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Abstract
Network measures assume a census of a well-bounded population. This level of coverage is rarely
achieved in practice, however, and we have only limited information on the robustness of network
measures to incomplete coverage. This paper examines the effect of node-level missingness on 4
classes of network measures: centrality, centralization, topology and homophily across a diverse
sample of 12 empirical networks. We use a Monte Carlo simulation process to generate data with
known levels of missingness and compare the resulting network scores to their known starting
values. As with past studies (Borgatti et al 2006; Kossinets 2006), we find that measurement bias
generally increases with more missing data. The exact rate and nature of this increase, however,
varies systematically across network measures. For example, betweenness and Bonacich
centralization are quite sensitive to missing data while closeness and in-degree are robust.
Similarly, while the tau statistic and distance are difficult to capture with missing data, transitivity
shows little bias even with very high levels of missingness. The results are also clearly dependent
on the features of the network. Larger, more centralized networks are generally more robust to
missing data, but this is especially true for centrality and centralization measures. More cohesive
networks are robust to missing data when measuring topological features but not when measuring
centralization. Overall, the results suggest that missing data may have quite large or quite small
effects on network measurement, depending on the type of network and the question being posed.
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1. Introduction
A common justification for network research is that, unlike traditional statistical approaches,
we do not pretend our respondents are independent. As Freeman (2004) points out in a quote
from Barton (1968):

“For the last thirty years, empirical social research has been dominated by the
sample survey. But as usually practiced, …, the survey is a sociological meat
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grinder, tearing the individual from his social context and guaranteeing that nobody
in the study interacts with anyone else in it.”

Social network researchers often make this point a little smugly – after all, social life is
connected, so why pretend otherwise? We are, however, less likely to tout the tradeoff
needed to capture network effects: in giving up independence, we also (usually) give up
sampling. As typically practiced1, network measures assume a census of the relevant
respondents and their relations (Wasserman and Faust, 1994; Laumann et al 1983). This
raises an obvious question: how robust are network measures when our observed sample is
incomplete?

This question is critically important for medium-sized settings where network measures are
used for building policy, such as within schools (Valente et al. 2003; Steglich et al. 2012) or
organizations (Moore et al. 2004). In these settings, the network is too large for an expert
informant to reliably describe and too small to make effective use of the sorts of macro-
structure regularities featured in extremely large networks (Albert and Barabasi 2002;
Newman, Watts and Strogatz 2002). In such cases, respondents may be absent the day of
survey administration or have opted-out of the survey for privacy reasons, leading to
potentially significant coverage error (Butts 2003). Every network has some level of this
error, but we are just beginning to get estimates of the bias these coverage errors introduce
(Wang et al. 2012; Huisman 2009; Borgatti et al 2006, Kossinets 2006, Costenbader &
Valente 2003, Galaskiewicz 1991).

Our goal with this set of studies is to extend network sample coverage research to help
provide simple, practical guidance for data collection and analysis.2 The more specific goals
are threefold: first, to describe the maximum level of missing data that will yield an
acceptable level of bias; second, to explain why some networks are more or less robust to
missing data than others; and third, to extend past work that has generally focused on a
single data type and/or measure. To that end, we will describe the effects of missingness on
more measures and across more diverse networks than previously studied. This will provide
researchers with a clear, sensible and interpretable guide to the effects of missing data across
a wide range of data types and measures.

Ultimately, we hope to identify the effects of different types of missingness and the
effectiveness of simple correction strategies over a diverse range of network structures to
provide practical research guidance to network researchers. Since this goal requires work
beyond the scope of a single paper, we approach the project in three parts. In this first study,
we examine measurement error under simple random missingness. There are multiple ways
in which missingness can be biased, but missing-at-random is a reasonable starting point
commonly used in other work (Borgatti et al 2006, Kossinets 2006, Costenbader & Valente
2003). Missing-at-random also provides a comparison for the non-random missingness we
explore in part II and matches recent advances in this line of work (Huisman 2009). Finally,
after laying the groundwork on the effects of missingness, we explore simple imputation
procedures designed to correct for missing data (part III), focusing on models that fill in
information from sampled respondents.

1There is, thankfully, a growing body of work on ways to sample networks and model sampled networks statistically. But, the vast
majority of practical work on network measurement still assumes population data.
2Of course, good theoretical models exist for estimating bias and even correcting it in some cases, once the data have been collected
(Butts 2003, Koskinen, Robins and Pattison 2010;Robins, Pattison and Woolcock 2004 ; Handcock and Gile 2010). But one wants to
know how much damage has been done before embarking on such corrections. Our goal is to provide everyday users with simple
guidelines aimed at helping plan a good study in the first place and assessing the potential damage done when data are missing.
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We begin this paper by describing past work on missing network data. We then describe the
networks used in the simulation, the measures of interest, and the sampling scheme used to
measure the effect of missing data. The second half of the paper summarizes our results and
is divided into four sections: one for centrality, centralization, topology and homophily.

