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ABSTRACT
Objective. To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities
(e.g. dislocations) from radiology reports.

Materials and Methods. 99 free-text reports of limb radiology examinations were acquired from an Australian public
hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician
resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb
structures. Automated methods were then used to extract features from these reports that could be useful for their
automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector
machine algorithm were formally evaluated using cross-fold validation over the 99 reports.

Results. Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the
radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well
as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter
feature has not been used in previous works that attempted classifying free-text radiology reports.

Discussion. Automated classification methods have proven effective at identifying fractures and other abnormalities
from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed
token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders.

Conclusion. This investigation shows early promising results and future work will further validate and strengthen the
proposed approaches.

INTRODUCTION
The misdiagnosis of patients true clinical condition due to misinterpretation of radiological evidence by the treating
doctor is an occasional problem in hospital emergency departments. There is always a time delay between real-time
reporting of the radiologist and clinical treatment by the Emergency Department clinician. The large amount of manual
processing of unstructured text is one of the main issues that can be resolved by technology enabled solutions.

A good example of a misdiagnosis issue is the identification of subtle limb fractures. Radiological evidence of limb
fractures, when subtle, can be missed by doctors working in the Emergency Department. The reporting of a frac-
ture by a radiologist may not occur in real time and therefore may not be available to the doctor treating a patient.
Consequently, patients may be sent home from the Emergency Department without appropriate treatment and follow
up. For example, Cameron1 reported that 2.1% of all fractures were not identified on their initial presentation to the
Emergency Department. Furthermore, Sprivulis and Frazer2 reported that 1.5% of all x-rays have abnormalities not
identified in the Emergency Department records. Similarly, Mounts et al. 3 reported that 5% and 2% of the x-rays of
the hand/fingers and ankle/foot from a paediatric Emergency Department had fractures missed by the treating doctor.
Although small, these percentages are not insignificant.

The need to reduce errors is well recognised4,5,6. To ensure a diagnosis is not missed, radiology reports are commonly
checked and patient records are reviewed, but this may not happen until days after the initial Emergency Department
presentation. The current clinical practice of identifying limb fractures from radiology reports is highly labour in-
tensive and is subject to human error or omissions. There is a need to streamline the process of identifying missed
limb-fracture for better patient healthcare outcomes. Technology enabled solutions that can streamline the diagnosis
identification would certainly improve efficiency in the existing process.
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De Bruijn et al. 7 have focused on automatically detecting free-text radiology reports that identify acute fractures of
the wrist. They reported that a support vector machine algorithm (SVM) was able to identify fractures in free-text
radiology notes, achieving an overall F-measure of 91.3%. While, Thomas et al. 8 developed a text search algorithm
that accurately classified radiology reports into the categories “fracture”, “normal” and “neither normal nor fracture”1.

In this paper we experiment with the automatic classification of free-text radiology reports for identifying fractures
and other abnormalities (e.g. dislocations) of limb structures using machine learning algorithms and features such as
bigram formed by stemmed tokens, negations, and SNOMED CT concepts extracted from the free-text.

OBJECTIVE
The existing process of determining accurate diagnosis of patients clinical condition from radiology reports is highly
manual and labour intensive. The cause of misdiagnosis could be due to delays between diagnosis of treating doctor
and response from the specialist radiology doctor whose expert opinion is needed to confirm the existence of certain
clinical conditions. Computer solutions that automatically identify fractures and other abnormalities from free-text
radiology reports would lessen these problems, providing time savings to doctors and hospital staff, as well as better
health care outcomes.

As a first step towards such solutions, in this paper we develop and formally evaluate automated computer algorithms,
based on machine learning, that attempt to identify fractures and other abnormalities, such as dislocations, from the
narrative of free-text radiology reports. This research makes a contribution in investigating machine learning methods
and features to reduce misdiagnosis errors from radiology reports.

MATERIALS AND METHODS

Data
A set of 99 free-text radiology reports of limb structures was acquired from the Emergency Department of a large
Australian public hospital. Ethics approval was granted by the Human Research Ethics Committee at Queensland
Health to use the non-identifying data. Free-text reports were short in length, containing on average 51.66 words, and
an (unstemmed) vocabulary comprising 930 unique words.

Free-text reports were manually annotated by an Emergency Medicine Registrar and a Medical Officer as being either
”normal” (e.g. the radiography does not exhibit a fracture of a limb structure) or ”abnormal” (e.g. a fracture is
identified in the radiography). A software tool was developed to assists clinicians in the recording of their interpretation
and to highlight the portion of text in the report that lead to their interpretation.

