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Abstract 
Physician orders, the concrete manifestation of clinical decision making, are enhanced by the distribution 

of clinical expertise in the form of order sets and corollary orders.  Conventional order sets are top-down distributed 

by committees of experts, limited by the cost of manual development, maintenance, and limited end-user awareness.  

An alternative explored here applies statistical data-mining to physician order data (>330K order instances from 

>1.4K inpatient encounters) to extract clinical expertise from the bottom-up.  This powers a corollary order 

suggestion engine using techniques analogous to commercial product recommendation systems (e.g., Amazon.com’s 

“Customers who bought this…” feature).  Compared to a simple benchmark, the item-based association method 

illustrated here improves order prediction precision from 13% to 18% and further to 28% by incorporating 

information on the temporal relationship between orders.  Incorporating statistics on conditional order frequency 

ratios further refines recommendations beyond just “common” orders to those relevant to a specific clinical context. 

Introduction 
In the course of clinical care, a physician may consider a broad differential diagnosis for a patient’s 

complaints and weigh the relative risks and benefits of many interventions.  Ultimately however, physician orders 

(e.g., labs, imaging, medications) are the concrete manifestation of clinical decision making.  Clinical orders can be 

enhanced with order sets and corollary orders that link commonly co-occurring orders.  These may revolve around 

processes, such as the steps to completing a blood transfusion or heparin protocol, or clinical scenarios, such as 

standard diagnostics and therapeutics to approach a patient with chest pain or pneumonia.   

Implementation of order sets and similar clinical decision support systems (CDSS) in an electronic medical 

record (EMR) with computerized physician order entry (CPOE) helps reinforce consistency among practitioners and 

support compliance with best-practice guidelines[1][2].  While order sets and corollary orders can greatly benefit 

clinical practice, a top-down distribution model limits their benefit.  The high cost of manually developing and 

maintaining them by a committee of subject matter experts ensures that only a finite number are ever produced and 

maintained[3].  Furthermore, even when useful order sets are produced, if they do not naturally integrate into the 

practicing community’s workflow, physicians will never look for them, let alone use them. 

An alternative approach to developing clinical decision support content is to instead extract hidden or 

otherwise undocumented clinical knowledge and expertise from the bottom-up, by data-mining for patterns in large 

corpuses of electronic medical record data[4].   

Background 
Prior work in automated order set and corollary order development has focused primarily on identifying 

correlations among orders[5] as well as work to associate orders and diagnoses[4].  More recent work has refined the 

association algorithms and attempted some validation by human experts[6].  Thus far however, there has been 

limited effort to utilize the temporal relationships between elements, analyze the results with internal validation 

measures, and in general to actually translate the results into actionable tools for clinical use. 

For comparison, similar techniques have been successfully applied for closely analogous problems in 

information retrieval with recommender systems[7], collaborative filtering, market basket analysis[5] and even 

natural language processing (NLP)[8].  By analogy to Amazon.com’s “Customers who bought A also bought B” 

recommender system[9], a physician order suggestion system could interact in real-time with a physician’s order 

entry workflow to infer their patient’s clinical context and advise “Based on prior usage patterns of physicians 

caring for similar patients who ordered A, X% also ordered B.” 

Our approach here is to apply statistical data-mining methods to historical physician orders to identify 

associations that can power such an order suggestion system.  This approach need not depend on the labor and 
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expense of a top-down authoring effort, instead more fluidly crowd-sourcing the expertise of practicing physicians 

and readily evolving with practice patterns as further clinical usage data is integrated.  Additionally, end-user 

physicians need not explicitly seek out relevant “order sets” to utilize the distributed expertise.  Instead, the system 

would more organically observe ordering behavior to infer patient clinical context and make suggestions a natural 

part of the clinical workflow. 

The method employed by Amazon.com’s core recommendation system, and the one largely employed in 

this work, is an item-based association method that assesses similarity between items based on the number of 

customers or patients that demonstrate co-occurrence of items.  This approach is particularly useful for its scalability 

against large user history records and catalogs of items to choose from.  After initial investment with an intensive 

pre-computation, item-based associations enable real-time suggestions with time complexity only O(m) where m is 

the number of prior items purchased / ordered for the current customer / patient, independent of the number of 

historical records. 

