
Monitoring photodynamic therapy of head and neck 
malignancies with optical spectroscopies 

Ulas Sunar

Ulas Sunar, Department of Cell Stress Biology and Oncology, 
PDT Center, Roswell Park Cancer Institute, Buffalo, New York, 
NY 14263, United States
Author contributions: Sunar U solely contributed to this paper.
Supported by RPCI Startup Grant (P30CA16056) and NCI 
CA55791
Correspondence to: Ulas Sunar, PhD, Department of Cell 
Stress Biology and Oncology, PDT Center, Roswell Park Cancer 
Institute, Elm and Carlton Streets, Buffalo, NY 14263, 
United States. ulas.sunar@roswellpark.org
Telephone: +1-716-8453311  Fax: +1-716-8458920
Received: March 6, 2013        Revised: April 2, 2013
Accepted: May 7, 2013
Published online: June 16, 2013

Abstract
In recent years there has been significant develop-
ments in photosensitizers (PSs), light sources and light 
delivery systems that have allowed decreasing the 
treatment time and skin phototoxicity resulting in more 
frequent use of photodynamic therapy (PDT) in the 
clinical settings. Compared to standard treatment ap-
proaches such as chemo-radiation and surgery, PDT has 
much reduced morbidity for head and neck malignan-
cies and is becoming an alternative treatment option. It 
can be used as an adjunct therapy to other treatment 
modalities without any additive cumulative side effects. 
Surface illumination can be an option for pre-malignant 
and early-stage malignancies while interstitial treat-
ment is for debulking of thick tumors in the head and 
neck region. PDT can achieve equivalent or greater 
efficacy in treating head and neck malignancies, sug-
gesting that it may be considered as a first line therapy 
in the future. Despite progressive development, clini-
cal PDT needs improvement in several topics for wider 
acceptance including standardization of protocols that 
involve the same administrated light and PS doses and 
establishing quantitative tools for PDT dosimetry plan-
ning and response monitoring. Quantitative measures 
such as optical parameters, PS concentration, tissue 
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oxygenation and blood flow are essential for accurate 
PDT dosimetry as well as PDT response monitoring and 
assessing therapy outcome. Unlike conventional imag-
ing modalities like magnetic resonance imaging, novel 
optical imaging techniques can quantify PDT-related 
parameters without any contrast agent administration 
and enable real-time assessment during PDT for provid-
ing fast feedback to clinicians. Ongoing developments 
in optical imaging offer the promise of optimization of 
PDT protocols with improved outcomes. 

© 2013 Baishideng. All rights reserved.
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Core tip: Most treatment approaches including chemo-
radiation and surgery can induce prolonged morbidity 
and functional loss resulting in severe impairment of 
patients’ quality of life. Photodynamic therapy (PDT) is 
an emerging alternative treatment option without any 
significant accumulative side effects due to targeted 
light illumination and preferential accumulation of pho-
tosensitizers (PSs). However, PDT has not found wide-
spread applications at the clinic mainly due to variable 
responses that originated from unstandardized treat-
ment protocols such as different light and PS doses. 
Novel optical imaging techniques can quantify PDT-
dosimetry related parameters such as local light and 
PS dose in tissue and PDT response related parameters 
such as tissue oxygenation and blood flow noninvasive-
ly without any contrast agent administration, thereby 
providing real-time feedback about the treatment ef-
ficacy for optimizing and standardizing PDT.
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INTRODUCTION
Head and neck malignancies refer to malignancies arising 
from the oral cavity, pharynx, nasal cavity and sinuses[1-3]. 
Head and neck squamous cell carcinoma (HNSCC), con-
stituting approximately 90% of  malignancies in the head 
and neck region, remains the fifth most common form 
of  cancer worldwide with an incidence of  approximately 
800000 new cases per year[4]. Most of  these tumors may 
be attributed to risk factors such as tobacco and alco-
hol consumption. HNSCC is a heterogeneous disease 
with different stages ranging from benign squamous 
hyperplasia, dysplasia, carcinoma in situ (CIS) to invasive 
carcinoma[3]. Early stage diagnosis and treatment of  HN-
SCC increases the likelihood of  successful treatment and 
improves patients’ quality of  life, lowers risk of  mortality 
and health costs[5,6].

