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Abstract
Intensive Care Units (ICUs) are chaotic places where hun-
dreds of tasks are carried out by many different people.
Timely and coordinated execution of these tasks are di-
rectly related to quality of patient outcomes. An improved
understanding of the current care process can aid in im-
proving quality. Our goal is to build towards a system that
automatically catalogs various tasks being performed by
the bedside. We propose a set of techniques using computer
vision and machine learning to develop a system that pas-
sively senses the environment and identifies seven common
actions such as documenting, checking up on a patient, and
performing a procedure. Preliminary evaluation of our sys-
tem on 5.5 hours of data from the Pediatric ICU obtains
overall task recognition accuracy of 70%. Furthermore, we
show how it can be used to summarize and visualize tasks.
Our system provides a significant departure from current
approaches used for quality improvement. With further im-
provement, we think that such a system could realistically
be deployed in the ICU.

Introduction
An Intensive Care Unit (ICU) is a complex environment.
Often patients are seen by more than two dozen caregivers
during their stay. Hundreds of micro-tasks need to be per-
formed on a daily basis in a coordinated way to keep the
patient stable. Many of these tasks are time-sensitive, and
failure to execute at the right time can lead to adverse out-
comes. Workflow factors such as poor coordination or in-
creased caregiver workloads are also likely to lead to lapses
in care [1].

A system that passively catalogs patient-centered tasks be-
ing performed in this environment can aid in understanding
current workflow and its effect on the quality of care. For
example, when was a given set of tasks performed? Were
they performed on schedule? In particular, when hospital
administrators consider adding tasks to the existing work-
flow, it is valuable to systematically catalog and understand
how the ICU caregivers are currently spending their time.
In this paper, we develop an automated system for iden-
tifying frequently performed tasks in the ICU using non-
invasively measured depth-range sensor data. Unlike sur-
vey or ethnographic studies, such a system is more scalable,
relatively cheap to deploy, and can be “always present.”
Moreover, caregivers and patients need not wear additional
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Figure 1: Our task recognition pipeline records video us-
ing a depth range sensor, segments people from the im-
ages, tracks them through time, and recognizes each action
sequence based on a set of features.

sensors, thus avoiding any interference with existing work-
flow.

Related Work
Task Analysis in the ICU: The need for active surveil-
lance in the ICU for improving quality of care has received
growing emphasis in the literature (e.g. [2]). Existing stud-
ies rely on manual observations or surveys [3, 1, 4] unlike
the approach proposed in this paper.

Automated ICU Surveillance: More recently, using data
collected from electronic medical records (EMR), several
works have proposed to develop methods for automated
surveillance. The resulting tools are typically limited to
detection [5, 6] or early prediction [7, 8] of individual out-
comes and are unable to capture the broad class of care-
process-related tasks that we are interested in for this paper.

Activity Recognition: There are notable parallels with the
work we are doing in ICUs with the work done in recent
years in surgical settings. Padoy et al. analyzed and rec-
ognized surgical workflow by learning from a set of previ-
ously recorded procedures using what they call Workflow
Hidden Markov Models [9]. The largest difference is in
the types of actions that take place. A surgical operation is
highly structured; for each operation there is typically a set
of sub-procedures that occurs sequentially. Thus it is pos-
sible to acquire a large number of similar sequences and

136



learn dynamical models that capture the workflow well. In
the ICU we have a large number of small tasks that may
only have a small dependence on each other. Therefore,
these methods do not scale readily to our domain.

Outside of the surgical setting activity recognition has been
attempted in a home setting using various sensing plat-
forms [10, 11, 12]. Methods proposed in many of these
papers rely on having an accurate estimate of the skeleton
model of the body. Such a model is acquired by adding visi-
ble markers on the body or requiring the person to initialize
the tracker by looking at the camera and posing. Requiring
caregivers to register with the tracker is not practical in our
setting.

