.2 Landmark Point Matching
After we detect the landmarks, we can extract features from the neighborhood of each
landmark. The local orientation histograms are used as the features for landmark matching.
The image is first convolved with the orientation filters. The filtering response in the
neighborhood around the landmarks is computed to form the orientation histogram. Let Gx(i,
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j) and Gy(i, j) represent the gradients on pixel p(i, j) along x and y direction, respectively.
The orientation histogram hk is defined as

(2)

where

(3)

and

(4)

The orientation histogram encodes the directions of the edges at each landmark point. It is
proven to be an effective feature descriptor when the training samples were small [12].

In order to achieve robust matching of the landmarks, the extensive searching in the image
space is required. This step is time consuming and often create the bottleneck for the
landmark based image registration algorithm. In Section 2.4, we will show the time profile
for each step in the whole procedure and it will be clear that the landmark matching
dominate the execution speed.

2.3 Robust Estimation and Nonlinear Image Registration
Because the original matching landmark sets contain missing landmarks. RANdom SAmple
Consensus (RANSAC) [10] is used to reject outliers and robustly estimate the
transformation. The RANSAC robust estimator randomly selects the minimal subset of the
landmarks to fit the model. Measured by a cost function, the points within a small distance
are considered as a consensus set. The size of the consensus set is called the model support
M. The algorithm is repeated multiple times and the model with largest support is called the
robust fit. In Figure 2 we show the results of applying robust estimation to reject the outliers
in the original matching landmarks. The Harris corner detector detected 32 landmark pairs in
Figure 2b. Based on the assumption of an affine transformation, the RANSAC found 8
inliers (shown in Figure 2c)and the rest 24 matching landmarks are rejected as outliers under
the assumption for an Affine transformation.

The thin plate spline transform (TPS) is used to estimate the nonlinear transformation
between the fixed and moving image based on the robust landmark correspondence. The
TPS transformation T is calculated by minimizing the binding energy ETPS

(5)

where

(6)

with wi and vi denote the landmarks on the fixed and moving image, respectively.
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TPS can provide a smooth matching function for each point in both images. The resulting
nonlinear transformation is applied to map the moving image to the fixed image. For more
details, we refer the readers to [11].

2.4 Image Registration Performance Bottleneck
The adaptive multi-resolution landmark based image registration algorithm can provide
good registration results, but requires relatively time consuming point matching procedures.
In Figure 3 we show the execution time profile for each step in our algorithm for a typical
2D (192 × 192) image pair registration. It is quite obvious that the bottleneck is the point
matching step. However, as we mentioned before, the point matching procedure in our
proposed algorithm has a big advantage for easy parallelization by its design: data
independence. Each landmark in the fixed image is independent to all the other landmarks,
and its best match in the moving image is restricted to a certain area in the moving image.
By fully utilizing this property, we propose to apply K-means data partitioning approach,
and it has been successfully implemented on the IBM Cell Broadband Engine processor.

3 Parallelization on the Multicore Platform
The IBM Cell/B.E. [13,14] is a multicore chip with a relatively high number of cores. It
contains a Power Processing Element (PPE) which has the similar function and
configuration as the regular CPU. It also has multiple cores which are optimized for single
precision float point algorithm, the Synergistic Processing Element (SPE). The PPE contains
32K L1 cache, 512K L2 cache and a large amount of physical memory (2G in our case).
Unlike the PPE, the SPE has a quite different architecture compared with the standard CPU.
The SPE operates on a 256KB local store to hold both code and data. The SPE also support
128 bit Single Instruction, Multiple Data (SIMD) instruction set for effective vector
operations. The data transfer between SPE and PPE is through the direct memory access
(DMA). DMA is quite time consuming so that a good parallel implementation should
minimize the number of DMA operations.

3.1 Data Partitioning Using K-Means Clustering and Parallelization
Given all the detected landmarks in the fixed image, we first apply the K-means algorithm to
cluster them based on their Euclidean distance in the image, where K = 16 is set to be the
number of the computing units in the IBM Cell Blade machine. Based on the boundary
landmarks in each cluster center, we can calculate the largest and smallest coordinates to
crop the sub-image accordingly. Because we know the size of the code running on the SPE
unit in advance, we can compute the maximal size of the sub-image that can be stored on a
single core (e.g. single SPE). If the image patch can fit into the local storage, the whole
cluster of landmarks and their corresponding image patch are sent to the SPE for parallel
processing using just one direct memory access (DMA). Because the number of DMA is
critical for the performance of the parallel algorithm, the advantage of applying K-means to
group the landmarks into clusters is to minimize the number of direct memory access
operations. Landmarks which are spatially close to each other are grouped together and
transferred into one computing core (e.g. one SPE in a Cell Processor) using one DMA call.
In Figure 4a we show the procedure of parallelizing the registration algorithm. The K-means
clustering and job scheduling to 16 PPEs are illustrated in Figure 4b.