Substantial efforts concentrate on early detection with 
fair success, but still many patients present with clinically 
evident tumors that require effective treatment[7]. Several 
treatment options are available including surgery, che-
motherapy, radiation therapy or combinations thereof[8]. 
In spite of  improvements in these treatment modalities, 
they have their own limitations. For example, surgery 
may require resection of  vital tissue such as part of  the 
tongue resulting in functional loss. On the other hand, 
organ-preserving surgery can result in high recurrence 
rates. Nonsurgical management with chemo and radiation 
therapies to improve local-regional disease results in only 
modest or suboptimal improvements in survival but with 
significantly high cost side effects including speech and 
swallow function[9]. These conventional therapies may 
induce permanent vasculature dysfunction and necrosis, 
severe toxicities and irreversible injuries to non-tumor tis-
sue such as the oral mucosa and the salivary glands, often 
resulting in morbidity and severe impairment of  patients’ 
quality of  life. Further, normal tissue toxicity such as mu-
cositis, bleeding and imflammation may lead to changes 
in applied dose quantity, and treatment re-schedule, 
which may affect treatment efficacy and outcome. For 
these reasons, an alternative treatment modality that is 
effective, safe, repeatable, minimally invasive and non-
surgical is desired for the management of  head and neck 
malignancies. 

Photodynamic therapy (PDT) uses light to activate a 
photosensitizer (PS) in the presence of  oxygen for local 
tissue destruction, has potential in these respects and is 
particularly attractive due to its significant level of  normal 
tissue preservation and its repeatability without cumula-
tive side effects[10]. It has potential impact particularly for 
cases with multiple lesions and wide-spread early stage 
head and neck diseases (e.g., leukoplakia, invasive carci-
noma) in the oral cavity[11]. However, PDT has not found 
widespread applications at the clinic mainly due to vari-
able responses that originated from unstandardized treat-
ment protocols such as different light and PS doses. Op-
tical imaging can quantify local light and PS dose in tissue 
and monitor PDT; and therefore can provide feedback 
about the treatment efficacy. Thus, we expect optical im-

aging modalities will help in optimizing and standardizing 
PDT. Below we will detail PDT treatment and optical 
imaging for monitoring and ultimately predicting PDT 
response.  

CLINICAL PDT
PDT is an emerging treatment option for many malignan-
cies including head and neck. It is minimally invasive with 
much less side effects compared to conventional therapies. 
Since it does not have any significant accumulative side ef-
fects, it can be repeated many times and be applied before 
or after chemotherapy, radiation therapy. It can also be 
used as an adjuvant therapy to these therapies and surgery 
to eliminate residual microscopic tumor cells. PDT light 
can be delivered at the surface for wide and superficial 
malignancies and pre-malignancies such as mucosal dys-
plasia and CIS in the oral cavity. Interstitial light delivery 
is applied in treating thick and deep tumors for the aim of  
debulking tumors as an adjuvant to surgery.

Basics of PDT 
PDT efficacy depends on three main elements: a suffi-
cient amount of  light, photosensitizing drug (also called 
PS) and available oxygen in tissue. The PS is activated 
during light illumination and the active PS reacts with 
molecular oxygen to produce singlet oxygen that induces 
direct cell killing, vascular destruction and immune re-
sponse[12,13]. Most PSs are administered systematically but 
some can be applied topically for head and neck lesions 
in the oral cavity and nonmelanoma skin tumors. After 
a specific time, depending on the PS itself, PS accumu-
lates specifically more in the diseased site compared to 
normal and surrounding periphery sites. Tumor to nor-
mal tissue contrast is generally 2-3 fold with a passive 
targeting mechanism, but even 10-fold contrast has been 
reported[14]. At the optimal time point of  accumulation, 
a specific wavelength of  light depending on the optical 
absorption properties of  the PS is shined at a predeter-
mined power to activate the PS to create a photodynamic 
reaction. Due to specific accumulation of  the PS and 
localized light illumination, PDT is a local therapy rather 
than a systemic therapy like chemotherapy. The treat-
ment volume depends on both PS and light penetration 
depth. For example, for the cases of  Photofrin®, which 
is the first FDA-approved PS that was developed here at 
Roswell Park Cancer Institute, light illumination is at ap-
proximately 630 nm with a penetration depth of  5 mm or 
less. Thus, Photofrin® has been in use worldwide to treat 
early stage carcinomas in many organs including the head 
and neck. 