Methods 
The particular data analyzed for this work was extracted from the STRIDE project[10], collecting 2 weeks 

of inpatient admissions to the Stanford University Hospital representing >1,4K patient encounters and >330K 

instances of physician orders, starting from their initial (emergency room) encounter and ending with their hospital 

discharge.  These physician order instances, analogous to words in a document, derive from >4.3K unique orders, 

analogous to the vocabulary of words that are available.  These unique orders include >1.3K medication, >550 

laboratory, >350 imaging, and >500 nursing orders.  The medication order data was further normalized with 

RxNorm mappings[11] to emphasize only the qualitative information relevant for clinical decision making, 

including the active ingredients and routes of medications, while resolving out mixtures and ignoring dosages. 

With the above data, a pre-computation step collects statistics on physician order patterns, based on the 

definitions in Table 1.  The order suggestion system uses these ordering frequencies to approximate ordering 

probabilities that guide the suggestions based on Bayesian conditional probabilities[12].  Approximations used are 

outlined in Table 2. 

 

Table 1: Pre-computed 

statistics from analysis 

of physician order data.  

Repeats allowed in 

counting. 

Probability Estimate Notation / Notes 

P(A) nA / N baselineFreq(A) 

P(AB) nAB / N “Support.”  Note that this is not quite the joint probability because nAB only 

counts the directed association where order A occurs before B.   

P(B|A) = 

P(AB) / P(A) 

nAB / nA conditionalFreq(B|A) 

“Confidence.”  Interpret as percentage of patients with order B, given order A 

done.  Because repeat orders counted, may have values >1.  In such cases, 

interpret as average number of times B is ordered after A.  

P(B|A) / P (B) = 

P(AB) / P(A)*P(B) 

(nAB/nA) 

/ (nB/N) 

freqRatio(B|A) 

Estimates likelihood ratio.  Expect = 1, if A and B occur independently 

Table 2: Bayesian probability estimates based on order frequency statistics. 

 

Order suggestions are based on a patient’s initial query set of A orders, from which a ranked list of 

suggested B orders is produced, sorted by scores derived from the above probability estimates.  Specifically, given a 

query with nq items (number of query A orders), query for a separate suggested list of B orders for each query Ai 

order (scored by conditionalFreq(B|Ai)), then aggregate the suggested lists of B orders based on a weighted average 

of the individual list scores.  Aggregation weighting is based on the inverse frequency of each query item Ai, (wi = 

1/baselineFreq(Ai)).  This weighting method favors less common query items, which are expected to provide more 

specific suggestions 

With any recommendation approach, a validation metric is important to help assess the relative quality of 

different approaches.  Short of end-user observations and surveys however, there is no commonly accepted notion of 

recommendation quality[7].  Different methods are favored for different applications, with prediction accuracy being 

the most commonly employed off-line, internal validation metric.  In this scenario, a test patient’s initial orders are 

Notation Definition 

nA Number of occurrences of order A 

nABt Number of occurrences of order B following an order A within time t 

N Total number of patients / encounters 
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used to query for a set of recommended orders that are compared against the patient’s set of actual subsequent 

orders.  Several benchmark recommender methods are described in Table 3. 

Results 
Table 3 compares the benchmark recommender methods based on recommendation accuracy for the initial 

orders from a randomly selected set of test patients.  Figure 1 illustrates a similar analysis, charting the 

recommendation accuracy for all values of nq (number of query orders) up to 50.  Table 4 provides example 

recommended orders for given a query order (C. diff toxin assay) based on the NextDay method (ranking by 

conditionalFreq(B|A)day), with the respective scores for conditionalFreq(B|A)day, baselineFreq(B), and 

freqRatio(B|A)day.   