Initially, assessors agreed on the annotations of 77 reports, with 20 of the remaining 22 reports annotated as normal
by one assessor and abnormal by the other. A senior Staff Specialist in Emergency Medicine was then asked to act as
third assessor and resolve disagreements. It was found that the 20 reports the first assessor labelled as normal while the
second as abnormal referred to situations where patients with known fractures undertook a scheduled or unscheduled
review. The third assessor conveyed that these reports should be treated as abnormal cases. The remaining two reports
the initial assessors disagreed on were re-assessed by the third clinician; disagreement in these cases were not due to
patients with known fractures scheduled for review, but represented true errors made by one of the two first assessors.

While the Fleiss’ kappa () calculated on the initial set of annotations provided by the two first assessor is only
0.67 (95%CI 0.51-0.82), thus exhibiting moderate to substantial inter-rater reliability, it is recognised that errors were
mainly due to the fact that annotation guidelines did not specify how reports for the re-examination of known fractures
should be dealt with. If these errors are to be excluded, then a strong inter-rater reliability is found, achieving almost
perfect agreement. If an assessor were to be evaluated against the gold standard as created by the third senior clinician,
then the F-Measure averaged over the assessments of the first two clinicians would be 98.03%.

1Note that Thomas et al. 8 results are not directly comparable with those of De Bruijn et al. 7 or our results.
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Automatic Feature Extraction and Weighting
Machine learning algorithms require documents to be described by features. The text analysis capabilities of the
Medtex tool were developed to automatically extract features from the free-text radiology reports10. Medtex is a text
analysis system that has been previously used for classify cancer-notifiable pathology reports and produce a minimum
set of synoptic factors. A wide range of features were initially extracted, including

• token, i.e. a word found in a report
• punctuation
• token stem, i.e. the stemmed version of a word contained in a report
• token negation, i.e. the addition to the token string of a common prefix representing negation if the token was

negated in the text of a report; Medtex’s implementation of the ConText algorithm9 was used to identify negations
in free-text

• token stem bi-gram, i.e. a pair of adjacent stemmed words as found in a report
• token stem tri-gram, i.e. a 3-tuple of adjacent stemmed words contained in a report
• SNOMED CT concepts
• the fully specified terms of the extracted SNOMED CT concepts
• the fully specified terms of extracted SNOMED CT concepts restricted to morphologic abnormalities and disorders
• SNOMED CT concept bi-gram, i.e. a pair of adjacent SNOMED CT concepts as found in a report.

While a number of these features are commonly used for the classification of free-text documents, SNOMED CT
features have not been evaluated by previous works on classification of radiology reports. SNOMED CT provides
a clinical terminology which was used to map various descriptions of a clinical concept to a single standard clinical
terminology. In this work, the SNOMED CT ontology was used as an underlying mechanism to classify free-text
using semantically matching SNOMED CT concepts. Empirical results will show that SNOMED CT concepts, in
particular those referring to morphologic abnormalities (e.g. fracture, dislocation, etc.) and disorders (e.g. fracture of
bone, traumatic injury, etc.), may provide valuable evidence for representing free-text radiology report data. Table 1
provide an example of feature sets extracted from the free-text of the radiology reports.
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Document 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 ... 0
Document 2 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 ... 1

Table 1: Features extracted from two example free-text radiology reports; a 1 corresponds to the feature being present.
A number of weighting schemes for capturing the local importance of a feature in a report were tested. Binary
coefficients were used to encode the presence or absence of a feature. The weighting schema composed by the feature
frequency f(F) of feature F was used to capture the number of times a specific feature appeared within a document.
Variations of this schema were also experimented with. A first variation was to scale the appearance of feature F in a
free-text report by the function 1+log(f(F)) if f(F) � 1, and 0 if the feature was absent. This function would capture
the fact that little importance is given to subsequent appearances of a feature F in a radiology report: recall in fact
that the logarithm of a number greater than one flats out rapidly. A second variation was to assign increasing weights
to features that appear with high frequencies within a free-text radiology report. This was achieved by weighting
the appearance of feature F by the score ef(F), while a zero score was assigned to absent features. It is suggested
that, given the short length of the considered free-text radiology reports, the unexpected multiple appearance of a
feature would provide strong evidence for determining the presence or absence of abnormalities; using the exponential
function to weight the appearance of such feature would assign dominating scores to features that appear frequently
in a text. Note that only local weighting functions were used to assign scores to features, i.e. weights were computed
by only taking into account the frequencies of appearance of a feature in a text, ignoring thus the distribution of that
feature on a global level, i.e. in the dataset. This is because of the small size of the dataset and the prevalence of
features that are intuitively of key importance for the identification of abnormalities (e.g. the word ”fracture”).
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Automatic Classification Methodology
Three common classifiers were evaluated. (1) The multinomial Naive Bayes classifier determines a free-text report’s
class (i.e. normal or abnormal) according to the features that occur in the text and their weights. (2) The SMO
classifier is an implementation of a support vector machine (SVM) algorithm where training is performed according
to the sequential minimal optimisation algorithm and a polynomial kernel is used. (3) The SPegasos classifier is a
variation of the SVM algorithm, where a stochastic gradient descent algorithm and a hinge loss function are used to
train a linear SVM. Parameters of all three classifiers are set to the default values (see e.g. Witten et al. 11 for details).

