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Abstract 

The increasing adoption of electronic health records (EHRs) due to Meaningful Use is providing unprecedented 
opportunities to enable secondary use of EHR data. Significant emphasis is being given to the development of 
algorithms and methods for phenotype extraction from EHRs to facilitate population-based studies for clinical and 
translational research. While preliminary work has shown demonstrable progress, it is becoming increasingly clear 
that developing, implementing and testing phenotyping algorithms is a time- and resource-intensive process. To this 
end, in this manuscript we propose an efficient machine learning technique—distributional associational rule 
mining (ARM)—for semi-automatic modeling of phenotyping algorithms. ARM provides a highly efficient and robust 
framework for discovering the most predictive set of phenotype definition criteria and rules from large datasets, and 
compared to other machine learning techniques, such as logistic regression and support vector machines, our 
preliminary results indicate not only significantly improved performance, but also generation of rule patterns that 
are amenable to human interpretation.  

1. Introduction 

With increasing adoption of electronic health records (EHRs), there is a growing attention in developing tools and 
methods for automatically identifying subjects that match a clinical trial or research protocol criteria. Typically, this 
is achieved by first defining the phenotype definition criteria in an algorithmic fashion, followed by the algorithm 
implementation within an institution’s EHR system for inexpensively and automatically generating a list of subjects 
that possess the desired phenotypic traits. Several national efforts, including eMERGE1, SHARP2 and PGRN3, have 
demonstrated the applicability of secondary use of EHR towards high-throughput phenotype extraction. Yet the 
development of EHR-based phenotyping algorithms is a non-trivial and highly iterative process involving domain 
experts and data analysts. It is therefore desirable to develop methods that can semi-automatically generate 
phenotype definition criteria using existing EHR data, and potentially facilitate the algorithm development process. 
In particular, there is a growing need to develop methods that can reduce the significant initial effort and 
involvement of human experts in the algorithm development process, and instead focus on algorithm validation and 
implementation on large EHR systems. 

To address this requirement, we extend distributional association rule mining (ARM) for semi-automatic 
generation for EHR-based phenotyping algorithms. ARM provides an exhaustive, although highly-efficient and 
robust methodology for discovering the most significant and predictive definitional criteria for a particular 
phenotypic trait. Our work is inspired by early results from Liao et al4 where the authors develop an electronic 
algorithm to identify rheumatoid arthritis patients using logistic regression and natural language processing (NLP) 
techniques operating on billing codes, laboratory and medication data, achieving a 94% positive predictive value 
(PPV) and sensitivity of 63%. In a similar effort, Carroll et al5, 6 have applied Support Vector Machines (SVMs) to 
both non-curated and expert-defined collections of EHR features to identify Rheumatoid Arthritis cases using billing 
codes, medication exposures, and NLP-derived concepts as features. The authors report that SVMs trained on non-
curated and expert-defined data outperformed an existing handcrafted algorithm. In this manuscript, using Type 2 
Diabetes Mellitus (T2DM) as a use-case, we demonstrate that ARM not only performs significantly better compared 
to logistic regression and SVMs, but also has the added advantage of generating rule patterns that are amenable to 
human interpretation. In what follows, we provide a brief background on our overall approach and the methods 
developed, followed my preliminary results in applying ARM for modeling a T2DM EHR-phenotyping algorithm. 

 
2. Materials and Methods 

2.1 Distributional Association Rule 

According to Simon et al.7, Distribution Association Rule Mining is the problem of discovering associations in a 
large database efficiently.  A distributional association rule is a rule representing logical implications. Following 
the formal definition given by Agrawal et al7, for a set of n binary attributes I = {i1,i2,…,in}, called items, a rule is 
defined as an implication of the form X ⇒ Y where, X, Y ⊆ I and X ∩ Y = ∅ in some event (often called transaction). 
The set of items (itemsets for short) X and Y are called antecedent and consequent of the rule respectively. 
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In a clinical setting, as illustrated in Table 1 the consequent Y corresponds to the disease outcome (for a patient) 
and the antecedent X corresponds to a combination of (binary) predictors:  presence 
of abnormal lab results, diagnosis codes, medications, procedures and other 
pertinent information The set of predictors in the antecedent divides the patient 
population into two subpopulations: (i) the set of patients to whom all the predictors 
apply and (ii) the remaining patients (to whom at least one of the predictors does 
not apply).  Take diabetes prediction, for example. The rule {HTN, obesity ⇒ 
Diabetes} applies to patients who are obese and have been diagnosed with 
hypertension. The rule implies that this subpopulation has statistically significantly 

higher risk of diabetes than the subpopulation to which it does not apply (namely, patients who are not obese and/or 
are not hypertensive).  The statistical significance of the rules is measured by the Wilcoxon test. The output of 
distributional association rule mining is the set of all distributional association rules.  Moreover, for all rules, the 
subpopulation to which the rule applies must contain at least minsup disease cases. As a user-defined threshold, 
minsup starts with an arbitrary choice and with some considerations of computationally easy, like random sampling 
in initializing a statistical model.   Efficient algorithms to compute all association rules are described in Simon et al7, 

8and Agrawal et al7.  