Methods
Our approach has four steps as displayed in figure 1. First,
data is recorded from inside a room at the ICU. Second, in-
dividual people are segmented from the image and put into
an action sequence. An example action sequence could be
a nurse coming into the room, checking patient diagnos-
tics, and leaving the room. This sequence is comprised of
all images of that person during that event and is combined
with scene analysis information generated offline. Rele-
vant scene information could include the location of the
patient’s bed or the documentation station. Features are
extracted that summarize information like the caregivers’
position relative to specified equipment and whether they
are interacting with another individual. Finally, each action
sequence is classified using one of our recognition tech-
niques. Below, we describe each step in more detail.

Data Acquisition
An Xbox Kinect range sensor was used to record depth
video at our hospital’s Pediatric ICU in a single-patient
room. Recorded data contains depth information at each
pixel of the captured image. The system is also able to
record video simultaneously but due to restrictions by the
institutional IRB committee we only record depth images.
The device is placed near the door looking towards the pa-
tient and captures footage continuously. For this study we
collected 5.5 hours of data for one patient in the PICU.
According to the nurses and the attending physician the
footage we recorded is representative of a normal day.

Segmentation and Tracking
Caregivers’ silhouettes are extracted from the depth images
using a straightforward background subtraction technique.
A background model is generated offline by averaging a set
of 10 frames taken at the beginning of the recording. The
depth images have a moderate amount of noise so averag-
ing reduces the effect of aberrant depth measurements. The
background model is subtracted from all images to contain
the parts of the map where motion is detected. Large gra-
dients in the depth map (∆z > 100mm) are removed to
help differentiate separate people that may be overlapping.
Lastly, a connected-components technique is used to ex-

Figure 2: (left) A segmented person highlighted in orange
with two proximity sensors marked by blue circles. (right)
Colorized depth map of the same person with an estimate
of their orientation.

tract the individual people from the image. These segmen-
tations represent the 3D information for each person.

An activity sequence is created by tracking each individ-
ual over time. For each new image we look for the closest
matching person in 3D space from the previous frames. In
practice, to deal with occlusions, like someone walking in
front of another person, a new person is added to a cur-
rent activity sequence if their previous distance is less than
0.5 meters away and they were seen in the last second of
footage.

Feature Extraction
For each action sequence we extract position-based and
orientation-based features (marked in italics below) that
summarize each event. The output is a 17-dimensional vec-
tor per sequence that takes into account interactions with
the scene and multi-person interactions.

Positional Features: There are nine position-based fea-
tures that encode relative spatial information for each activ-
ity sequence. The first five summarize the whole sequence
in the form of path length, average velocity, and the aver-
age center of mass in the X, Y, and Z axes. Each segmenta-
tion within the activity sequence has a 3D center of mass,
thus we can calculate the path length by integrating the po-
sition changes over the whole sequence. Path velocity is
then the path length divided by the duration of the action
sequence.

The next four positional features deal with caregiver lo-
cations relative to equipment in the room. Hand-labeled
“virtual proximity sensors” are placed at strategic locations
such as the head and foot of the bed, at the documentation
station, and on the ventilator. Intuitively, if a staff mem-
ber is not close to the ventilator, it is unlikely that they are
interacting with that machine. Empirically we see that this
has a significant benefit in our recognition results. Further-
more, defining features that measure relative positions be-
tween objects and individuals instead of absolute positions
in the room allows for the model to more easily generalize
as equipment locations change or the system is moved to a
different room. Quantitatively, the value for each proximity
sensor is the minimum distance between the sensor and the
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caregiver’s position at any time in the action sequence:

fi = mink||psensori − pperson
k
||2 (1)

fi is the feature value at index i, p is the 3D position, and
k is a frame in the action sequence. Figure 2 shows two
example proximity sensors centered at the patient’s head
and foot. The blue rings represent equidistant points from
the sensor.

Orientation-based Features: Knowing the orientation of
an individual can give insight into the task at hand and any
interactions with others. For example, if a caregiver is po-
sitioned next to the ventilator then they could be doing one
of two tasks: using the ventilator or performing a procedure
on the patient. Knowing which way they are facing gives
context for what they are doing.