Superficial and interstitial PDT approaches for head and 
neck diseases 
Previous studies have shown that PDT is safe and ef-
fective in the treatment of  early carcinomas of  the head 
and neck[2,10,11,13,14-35]. PDT is an excellent choice for early-
stage malignancies since local treatment and limited light 
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penetration eliminates the side effects that can occur in 
the sensitive areas of  the oral cavity such as soft palate. 
Lasers are the choice for the light sources and laser light 
is delivered via surface illumination by using a micro-lens 
as shown in Figure 1A. For deeper and thicker tumors, 
however, superficial illumination is not suitable. In this 
case, light is delivered by feeding laser fibers through 
needles placed directly into the tumor (Figure 1B). This 
approach is very similar to brachytherapy or interstitial 
radiotherapy[36,37].

CHALLENGES 
One of  the main challenges of  PDT is treating deeper 
and thicker tissues. However, this is not an issue for su-
perficial malignancies. Pain management is a frequently 
reported challenge[38]. Another common side effect of  
PDT is the long-term skin photosensitivity, especially for 
the cases of  systemic administration of  PSs such as Pho-
tofrin® (porfimer sodium). ALA-PDT is another widely 
used treatment option for early stage malignancies with 
much reduced skin photosensitization, but with the draw-
back of  severe pain during treatment, often necessitating 
anesthesia. Therefore, the development of  PSs that do 
not induce long-term photosensitivity, produce durable 
results and are patient friendly is of  significant clinical 
benefit. In this respect the second generation PSs, such as 
Photoclor (HPPH) used in our clinical trials, have shown 
clinical promise with their improved efficacy, higher pen-
etration depths and significantly less skin photosensitivity. 

Variable outcomes are the main roadblock to wider 
use of  PDT. The lack of  standardized protocols with the 
same light and PS type and doses, as well as imprecise 
dosimetry drives the variable PDT responses[36,37]. There 
is strong evidence that variations in clinical response are a 
direct result of  dosimetry that does not take into account 

individual differences[39]. In order to bring PDT to a full 
realization of  its potential benefits, quantitative tools are 
likely to play an essential role. They can provide standard-
ization of  site-specific individualized protocols by assess-
ing light and PS doses.

Another challenge for clinical PDT of  the head and 
neck is the difficulty in predicting the responders and 
non-responders[36]. Quantitative optical imaging tools can 
play a crucial role in filling this niche. These tools are cur-
rently in primitive stages and not widely used in clinical 
settings for monitoring PDT mainly because optical mea-
surements may require extra clinical time and extra fiber 
replacements during PDT. The techniques are limited to 
pre- and post-PDT measurements but with the advent 
of  new technologies they can be adapted for monitor-
ing during PDT, which would have three-fold benefits: 
(1) reduced required clinical time, (2) no interruptions 
of  treatment light for the optical measurements, and (3) 
more accurate quantification of  kinetics of  PDT-related 
parameters such as photobleaching and blood flow ki-
netics, which have been shown to be predictors of  PDT 
response[36,40-50].

CLINICAL OPTICAL IMAGING FOR PDT 
MONITORING
Tissue oxygen level is crucial for effective PDT since the 
PS initiates chemical reactions that result in cellular and 
vascular damage in targeted tissue in the presence of  
oxygen. Tissue oxygenation is highly affected by vascular 
parameters such as blood flow and blood oxygenation. 
During the PDT process, PS is consumed continuously. 
Thus, the efficacy of  PDT is dependent on the vascular 
parameters and PS level and consumption (photobleach-
ing)[50,51]. Vascular parameters and PS level change during 
PDT and these changes may be useful early markers for 
therapy response[36,44,52-54]. 