2.2 Making predictions using distributional association rules 

Distributional association rule mining is exhaustive in nature and discovers all significant association rules.  The 
number of discovered rules can be combinatorial. Also the set of conditions in the rules can be overlapping and 
hence the subpopulations to which the rules apply can also be overlapping. In the clinical setting, to each patient, 
zero, one or more rules may apply.  To make a prediction for a patient, we first find the most appropriate rule and 
then compute the prediction using that rule.  

First, let us consider the problem of computing the prediction for a rule. We define the prediction by the rule as 
the mean risk (probability of diabetes) of the subpopulation to which the rule applies.  The mean risk of a 
subpopulation is a statistically sound estimate and performs well as long as the subpopulation is homogeneous. 

Ensuring homogeneity within a 
subpopulation drives our choice for the most 
appropriate rule. When no rule applies to a 
patient, we cannot ensure the homogeneity of 
the population, and we just return a default 
prediction, which is the mean risk of the 
entire study population. When only a single 
rule applies to a patient, the prediction for 
that patient is the prediction by that single 
rule: the mean probability of diabetes 
computed over the patients to whom the rule 
applies. 

When multiple rules apply to a patient, 
we choose the most specific rule, that is, the 
rule involving the highest number of 
predictors.  Intuitively, the rule with the 
highest number of conditions is the most 
likely to define a homogeneous patient 
subpopulation.  Recall, that no matter how 
specific the rule, it applies to at least minsup 
cases (and some controls), thus it provides us 
with a reliable estimate of the subpopulation 
mean risk. Once we obtain a probability 

estimate for diabetes, we assign a label of ‘diabetic’, ‘normal’ or ‘unknown’ to each patient. 
2.3 Data Preparation for this study 
To demonstrate the feasibility of our approach, we used T2DM as our use case and the patient cohort (N=2581) 
from our existing eMERGE study9 on peripheral arterial disease (see Table 2) While the EHR data available for 
this cohort comprises demographics, hospital admission and discharge notes, progress notes, outpatient clinical 
notes, medication prescription records, radiology reports, laboratory data and billing and administrative data, for 
developing the ARM model, we only used demographics, billing data and lab measurements. Since ARM is a 
supervised learning model, and hence requires appropriate class labels for the training data, we first executed the 

Table 1 Example of ARM 
Diabetes HTN OB 

True Yes   Yes 
False No No 
False No Yes 

 

Table 2 Demographic Characteristics-Peripheral Arterial Disease 
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eMERGE T2DM algorithm10 to identify “T2DM cases” and “T2DM controls”. These assigned labels were further 
validated with a T2DM rule-based algorithm developed internally by local domain experts at Mayo Clinic to provide 
a very high level of confidence in the correctness of the labels.  
2.4 Item/Feature Extractions and ARM Model Building 
For ARM, like any other machine learning models, it is essential to find good features (items in ARM terminology). 
For our T2DM use case in this study, we extracted all diagnosis and lab data as well as the class labels for the 
eMERGE patient cohort (N=2581). Diagnosis data includes 150 different CPT-4 codes, 15 SDIAG (secondary use 
diagnosis) codes and 15 SPROCO (secondary use procedure)  codes, while lab test data comprised 32 different lab 
measurements relevant for Diabetes. We used AHRQ’s (Agency for Healthcare Research and Quality) Clinical 
Classification Software11 to classify the entire diagnosis data into 250 distinct categories. Since items are binary 
features, we dichotomized the features into ‘yes’ or ‘no’ as follows:  For a diagnosis code, the dichotomized feature 
indicates the presence of the diagnosis code; and for a laboratory result, the dichotomized feature indicates abnormal 
results—a measurement outside the healthy range.  
ARM aims to discover all rules—combinations of diagnosis codes and/or abnormal (unhealthy) laboratory results 
that indicate increased risk (probability) of diabetes. To this end, ARM utilizes the Apriori algorithm, which 
discovers these combinations through exhaustive enumeration.  Conceptually, it first considers individual items that 
apply to at least minsup diabetes cases.  Then it iteratively proceeds to pairs, triplets and higher-order sets of items.  
The algorithm terminates, when no more itemsets can be generated that applies to at least minsup diabetes cases. 
ARM only reports those itemsets as rules, where the affected patients (patients to who present all the diagnosis code 
and abnormal lab results in the itemset) have statistically significantly higher risk of diabetes than the unaffected 
patients.  Bonferroni correction is used to adjust for simultaneous hypothesis testing. 
 