Orientation is estimated by computing the three principal
components of the 3D points belonging to each individual.
Using figure 2 as an example, the first component is typi-
cally pointing upwards, the second is pointing in front of
the person, and the third is pointed laterally towards their
shoulders. Note that due to ambiguity between a forward
facing and backwards facing vector we modulus everything
into a 180◦ workspace. In order to reduce the dimension-
ality and discretize these features we generate a histogram
of orientations throughout the action sequence. These are
binned into six 30◦ features.

The second set of orientation features deals with multi-user
interactions. We define two interaction coefficients which
correspond to whether or not people are facing each other
in the room. The intuition is that if people are working to-
gether on a task, like for a procedure or communication,
they are more likely to be looking at each other. For each
person (up to 2), the interaction coefficients are the average
of the pairwise dot product of the orientation with each per-
son in the room at the time. The interaction coefficient is
computed as follows where f represents a feature, N is the
number of people in the room, t is time, v is the orientation
vector, and c is the current sequence:

fi=1..N =
1

T

T∑
t=1

~vc
t · ~vit (2)

Recognition
The feature vector from each action sequence is classified
independently with one of two techniques. The first is
a multi-class Support Vector Machine (SVM) using pair-
wise classifiers for each action. The second is a variant
of a Decision Forest (DF) called Extremely Randomized
Trees [13] which obtains the same accuracy as traditional
Forests but is more computationally efficient. Both meth-
ods are available using the SciKit-Learn machine learning
library [14]. Additional techniques looking at principal
components and manifold techniques were investigated but
ultimately did not show promising results.

Actions Samples SVM (%) DF (%)
Documenting 11 54.5 63.6
Observing 47 70.2 83.8
Checking up 28 64.3 74.2
Pf. Procedure 14 42.9 37.1
CFC 5 80.0 100.0
Using Ventilator 9 40.0 33.3
Other 8 50.0 55.0
Overall Avg 60.6 69.5

Table 1: Activity categories and the corresponding recog-
nition accuracies for each category. The results of the De-
cision Forest are an average over the search space.

Seven action categories were chosen by hand based on what
could be seen in the footage and what clinical research
has shown is important [1]. The categories are as fol-
lows: (1) Documentation, (2) Observing and communicat-
ing with others, (3) Checking up and taking diagnostics, (4)
Performing procedures, (5) Changing the Foley Catheter
(CFC), (6) Using the Ventilator, and (7) Other. Each of
these is represented between 5 and 47 times in our data.

Validation was done using a leave-one-out strategy. For
each iteration, all but one of the actions is used to train the
system and that one removed sequence is tested on. The
test set was then individually classified by the SVM and
DF classifiers.

Results and Discussion
Our results are based on a dataset from one day at the PICU
for a total of 5.5 hours of footage. This dataset includes
122 action sequences totaling 2 hours and 12 minutes of
care related interactions. During this period, many different
people enter the room including nurses, doctors, parents,
and other staff personnel. Each sequence was labeled as a
single action with the help of the patient’s attending doctor.

Automated Task Recognition
In table 1, we report accuracies. The leave-one-out proce-
dure is used for all reported results. Recognition accuracy
for each task category is calculated by averaging the num-
ber of action sequences correctly classified over the total
number of such sequences. The overall accuracy is the av-
erage of per-task accuracy weighted by the number of sam-
ples for each task in our dataset.

The SVM hyperparameter is set to C = 100 using grid
search on a coarse grid. A radial basis kernel was used in
all our experiments. Other kernels such as linear, polyno-
mial, and sigmoid were tested but did not perform as well.
For the DF, hyperparameters F , the maximum number of
features to be used in each tree and T , the total number
of trees must be pre-selected. To achieve optimal accuracy
while preventing over fitting we set F = 5 to use shallow
trees of maximum height 5. We report performance aver-
aged over T = {20, 25, 30, 40, 50}.
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The DF classifier consistently outperforms the SVM clas-
sifier. Average overall accuracies are 60.6% for the SVM
and 69.5% for the DF. Note that a chance classifier would
have yielded a much lower accuracy of 14.3%.