Optical imaging is a wide topic that includes many dif-
ferent imaging approaches. Here we will focus on a sub-
division called diffuse optical spectroscopies (DOS) for 
probing millimeter to centimeter deep tissue[55-61]. In this 
context, DOS includes diffuse reflectance spectroscopy 
(DRS)[62-67], diffuse fluorescence spectroscopy (DFS)[40,67-70] 
and diffuse correlation spectroscopy (DCS)[71,72]. We 
have recently developed a multi-modal optical imaging 
technique that combines DRS, DFS and DCS in a single 
instrument and showed the feasibility of  quantification 
of  optical parameters (absorption and scattering), drug 
concentration and vascular parameters such as blood 
flow and oxygenation in a clinical setting[44,73].

Multi-modal optical instrument 
The technical details of  our multi-modal optical system 
can be found elsewhere[44,73], but here we briefly mention 
the basic working principles. The instrument performs 
measurements sequentially in the order of  blood flow 
(DCS), optical parameters, blood oxygenation and vol-
ume (DRS), and fluorescence (DFS). Figure 2A and B 
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Figure 1  Representation for light delivery during surface and interstitial 
photodynamic therapy. A: Surface illumination photodynamic therapy (PDT) 
for treating superficial malignancies. Laser light is directed to tissue surface via 
micro-lens fiber. Tumor is located superficially; B: Interstitial PDT treatment for 
deeper and thicker malignancies. Individual fibers are placed inside 19-gauge 
needles and inserted into tissue. Number of fibers is selected according to 
treated volume.
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shows the picture and schematic diagram of  the instru-
ment, respectively. The DCS instrument has a 785 nm, 
long coherence length laser (Crysta Laser), four single 
photon-counting detectors (SPCD, Perkin-Elmer), and a 
custom-built autocorrelator board (Correlator.com). Pho-
todetector outputs were fed into a correlator board and 
intensity autocorrelation functions and photon arrival 
times were recorded by a computer. After blood flow 
measurements, the second laptop initiates fluorescence 
(DFS) and reflectance (DRS) data acquisition by utilizing 
TTL switching via a data acquisition card (DAQ, Nation-
al Instruments). In absorption (DRS) mode, broadband 
diffuse reflectance measurements were taken by exciting 
the tissue with tungsten halogen lamp (Ocean Optics) 
and collecting the light with the Master channel of  a two-
channel spectrometer (Ocean Optics). In fluorescence 
(DFS) mode, a 410 nm laser diode (Power Technology) 
excites the PS in Soret band and the slave channel of  the 
spectrometer collects the fluorescence spectra. 

A hand-held “surface” probe that holds the light 
source and detector fibers can be used for measuring 
superficial malignancies by directly placing the tip of  the 
probe on the tissue surface (Figure 2C). Although the 
instrument stays the same, the hand-held surface probe is 
ill-suited for interstitial light delivery and noninvasive mea-

surements and the probe-tissue interface must be changed 
accordingly. For an “interstitial” probe, source and detec-
tor fibers are placed inside a catheter (Figure 2D). 

Optical parameters and local light dose distribution by 
DRS 
Currently the standard PDT light dosimetry at the clin-
ics is based on the prescribed incident dose, which does 
not take into account reflected and scattered light in the 
lesion. Head and neck malignancies can exhibit a multi-
focal, wide-field nature of  invasion and they may occur at 
diverse sites (e.g., tongue, lip, palate, etc.). Therefore, they 
can have different optical parameters resulting in consid-
erable inter- and intra-patient variations in the deposited 
local dose[11]. It has been shown that the measured effec-
tive local dose can be more than 5-fold greater than the 
incident administrated dose, illustrating the need for in 
situ dose monitoring on an individual basis[39]. Dosimetry 
systems using isotropic light detectors to measure both 
incident and scattered light are becoming more available 
in clinical systems[36,37]. Multi-channel systems that can 
measure light dose at multiple points of  interest in real 
time can provide on-line feedback to clinicians during 
treatment planning.  