 

Method Recall Precision F1-Score   Method Description 

Random 0.3% 0.3% 0.3% Items randomly recommended from available catalog 

BaselineFreq 14.4% 13.2% 13.5% General “best seller” list, recommending overall most common orders 

ItemAssociation 19.8% 18.2% 18.7% Items ranked based on conditionalFreq(B|A) ~ P(B|A) 

NextDay 30.1% 27.8% 28.4% Same as above, but uses nABday (only counts co-occurrences <1 day) 

NextHour 23.8% 21.7% 22.2% Same as above, but uses nABhour 

Table 3: For 100 test patients, their first 20 orders are used as query items to get 10 recommended orders from each 

respective method.  These top 10 recommendations are compared against the actual next set of up to 10 orders for 

each patient.  Recall, precision, and F1-score is calculated for each method and averaged across all test patients. 

 

Figure 1: Recommendation accuracy 

for all values of nq (number of query 

orders, x-axis) up to 50, averaged 

across 50 test patients.  Data points 

calculated by recommending 10 

orders based on the first nq orders for 

a patient, and counting whether the 

(nq+1)
th
 order was recommended.  

Graphs represent the average across 

all test patients in point probability 

and cumulative distribution forms. 

Discussion 
This recommender system approach demonstrates how meaningful and practical clinical knowledge, 

similar to authored clinical order sets, can be extracted by statistical data-mining of computerized physician order 

entry data.  It does so by offering scored suggestions for related orders given initial query orders that can be 

observed naturally from a physician’s normal workflow.  Furthermore, it does this through automated analysis of 

large bodies of historical usage data from the bottom-up, enabling discovery and dissemination of expertise without 

the labor and expense of top-down authoring. 

Internal validation metrics from Table 3 demonstrate that the item-association method employed here can 

significantly improve the accuracy of predicting subsequent physician orders compared to simple baseline 

benchmarks.  Furthermore, these results confirm that incorporating the temporal relationship between orders can 

further improve suggestion accuracy.  This is reflected in the item-association recommender providing the best 

prediction results when limiting co-occurrence counts to only those order pairs that occurred within 1 day of each 

other.  This is sensible as orders co-occurring across a wider expanse of time are less likely to have a direct clinical 

relationship.  Of note, narrowing the time threshold further to only counting order pairs occurring within 1 hour of 

each other actually reduces prediction accuracy, indicating that too narrow a time frame will fail to capture the 

normal distribution of inter-order time variation.  The choice of nq (number of query orders) and nr (number of 

recommended orders) for the metrics in Table 3 are somewhat arbitrary, but Figure 1 provides reassurance that the 

trends remain consistent over different values of nq, and a value of nr = 10 seems a reasonable upper limit on the 

number of recommendations a human user would be willing to process in a live setting. 
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While prediction accuracy, primarily precision, correlates well with end-user satisfaction of recommendations[13], 

recommendations[13], the lack of a well-accepted notion for recommendation quality results in a difficult to resolve 

struggle between “common” vs. “interesting” suggestions.  Table 4 demonstrates the top suggestions based on the 

NextDay method using conditional frequency (recommending what is most common) given a common, non-specific 

query order for a C. diff toxin stool assay.  While the results are likely accurate in terms of predicting the most 

likely orders to follow, they mostly reflect orders that are very common overall, but which are not very interesting as 

suggestions.  A potential solution comes from the TF*IDF (term frequency * inverse document frequency) concept 

from natural language processing[8].  The frequency ratio approximates the likelihood ratio for a suggested item, 

with values >1 indicating orders more specific to the given context.  Simply using freqRatio(B|A) as a ranking 

method will yield non-useful results however, as it is overly sensitive to rare orders with baselineFreq approaching 

0, pointing towards order associations that are not statistically significant.   

Table 5 illustrates more intuitively meaningful and useful suggestions by combining metrics for 

commonality (conditionalFreq) and relevance (freqRatio).  While this and many other possible composite metrics 

may be useful, they re-introduce the challenge of internal validation.  In particular, once the scoring system 

recommends anything other than the most common expected items, prediction accuracy is no longer a valid metric 

as it will inherently perform worse in such cases. 