Figure 3 shows the relative importance of individual fea-
tures for our task. These correspond to learned weights for
the DF classifier with F = 5 and T = 20. A DF resam-
ples features in its trees based on these relative importance
weights. We see that all features have a significant impact,
although relative positional information from the proximity
sensors and center of mass are most highly weighted.

Task Summarization
Figure 4 depicts the distribution of each action category
over time. Each line represents an action from our dataset
marked by its start and end time. Each action is represented
twice: the hand-labeled actions are shown in red and the
classified actions based on the DF classifier with 20 trees1

are shown in blue. We see that the automatically recog-
nized labels match the hand-labeled labels closely. Signifi-
cant sources of error include misidentification of procedure
and ventilator related sequences. The procedure category
is a heterogeneous mixture of sequences as different pro-
cedures require different actions to be performed. Classi-
fication accuracy for this task will likely improve as more
training samples become available. Similarly, in our data,
little time was spent in front of the ventilator and a larger
training dataset should improve performance.

Several clinical insights can be gleaned from the analy-
sis shown in figure 4. In addition to showing when tasks
are typically performed, this representation also shows how
frequently these tasks are performed and whether there are
any patterns that suggest lapses in care. For example, the
Foley Catheter is supposed to be changed approximately

1These results do not vary significantly as the number of trees
in the DF classifier increases.

Figure 3: Importance weighting for each feature as used in
the Decision Forest. Path is path length, Prox is a Proxim-
ity Sensor, CoM is Center of Mass, Inter is an interaction
coefficient, and θ is a part of the orientation histogram.

Figure 5: Comparison of the duration of each kind of task
in our dataset based on the (red) hand-annotated tasks and
our (blue) automated system using the Decision Forest.

hourly though the recorded data shows that this is not the
case. One can argue our system could be used to generate
alerts for the caregiver when critical tasks are missed.

In figure 5, we show time spent on each task computed
using our automated logger versus using the physician la-
beled data. The two distributions are similar. In our data,
caregivers are present in the room for 41% of the time. As
expected, much of this time is spent checking up on pa-
tients.

Limitations in the size of the current dataset prevent us
from relying too much on the current results. By incorpo-
rating hundreds of hours of footage we believe the output
could be much more meaningful.

Conclusion
In this paper we have proposed a novel set of 3D sensing-
based algorithms that can be used to capture the processes
of care giving in the ICU. Our preliminary results show
that an automated task analysis system using non-invasive
depth range sensors has the potential to provide a highly
granular information capture useful for optimizing work-
flow, improving efficiency and increasing patient safety

We see several avenues for further development. Our cur-
rent single-sensor setup cannot capture a complete repre-
sentation of the ICU room. This results in some actions
that are performed outside the field of view of the sensor to
be mis-represented in the overall distribution of activities
shown in figure 5. By incorporating multiple depth sensors
we hope to form a more complete model of the room. From
a recognition standpoint, our current models are fairly sim-
ple and do not exploit the rich structure present in the ac-
tivity stream. For example, rather than learning a single
classifier for recognizing procedures, learning classifiers
geared towards individual procedures will likely improve
performance. Exploiting temporality in the sequence of
tasks performed may also improve our classification accu-
racy. The current system does not assign roles (nurses vs.
family vs. the attending doctor) to individuals in the room.
We think identifying these can help understand activity pat-
terns by roles of caregivers and how care is coordinated be-
tween them.
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Figure 4: Time and duration of events that happen in the ICU over the 5.5 hour span of our dataset. Each activity is split
into it’s corresponding action category. Red (top lines) represents the ground truth labels and blue (bottom lines) represents
the action labels output by the Decision Forest.

Our approach offers a significant departure from tools cur-
rently used for quality improvement and can be used to fill
in gaps in our understanding of the current clinical environ-
ment. While our results are not currently robust enough for
clinical use, we think with further improvements a similar
system could realistically be used in the ICU.
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