Evaluation Methodology
Given the small size of the dataset, a 10-fold cross validation methodology was used to train and test the classification
algorithms. In this methodology, the dataset is randomly divided into 10 stratified folds of equal dimension (in our
case nine folds will contain ten reports, while the remaining fold will contain only nine reports). The model for each
classifier is then learnt on nine of these folds, leaving one fold out for testing the model. The process is repeated by
selecting a new fold for testing, while a new model is learnt from the remaining folds. Classification performances
are then averaged across the folds left out in each iteration. F-Measure was used as primary metric to evaluate the
efficacy of the implemented classifiers; accuracy, sensitivity (recall) and positive predictive value (precision) were also
recorded, along with the confusion matrix for the classifications (i.e. number of true positive, false negative, etc.)

RESULTS AND DISCUSSION
Not all features provided good classification effectiveness. We only report results for features that obtained the highest
performance; other features obtained an average F-Measure value across the classifiers lower than 75%. The results
obtained by the classifiers when attempting to identify fractures and other abnormalities of limb structures are reported
in Table 2 along with error intervals for the considered measures (at 95% confidence level). The reported features are
(stem) token stem along with token negations; (bigram) token stem bi-gram along with token negations; (SNOMED)
the fully specified terms of extracted SNOMED CT concepts restricted to morphologic abnormalities and disorders
along with their negations; (SNOMED+bigram) the combination of bigram and SNOMED), i.e. token stem bigrams
with negation information and SNOMED CT concepts (limited to morphologic abnormalities and disorders) with
negation information. Bolded results indicate the best values found for a given feature.