Thread for each core or Synergistic Processing Element (SPE) is created only once in order
to reduce the overhead related to thread creation. The point matching for our registration
implementation is executed twice, one during the stage of linear registration and on during
the stage of nonrigid registration. If we create an SPE thread each time when a point
matching process starts, then all the SPE threads have to be created and destroyed repeatedly
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resulting additional execution time. In our implementation, all SPE threads are created
before the first execution of the point matching process. These threads will be kept alive
until the second point matching process is completed. It is true that the created SPE threads
will be idle between the end of the first pass and the start of the second pass point matching
processes, since the tasks in between are executed on PPE. This however does not cause any
performance problem because those idle threads remain in the SPE spaces, which essentially
has no impact to the main PPE thread.

Both the main core Power Processing Element (PPE) and SPEs are kept busy in sharing the
point matching tasks. Initially we partitioned the landmark points into clusters and distribute
evenly the clusters to the available SPEs. The main PPE thread waits for the completion of
all active SPE threads before it proceeds to the next step of the registration process.
Apparently this design overlooked the PPE computing resource, though it is indeed a
different type of processor from SPE processors. It turns out that for some images, there may
exist situations in which the sub-image enclosing the cluster is a little bit too large to send to
a SPE by one DMA command and the space has to be further partitioned and then
transferred to the SPE in more than one step. Even though such cases are rare, the second
round partition is still critical to speed up the whole registration process.

The purpose of applying K-means clustering for data partitioning is to decrease the number
of direct memory access (DMA) operations. In order to fully utilize each SPE computing
unit, the work load should be balanced. Because our algorithm selects the landmarks
considering their spatial relationships, the K-means clustering intends to provide similar
amount of landmarks in each cluster. In Figure 5 we show a typical work load distribution
for one image pair on 16 SPE, it is clear that the number of landmarks assigned to each
cluster roughly form a uniform distribution.

3.2 Landmarks Assembling and Transformation Estimation
The main processor or main core (e.g. PPE) is responsible to spool and destroy all the
threads of computing cores (e.g. SPE). As we shown in Figure 4a, the PPE is also in charge
of assembling all the matching points returned from each SPE and converts the results back
to the original image coordinate systems. Robust estimation is applied to reject outliers and
preserve the robust landmark correspondence. Nonlinear transformation is finally estimated
to register the fixed image and the moving image.

4 Experimental Results
The testing data used in our experiments were prepared in the department of Radiology,
University of Medicine and Dentistry of New Jersey and ITK [15] public image repository.
The dimensionality of the test image is 192 × 192 and the x and y resolution are 1.41 mm.
We tested our algorithm using the simulated affine transformations. Forty simulated 2D
human abdomen CT images are generated by applying forty simulated deformations. The
algorithm is compared with the multiple resolution affine registration implemented in ITK
[15] and also the free software MedINRIA developed by INRIA [16]. The registration
accuracy is evaluated based on whether the algorithm can successfully recover the affine
transformation parameters.

(7)

The , ,  represent the estimated translation, rotation and scale parameters. The pt, pr,
ps are the ground true transformation parameters. The δt = 1, δr = 0.5, δs = 0.01 are the
normalization factors for translation, rotation and scale, respectively. The registration is
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treated as success if E ≤ 1.0. Our proposed algorithm can recover 95% of the image pairs
while the ITK and MedINRIA can only recover 70% and 50% for the image pairs with large
deformation. From the experimental results we show that the proposed algorithm can
accurately register two images even with 2.5 times scale difference and 45 degree of
rotation. It is clear from this study that our algorithm demonstrate more robust registration
for large deformations compared with commonly used registration algorithm [15,16]. Some
representative results are shown in Figure 6.

The parallelization code was built for two different platforms. The parallel version was
tested on an IBM BladeCenter Q21 featuring 2GB of RAM and two processors running at
3.2 GHz configured as a two-way, symmetric multiprocessor (SMP) [17]. A thread running
on a PPE can communicate with all 16 SPEs. The Cell/B.E. SDK 3.0 and GCC compiler
were used to implement and compile the algorithm. In all our experiments, there was one
main thread running on one of the PPEs and up to 16 threads on the SPEs. The sequential
version was running on an x86 machine at 2.6 GHz and 4G memory. The compiler is also
GCC.