Tissue absorption and tissue scattering parameters 
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instrument; B: During the measurements at the operating room; C: Diagram of multi-modal clinical optical instrument; D: Interstitial optical probe for measurements in 
deep and thick tumors. Adapted from the reference[45] with the permission.
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modify light attenuation and thus affect the true light 
dose delivered to the whole three-dimensional tissue vol-
ume. Thus, direct light dose measurements may not be 
sufficient to quantify volumetric light distribution. Since 
malignancies can be highly heterogeneous, three dimen-
sional optical parameter mapping can show heterogeneity 
of  local light dose to the whole lesion volume. Several 
techniques are available for mapping of  optical param-
eters (optical absorption and scattering) in vivo. Most of  
them are based on the photon diffusion equation with 
multi source-detector separations. Photon fluence (rate) 
is measured as a function of  source-detector distance and 
measured data is fit to the diffusion model to extract op-
tical parameters.

Local PS dose distribution by DFS and DRS 
It has been demonstrated that PSs demonstrate signifi-
cant inter- and intra-patient heterogeneity in distribution, 
leading to variations in the accumulated PDT dose and 
treatment failures[36,74,75]. It has been also suggested that 
the variation of  the treatment outcome can be reduced 
by adjusting the light dose based on the pretreatment PS 
distribution so that PDT dose is uniform in the whole 
disease[36,75-78]. Although DRS can be used to quantify 
PS concentration by using the absorption peak of  PSs, 
DFS is the preferred choice for this aim, since the fluo-
rescence contrast is usually higher than the absorption 
contrast in vivo. However, fluorescence signal is affected 
by the tissue optical properties, and thus is not directly 
related to PS concentration. Ratiometric methods (with 
respect to optical attenuation and autofluorescence) may 
correct this signal distortion significantly[79,80]. More-
over, short source-detector separation (or single source-
detector) based optical probes and empirical calibration 
techniques that calibrate the system with respect to refer-
ence optical phantoms may allow quantification of  drug 
concentration. For quantifying PS concentration using 
DFS data, background subtracted fluorescence signal is 
usually normalized with the reflectance data obtained 
by DRS[65,66,70,81]. Fluorescence signal is assumed to be a 
linear combination of  contributing components (i.e., PS 
fluorescence, tissue autofluorescence, etc.). The normal-
ized tissue fluorescence is fit to the modeled tissue fluo-
rescence to extract PS concentration[44,73].

Tissue response monitoring by DRS and DCS 
Tissue oxygen is crucial for effective PDT[36,82-84]. Tissue 
oxygen, in turn, is affected by vascular parameters such 
as blood oxygenation, blood volume and blood flow[50,52]. 
Most PSs have significant vascular disrupting effects, and 
can create substantial vascular changes. All these param-
eters are inter-dependent to each other and can change 
continuously during PDT[4,36]. Blood flow changes during 
PDT correlated strongly with tumor growth delay, and 
blood oxygenation and volume changes were correlated 
with PDT outcome[50,52,85]. Moreover, PS photobleach-
ing has been shown to be a surrogate marker of  PDT 
response[40,86-90]. Therefore, continuous monitoring of  

these parameters could be useful for providing real-time 
treatment feedback, and may serve as quantitative in vivo 
markers for assessing treatment response[4,36,63]. 

For quantifying vascular parameters such as blood 
oxygenation and blood volume, an analytic diffuse reflec-
tance model can be utilized to fit the diffusion model to 
experimental diffuse reflectance data obtained by DRS. 
We assume tissue absorption is composed of  a linear 
contribution from oxy-hemoglobin and deoxyhemoglo-
bin in blood, and PS absorption. Blood volume is related 
to total hemoglobin concentration and is defined as the 
sum of  oxy-hemoglobin and dexoy-hemoglobin concen-
trations, and blood oxygen saturation is defined as the 
ratio of  oxy-hemoglobin concentration to total hemoglo-
bin concentration. Tissue scattering is usually modeled 
as Mie type behavior that is related to scatterer size and 
concentration[91]. A multi-wavelength fitting algorithm is 
usually used to directly extract the hemoglobin concentra-
tions or blood oxygen saturation and blood volume[63,92,93]. 
Blood oxygen saturation is related to tissue oxygen and 
hypoxia[52,94] and blood volume is related to microvessel 
density[95].