3. Results 

We start our evaluation by establishing a baseline. A naive method to find 
diabetic patients is to search the EHR repository for diabetes-related diagnosis 
codes. Specifically, we construct a baseline classifier, which predicts a patient 
to be diabetic if it finds one of the diagnosis codes in the AHRQ group of 
‘diabetes mellitus without complications’. Table 3 resents the confusion matrix 
of this naive classifier. The rows of the table correspond to the predicted 
diabetes status and the columns correspond to the actual outcome. Among 1613 
patients with no diabetes, 1572 are correctly predicted to not have diabetes.  

Among 966 patients who are labeled as true diabetic, 945 are correctly predicted to be diabetic. Hence, in our data 
set, the precision of the baseline classifier is 0.866 and its recall is 0.969, making it a reasonable classifier.  
 
3.1 The ARM Model 

While the baseline classifier 
achieves reasonably high 
precision and recall, for the 
purpose of phenotyping, 
such performance may be 
insufficient.  Recall that 
ARM has a single parameter, 
minsup, denoting the number 

of cases (diabetic patients) that needs to be determined.  This parameter controls how tightly the model fits the data.  
If minsup is high, only the most obvious rules are found; if it is low, the model may “overfit” the data: coincidental 
rules can be discovered. In our work, we use 208 as the minsup, which is one sixth of the total number of patients 
(1295 patients in total in the training set). For this study, ARM discovered 1159 rules. In Table 4 we report the 5 rules 
with the highest precision. The columns of the table include Support, SupportD, Precision and Item set. Support 
refers to the number of patients to whom the antecedent of each AR (association rule) applies, while SupportD refers 
to the number of cases (diabetic patients) to whom that antecedent of each AR applies.  The precision of a rule is the 
fraction of cases among the patient to whom the rule applies.  In other words, precision is supportD divided by 
support.  The item set denotes the set of conditions that the antecedent of the rule is comprised of.  The meaning of 
these conditions and the number of rules that utilized these conditions are listed in Table 5.  

 
 
       True DM  
Dx Code 

No  Yes 

No  1470 30 
Yes 145 936 
 

Table 4 Top Rules Ranking List 
NO. Support SupportD Precision Item set 

1 281 270 0.961 V48 V86 V142 V245 V82080 
2 280 269 0.96 V48 V57 V74 V86 V245 V82080 
3 274 263 0.95 V48 V52 V57 V74 V244 V246 V82080 
4 278 263 0.94 V48 V52 V57 V87 V82080 
5 278 263 0.94 V48 V57 V86 V216 V221 V82080 

 

Table 3 CM (Confusion Matrix) for 
V48 vs Label 

144



  

All of the top 5 rules (involving 12 items) have a 
precision higher than 94% and all of them include 
the item V48 (Diabetes mellitur without 
complication) and V82080 (Hemoglobin A1c, B). 
Recall, that the naïve classifier uses only the 
diabetes diagnosis code and achieved a precision 
of .866.  All of the top rules achieved precision 
higher than that of the naïve classifier, suggesting 
that at least some of the extra conditions (on top 
of the diagnosis code) contribute positively.  
Intuitively, the extra conditions indeed are 
indicative of T2DM: renal failure, increased risk 
of fracture, decreased wound healing—are all 
coincident with or are outright consequences of 
diabetes. 
3.2 Comparison with State-of-the-Art Machine 

Learning and Statistical Models 
In order to make comprehensive comparisons, we run the dataset with logistic regression, decision-tree (DT) and 
SVM besides ARM with the same set of features. We use the R statistical computing environment. In total, our 
dataset comprised of 2581 patient subjects that were randomly split into two halves, with half of them serving as 
training data and the other half as testing data. We ran 10 fold cross validations on the training data, and used the 
trained model for making predictions on the testing dataset. Instead of a binary label for T2DM outcome, all four 
models compute the probability of diabetes.  To transform a probability into a binary label, we can use a cutoff: we 
predict that a patient is diabetic if his probability of diabetes exceeds thus use-supplied cutoff. By changing this 
cutoff, we can adjust the prediction to better fit the requirements: we can select a high cutoff, when higher precision 
is required; or we can select a lower cutoff when higher recall is required. 

Table 6 shows the results for the four models at three different values of cutoff. Among the four models, ARM 
obtained the best results. When its cutoff is 0.92, ARM has well-balanced recall and precision: both as high as 0.89. 