All the image pairs used for testing have dimensionality (192 × 192).Because the point
matching procedure dominates the running time of the registration algorithm, this step is the
only part parallelized on the Cell/B.E. For fair comparison we run each implementation
(sequential and parallel) 10 times. The statistics of the running speed on two platforms are
shown in Table 1. Please notice that x86 refers to the sequential implementation on a x86
machine running with Linux. The Cell/B.E. (PPE only) denotes the running time on the
multicore Cell processor using only the main processor PPE. The Cell/B.E. (PPE only)
represents the parallel running time by fully utilizing all the 16 computing cores (SPEs). The
80% column in Table 1 represents the sorted 80% smallest running times of all 10 trials, and
is commonly used to evaluate the performance of the system. Using the multicore platform,
we roughly achieved 10 times of speedup over its corresponding sequential implementation.
In total, the parallel version of the algorithm can register a pair of image (192 × 192) in less
than five seconds.

5 Related Work
While research effort continues to explore methods and strategies for more efficient and
rapidly converging computational methods, increasing attention has been given to hardware
architecture-based parallelization and optimization algorithms for the emerging high
performance architectures, such as cluster and grid computing, advanced graphical
processing units (GPU) and multicore computers. In [18] a parallel implementation of
multimodal registration is reported for image guided neurosurgery using distributed and grid
computing. The registration time was improved dramatically to near real-time. In [19] a
distributed computation framework is developed, which allowed the parallelization of
registration metrics and image segmentation/visualization algorithms while maximizing the
performance and portability. One key deterring factor in adopting supercomputer-based,
cluster-based or grid computing architectures is availability and cost. Even for some large
clinical institutions, financial limitations can be a major hurdle. The recent emergence of
low cost, high computing power, multi-core processor systems have opened up an
alternative venue for developing cost-effective high performance medical image registration
techniques. In [20], a close to real time implementation of a mutual information based linear
registration is reported. The algorithm is designed based on the Cell Broadband Engine
(Cell/B.E.) multicore processor architecture. General parallel data mining algorithms on the
Cell/B.E. are reported in [21,22]. In [23], a high performance distributed sort algorithm is
proposed for the Cell processor. As an application, the implementation of the
Radioastronomy image synthesis on the Cell/B.E. is discussed in [24]. According to our
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knowledge, this is the first study reporting fast and robust landmark based nonlinear image
registration algorithm on a multicore platform.

6 Conclusion
In this paper, we have described a parallelization of a robust and accurate 2D image
registration algorithm. The method is implemented on the IBM Cell/B.E. We have achieved
about 10 times speed up, which allows our algorithm to complete the nonlinear registration
of a pair of images (192 × 192) in less than five seconds. Our proposed data partitioning
approach and the parallelization schema are independent to the parallel platforms and
generic by its design, therefore it can be extended to other point matching related
applications and other parallel platforms. The work discussed here is a part of an ongoing
effort in developing full scale parallelization of a set of registration algorithms including the
one reported in this paper. Future work will also include the generalization of the
parallelization algorithm to handle 3D images.
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Fig. 1.
The landmark detection using Harris corner detector. (a) The original images. (b) The
images with the landmarks overlayed.
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Fig. 2.
Apply the robust estimation to find the robust landmark correspondence. (a)The original
fixed and moving image. (b)The original pairs of matching points. (c)The robust matching
points after rejecting the outliers.
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Fig. 3.
The time profile for the image registration algorithm
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Fig. 4.
The procedure of the parallel image registration algorithm. (a) The flow chart of the
parallelization. (b) The data partitioning using K-means clustering.
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Fig. 5.
The landmark distribution on each SPE unit of the IBM Cell/B.E.
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Fig. 6.
Comparative registration results on the human abdomen CT image pair. (a) The fixed image.
(b) The moving image. (c) The registration algorithm using the MedINRIA [16]. (d) The
registration algorithm using ITK [15]. (e) The registration results using our algorithm.
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Table 1

The statistics of the running speed for 10 trials using the sequential and parallel multicore platform

Mean Variance Median

x86 5.95 0.26 5.82

Cell/B.E. (PPE only) 6.13 0.001 6.12

Cell/B.E. (16 SPEs) 0.60 0.0067 0.60

Min Max 80%

x86 5.33 6.93 6.22

Cell/B.E. (PPE only) 6.12 6.14 6.13

Cell/B.E. (16 SPEs) 0.50 0.70 0.70
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