Tissue blood flow is measured using a previously 
described and validated DCS instrument, which mea-
sures rapid light intensity temporal fluctuations in tissue 
and then uses the autocorrelation functions associated 
with these fluctuations to extract information about the 
speed of  moving tissue scatterers, in this case red blood 
cells[44,49,96-101]. The decay rate of  the autocorrelation func-
tion is related to blood flow[99-101]. DCS is advantageous 
compared to conventional imaging modalities in that it 
measures directly blood cell movements and does not 
need any contrast agent administration and pharmacoki-
netic models to quantify blood flow.

A surrogate molecular marker for PDT efficacy
It is often desired to correlate noninvasive parameters 
with other techniques such as molecular biomarkers 
of  a treatment response. We have shown previously in 
preclinical models and clinical biopsy samples that the 
cross-linking of  the signal transducer and activator of  
transcription 3 (STAT3) correlates with the accumulated 
PDT dose and can be a quantitative biomarker of  cel-
lular killing[102,103]. The crosslinking is identified by im-
munoblot analysis for STAT3 protein in the extracts 
from tumor tissue sections calculated as homodimeric 
complex Ⅰ relative to total STAT3 signal[102,103]. We com-
pared our measured indices with the STAT3 crosslinking 
as showcased below.

A clinical case report 
In our previous work we demonstrated the assessment of  
PDT response-related multi-parameters of  blood flow, 
oxygenation, blood volume, PS concentration in the same 
clinical setting of  Photoclor (HPPH)-mediated PDT in 
head and neck lesions in the oral cavity[44]. We reported an 
interesting case where two patients had lesions treated with 
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the same administered PS dose (HPPH, 4.0 mg/m2) and a 
similar delivered light dose (approximately 125 J/cm2), but 
the accumulated local doses were more than 100-fold dif-
ferent as determined by the STAT3 crosslinking (Table 1). 
The first patient had a large CIS of  the hard palate on the 
roof  of  the mouth and PDT induced photoreaction with 
35% STAT3 crosslinking, and the second patient had high-
grade dysplasia in a papilloma of  the buccal mucosa with 
only 0.3% STAT3 crosslinking (Figure 3). We quantified 
local PDT-related parameters with diffuse optical methods 
to investigate whether this substantial difference could be 
detected noninvasively since these parameters can affect 
accumulated local dose.

As Table 1 summarizes, PDT-induced changes in the 
quantified optical parameters were significantly different 
between these lesions. Changes in PS concentration (∆
cHPPH), blood flow index (∆BFI) and blood volume 
fraction (∆BVf) were significantly higher in Patient-1 (P1) 
than in Patient-2 (P2), but the changes in blood oxygen 
saturation were similar for both patients, though the trend 
was different: P1 had an increase and P2 showed a de-
crease trend. 

We further investigated whether this difference could 
be observed before therapy by quantifying pre-PDT 
contrasts (mean ± SE) by noninvasive methods. All pa-
rameters except blood volume fraction were significantly 
different between the lesions (Table 2). The lesion of  P1 
had more favorable properties related to accumulated lo-
cal PDT dose, since its PS content as well as blood flow, 
blood volume and blood oxygen saturation were higher 
than P2.

Our results indicated that parameters quantified with 
DOS at pre-PDT as well as PDT-induced changes may be 
indicative of  local PDT reaction and may be in vivo predic-
tors of  PDT outcome. Since each parameter showed dif-
ferent contrast and therapy-induced changes, one param-
eter alone may not be a strong indicator of  PDT response 
and multi-parameters assessed by optical methods may 
provide accurate measure of  PDT response[44]. 

CONCLUSION
In summary, PDT is regarded as an emerging treatment 
option for the head and neck malignancies. PDT can be 
applied repetitively if  the previous treatment fails. With 
the advent of  newly developed PSs, specificity and pen-
etration depth can be improved. The simplicity of  the 
PDT treatment and reduced cost of  technology such as 
light sources and light delivery devices can help wide us-
age at the clinical settings. Moreover, there is a need for 
standardization of  clinical protocols by using the same 
light and drug types and doses. Novel optical methods 
can provide PDT-dose related parameters such as optical 
parameters and PS concentration in the whole lesion, as 
well as can quantify blood flow, oxygenation and PS pho-
tobleaching for assessing the PDT response and provid-
ing feedback to clinicians for optimization and standard-
ization of  PDT in clinics. 
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