Thus, its F-score is 0.895. Note that the highest F-score for ARM is 0.914, 
which is attained at a cutoff of 0.95. The most comparable model is decision 
tree (DT). It is similarly interpretable as ARM and also has similar and 
balanced performance.  It is, however, instructive to point out that whenever 
the precisions of ARM and DT are similar, the recall of DT tends to be a little 
lower. Decision trees are constructed through recursively partitioning the 
patients into two groups without overlap such that one group is enriched with 
cases and the other with controls. Consequently, each patient can be classified 
by at most a single leaf in the tree.  In contrast, many association rules may 
apply to the same patient.  This allows association rules to “re-use” patients, 
and hence estimate probabilities of diabetes from larger samples.  When the 
number of cases in a leaf is too small, it is not possible for a decision tree to 

reliably divide that node further and still robustly estimate the probability of 
diabetes.  Therefore, these cases are misclassified, resulting in a slightly lower 

recall for decision trees 
sthe cutoff at 0.9, then we classify all patients with a predicted probability of diabetes at or above 0.9 as diabetic.  
Since all patients who are predicted diabetic have a predicted probability of diabetes of at least 0.9, the precision of 
the classifier should be at or above 0.9. For ARM, the difference between the cutoff and the achieved precision is 
relatively small, but for the other models, the difference can be very large.  This indicates that the competing models 
have difficulty in assessing the probability of diabetes for patients with high true probability of diabetes.  In a 

Table 6 Measure Metrics for All Models 
Model ARM DT LR SVM 

cutoff 0.95 0.93 0.92 0.88 0.75 0.70 0.95 0.7 0.6 0.7 0.6 0.55 

Precision 0.9 0.887 0.868 0.903 0.888 0.881 0.904 0.889 0.883 0.904 0.893 0.881 

Recall 0.112 0.894 0.966 0.812 0.889 0.925 0.693 0.796 0.819 0.784 0.858 0.878 

F-score 0.199 0.895 0.914 0.855 0.8885 0.902 0.785 0.840 0.849 0.839 0.875 0.879 

 

Table 5 Meaning and ranking of Items 
Items Times Diagnosis Meaning 
V48 5 Diabetes mellitus without complication 
V82080 5 Hemoglobin A1c, B 
V57 4 Deficiency and other anemia 
V86 3 Hypertension with complications and secondary 

hypertension 
V74 2 Retinal detachments; defects; vascular occlusion; 

and retinopathy 
V52 2 Gout and other crystal arthropathies 
V245 2 Residual codes; unclassified 
V246 1 Adjustment disorders 
V221 1 Open wounds of head; neck; and trunk 
V216 1 Other fractures 
V244 1 Other screening for suspected conditions (not 

mental disorders or infectious diseases) 
V142 1 Acute and unspecified renal failure 
 

Figure 1 ROC curve for ARM and SVM 
classifiers 
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general application, this issue would not be of practical importance, but in our phenotyping application, the patients 
we aim to find are precisely the patients with high probability of diabetes.  

Another standard technique to compare classification models is ROC curves12  Furthermore, it is also the 
primary tool for selecting a good cutoff. To avoid clutter, in Figure 1 we show the ROC curves only for ARM and 
SVM. As we expect based on the similar F scores, for the most part, the two ROC curves are overlapping.  Where 
they differ is in the top left corner—the section of the ROC curve where cutoffs are selected from.  In other words, 
since the difference in performance is concentrated on the narrow range where cutoffs are typically selected from, 
the small difference in performance that we saw in Table 5, translates to real-world performance difference.  
4. Conclusion and Future Work 
In this paper, we present a machine-learning framework to do semi-automatic phenotyping algorithm development 
using EHR data at Mayo Clinic. Our framework—distributional ARM—is a supervised learning technique that is 
not only scalable with large datasets, but is also robust and efficient. As part of our T2DM use case, we demonstrate 
its superior performance compared to traditional machine learning techniques. Furthermore, the rules generated from 
ARM are amenable to human interpretation. Without doubt, with the right feature engineering method, interpretable 
results can be extracted from all discussed models, however, ARM directly offers an interpretable model, which 
simplifies or even enables further refinements of the model. With the right minsup setting, ARM is computationally 
very efficient; all computation could be completed within a few seconds on a modern laptop computer. 

In our future work, we plan to expand and evaluate our approach on a range of phenotypes including 
rheumatoid arthritis and depression that include more complex patters, as well as more complex patterns and 
interactions between various algorithmic definition criteria. In addition, we will explore employing features or 
attributes from clinic notes obtained by deploying NLP tools and methods.  
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