F Classifier Accuracy Positive Predicted Value Sensitivity F-Measure TP FN FP TN

st
em

NaiveBayes 82.83%(±1.05) 82.69%(±1.05) 84.31%(±1.01) 83.50%(±1.03) 43 8 9 39

SMO 76.77%(±1.17) 75.00%(±1.20) 82.35%(±1.06) 78.50%(±1.14) 42 9 14 34

SPegasos 80.81%(±1.09) 80.77%(±1.09) 82.35%(±1.06 81.55%(±1.08 42 9 10 38

bi
gr

am

NaiveBayes 91.92%(±0.75) 90.57%(±0.81) 94.12%(±0.65) 92.31%(±0.74) 48 3 5 43

SMO 85.86%(±0.96) 82.46%(±1.05) 92.16%(±0.75) 87.04%(±0.93) 47 4 10 38

SPegasos 82.83%(±1.04) 82.69%(±1.05) 84.31%(±1.01) 83.50%(±1.03) 43 8 9 39

SN
O

M
ED

NaiveBayes 71.72%(±1.24) 67.16%(±1.30) 88.24%(±0.89) 76.27%(±1.18) 45 6 22 26

SMO 74.75%(±1.20) 82.50%(±1.05) 64.71%(±1.32) 72.53%(±1.24) 33 18 7 41

SPegasos 78.79%(±1.13) 87.50%(±0.92) 68.63%(±1.29) 76.92%(±1.17) 35 16 5 43

SN
O

M
ED

+b
ig

ra
m

NaiveBayes 91.92%(±0.75) 92.16%(±0.75) 92.16%(±0.75) 92.16%(±0.75) 47 4 4 44

SMO 86.87%(±0.93) 83.93%(±1.02) 92.16%(±0.75) 87.85%(±0.91) 47 4 9 39

SPegasos 83.84%(±1.02) 84.31%(±1.01) 84.31%(±1.01) 84.31%(±1.01) 43 8 8 40

Table 2: Experimental results obtained by three machine learning classifiers when identifying fractures and other abnormalities
in free-text radiology reports. Confidence interval scores at 95% are reported in brackets along the values of Accuracy, Positive
Predicted Value (Precision) and Sensitivity (Recall) achieved by the classifiers. True positive (TP), false negative (FN), false positive
(FP), and true negative (TN) values are also reported for reference; a positive value refers to the absence of a fracture.
The multinomial Naive Bayes classifier is found to achieve the best overall performance when using bigram or
SNOMED+bigram features (no statistical significant differences were found between the performance of the two
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models when using a paired t-test with p = .05). Although the overall performance of this classifier using these two
different set of features do not exhibit statistical significant differences, some of the prediction errors do actually dif-
fer. This suggests that SNOMED CT features do extract semantic information that, used in combination with textual
information in the form of bigrams, may provide enhancements in the performance of a classifier trained using only
bigram features. How these two features should be integrated to enhance classification performance is still an open
question. The use of different weighing schemas for each of the extracted feature may be a viable solution.

It is also important to note that the negation feature was consistently used across all feature sets reported in Table 2.
This affirms the importance of capturing negations from free-text to correctly identifying the presence or absence of
fractures and other abnormalities. Feature sets that did not comprise negations perform significantly lower than their
counterparts that included negations (not shown in Table 2).

CONCLUSIONS
The automatic identification of fractures or other abnormalities in free-text radiology reports was studied in this paper.
Machine learning algorithms and a wide range of features were tested on a set of 99 radiology reports of limb struc-
tures obtained from a large Emergency Department. It was found that automatic techniques based on machine learning
algorithms and a combination of stemmed token bigram features, negation features, and SNOMED CT concept fea-
tures related to morphologic abnormalities and disorders, could classify radiology reports with high efficacy (up to
92.31% F-Measure). While these early results are promising, further work is needed to reach similar performance to
those of expert clinicians (i.e. F-Measure of 98.03%).

Further work is therefore needed to provide an automated solution able to identify fractures and other abnormalities
from free-text with the same accuracy as expert clinicians. To this aim, future investigation will be directed towards
testing the described classifiers and features on larger free-text radiology datasets, as well as studing how the promising
combination of bigram and SNOMED CT features may be enhanced.

Acknowledgement
This research was supported by the Queensland Emergency Medicine Research Foundation Grant, EMPJ-11-158-Chu-Radiology.

References

1. Cameron MG. Missed fractures in the emergency department. Emerg Med (Fremantle), 6:3, 1994.
2. Sprivulis P. and Frazer A. Same-day x-ray reporting is not needed in well supervised emergency departments.

Emerg Med (Fremantle), 13:194–197, 2001.
3. Mounts J., Clingenpeel J., andE. Byers E. McGuire and Kireeva Y. Most frequently missed fractures in the

emergency department. Clin Pediatr (Phila), 50:183–186, 2011.
4. James M. R., Bracegirdle A. and Yates D. W. X-ray reporting in accident and emergency departments – an area

for improvements in efficiency. Arch Emerg Med, 8:266–270, 1991.
5. Saab M., Stuart J., Randall P. and Southworth S. X-ray reporting in accident and emergency departments –

reducing errors. Eur J Emerg Med, 4:213–216, 1997.
6. Siegel E., Groleau G., Reiner B. and Stair T. Computerized follow-up of discrepancies in image interpretation

between emergency and radiology departments. J Digit Imaging, 11:18–20, 1998.
7. De Bruijn B., Cranney A., O’Donnell S., Martin J.D. and Forster A.J. Identifying wrist fracture patients with high

accuracy by automatic categorization of x-ray reports. JAMIA, 13(6):696–698, 2006.
8. Thomas B.J., Ouellette H., Halpern E.F. and Rosenthal D.I. Automated computer-assisted categorization of radi-

ology reports. American Journal of Roentgenology, 184(2):687–690, 2005.
9. Chapman W.W., Chu D. and Dowling J.N. Context: An algorithm for identifying contextual features from clinical

text. In Proceedings of the Workshop on BioNLP 2007, pages 81–88. ACL, 2007.
10. Nguyen A., Moore J., Lawley M., Hansen D. and Colquist S. Automatic extraction of cancer characteristics from

free-text pathology reports for cancer notifications. In Health Informatics Conference, pages 117–124, 2011.
11. Witten I.H., Frank E. and Hall M.A. Data Mining: Practical Machine Learning Tools and Techniques: Practical

Machine Learning Tools and Techniques. Morgan Kaufmann, 2011.

304