Table 4: Top suggestions when 

query by C. diff stool assay with 

the NextDay method, scoring 

and ranking by 

conditionalFreq(B|A)day.  This 

common query order yields non-

specific suggestions, reflecting 

orders that are simply common overall.  Example interpretations:  The first score column reflects 

conditionalFreq(B|A)day, indicating that, among patients for whom a C. diff stool assay is ordered, ~67% 

subsequently have an order for IV Sodium Chloride (saline).  The second score column reflects baselineFreq(B), 

indicating that, among all patients (baseline population), Basic Metabolic Panels are ordered an average of 2.1 times 

for each patient.  Note that these values may be >1 as repeat orders are each counted.  

 

Table 5: Top suggestions by C. diff stool 

assay, scored and ranked by 

conditionalFreq(B|A)day, but filtered to 

only include those with freqRatio(B|A)day 

>= 1.  Suggestions are more meaningfully 

associated with the query order, including 

diagnostics for diarrhea (stool culture, ova 

& parasites) as well as therapeutics and 

management for C. diff colitis 

(metronidazole, oral vancomycin, contact 

isolation, lactobacillus probiotics). 

Limitations and Future Directions 

Some natural concerns and limitations arise from using an automated recommender system for developing 

and distributing clinical expertise.  For example, a recommender system in the context of clinical care may increase 

costs by encouraging additional orders that may not be necessary.  This can be counter-balanced by using the same 

framework to intercept manual clinician orders with suggestions against orders established to be uncommon in such 

clinical contexts.  Perhaps the most pressing concern is that an automated suggestion method tends to only reinforce 

the most common practice patterns.  While this is useful for naturally adapting to local practice preferences with ease 

of integration into the source electronic medical record system, the concern is when the most common practice 

patterns are not actually the best.  In this case, there is an ongoing role for top-down expertise to review guidelines 

and shift practice patterns.  Even then, the statistics gleaned from this system’s analysis can be used to identify those 

scenarios where best practices are known, and yet the community practice patterns reflect divergent behavior, 

identifying opportunities for intervention. 

Other methods can take advantage of the system’s framework to answer public health questions such as 

inverting the query to start from adverse events (e.g., inpatient deaths) and “suggest” which orders and events tend 

  Frequency / Likelihood 

Rank Order Description Conditional Baseline Ratio 

1 Sodium Chloride (Intravenous) 0.67 3.44 0.19 

2 ISTAT G3+, ARTERIAL 0.38 1.84 0.20 

3 MAGNESIUM, SERUM/PLASMA 0.33 1.73 0.19 

4 Potassium Chloride (Intravenous) 0.33 1.54 0.22 

5 METABOLIC PANEL, BASIC 0.31 2.11 0.14 

   Frequency / Likelihood 

Rank Order Description Conditional Baseline Ratio 

1 Metronidazole (Oral) 0.14 0.05 2.56 

2 STOOL CULTURE 0.13 0.03 4.24 

3 CONTACT ISOLATION 0.12 0.06 1.97 

4 OVA AND PARASITES 0.10 0.02 4.07 

5 Metronidazole (Intravenous) 0.09 0.06 1.51 

6 Vancomycin (Oral) 0.06 0.02 3.19 

7 FUNGAL CULTURE AND KOH 0.05 0.04 1.36 

8 TRIGLYCERIDES, PLEURAL 0.03 0.02 1.33 

9 CMV IGM 0.03 0.02 1.70 

10 Lactobacillus Acidophilus (Oral) 0.03 0.02 1.33 
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to occur before the query event.  Future work will also enhance the quality of any suggestions by incorporating 

larger bodies of order data (several million order instances from a year’s worth of inpatient data) as well as 

incorporating non-order data to better define a patient’s specific clinical context, such as abnormal lab values, 

problem list / diagnosis codes, demographic information, and keywords extracted from clinical notes.   

In closing, this work reflects another step towards mature clinical decision support systems that will not 

only propose content for expert review, but directly and fluidly interact with a clinical workflow to optimize 

efficiency and improve quality of patient care, while adapting itself automatically to evolving practice patterns by 

extracting clinical knowledge and expertise from the ever growing body of electronic medical record data.   
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