1.1 Background & Prior Work
This project fits nicely in a small, growing tradition of simulating network errors from
observed data to evaluate bias (Huisman 2009; Borgatti et al 2006, Kossinets 2006,
Costenbader & Valente 2003, Galaskiewicz 1991). Monte-Carlo simulations of the effects of
data error on network measurement are a natural way to gauge robustness, particularly since
the mathematics of sampling networks are daunting (Frank 1971; 1978; Granovetter 1976)
and test-retest designs are subject to real change in the underlying network (Zemljic &
Hlebec 2005). The simulation approach parallels work done on non-network survey data
problems, where researchers use simulation to capture the effect of missing data on various
model parameters—such as correlation and regression coefficients (see for example, Kim
and Curry 1977; Kaufman 1985; Jinn and Sedransk 1989; Yuan and Bentler 2000; Akritas et
al. 2002).

In the absence of clear analytic solutions for most network measures, simulation is a
straightforward, analytically tractable approach. The basic procedure emerging in this
literature is to: (1) identify (or construct) a population of networks, (2) calculate known
measures on those networks, (3) sample from them in various ways that represents
missingness, (4) re-compute the substantive measures on the now distorted networks and (5)
compare the results. Prior work has examined small Erdös random graphs of varying density
(Borgatti et al 2006), as well as collections of empirical networks that range from small (less
than 200 nodes) face-to-face networks (Huisman 2009; Costenbader & Valente 2003,
Galaskiewicz 1991) to large (16,000 node) 2-mode networks (Kossinets 2006) to even larger
online networks (Wang et al. 2012). This work has shown a dependency in the resulting
measurement bias as a function of network density, size and assortative mixing. Looking
across papers, this work also suggests that the scale of node-missingness effects is
contingent on the underlying structure of the graph. It is not entirely clear, however, which
features matter most and whether this varies by network measure. As such, we will closely
examine a small number of widely varying structures to provide variation for substantive
exploration.

Most prior work has examined the robustness of centrality scores (Johnson et al, 1989;
Galaskiewicz 1991; Costenbader & Valente 2003; Borgatti et al 2006), suggesting that many
centrality scores are robust in the face of modest node missingness. For example,
Costnbader & Valente (2003) show that in-degree is remarkably stable; with correlations
remaining in the 0.9 range even with 50% missing (see also Galaskiewicz 1991). More
system-dependent measures, such as betweenness centrality, showed lower correlations,
averaging 0.5 at 50% coverage, though Borgatti et al. (2006) show correlations in the 0.7
range for 50% missingness in Erdos graphs, even for system-dependent measures such as
betweenness and closeness centralities. These studies all show a consistent and smooth
decline in accuracy as missingness increases.

Kossinets (2006) is among the few studies to look at features other than centrality3, focusing
instead on indicators of global network structure. Examining small world statistics
(clustering & path length, Watts and Strogatz 1998), fractional size of the largest component
and degree assortative mixing, his results similarly suggest a smoothly increasing bias as

3Although the number of studies including multiple measures and networks has increased over time.
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missing data levels increase. He finds widely ranging levels of tolerable differences,
dependent on both the measure of interest and the type of missing data. Huisman (2009)
similarly considered non-centrality measures, focusing on degree, reciprocity, clustering,
assortative mixing (on degree) and distance. He considered different missing mechanisms as
well as directed/undirected versions of the same data, finding the effect of missingness to be
fairly similar across analyses. The directed network did, however, have larger bias for
clustering while the undirected network had larger bias for degree and distance.

Most of this work demonstrates clearly that network estimates are degraded with lower
sample coverage, but that there is a wide variability in these effects across measures. For
practical purposes, researchers want to know how much damage has been done when survey
response rates are less than perfect, and typically need this information for multiple network
measures. Thus, while Kossinets (2006) and Huisman (2009) explore many network
features, their limitation to a single network form makes generalization difficult. Similarly,
centrality studies provide information across a wide-ranging set of networks, but focus on a
single dimension of network structure. More recently, Wang et al. (2012) focus on different
types of measurement error, considering coding problems that are likely to emerge in large,
automatically collected data sources. Wang et al. (2012) thus capture a variety of error
processes but explore a limited number of networks and network measures.

We thus build on this important prior work by extending analyses to a wide set of networks
that cover a variety of underlying features. Importantly, we assess both estimate bias (mean
difference from true) and precision (variability around the mean) for measures related to
centrality, centralization, global network topology and homophily.

2. Data and Methods
2.1 Network Samples

We want a set of networks that researchers from multiple substantive fields could use as
analogs to their own work. We limit our study to relatively small (<1000 nodes) networks
for both practical and theoretical reasons. Practically, many of the network structure
statistics we calculate are time-intensive and non-linearly so with network size, so this
limitation helps on computation time. Theoretically, mid-sized networks are likely the least
amenable to large-scale random-graph summaries and perhaps most sensitive to small levels
of missingness due to key players. These settings, typically within organizations, are also
more likely the focus of intensive management efforts. Figures 1a and 1b present
sociograms and simple descriptive statistics for each of the 12 networks we study.

The sampled networks range in size from 43 to 908 nodes, covering many of the contexts
commonly studied in social networks research.4 These include data on elites (corporate
interlocks: “Mizruchi Interlock” and “River City Elite”), young youth networks (“Gest 6th

graders”, “Prosper s220”),5adolescent & young adult networks (“Sorority Friendship”,
“High School (p13 & p24)”, the Gagnon prison network (MacRae 1960), science networks
(a portion of the sociological abstracts collaboration graph and the Social Networks article
co-citation graph, the biotechnology exchange network) and epidemiological networks
(Colorado Springs HIV risk network-Morris and Rothenberg 2011).6 For each figure, we
include the observed values for size (n), density (Δ), average path length (L), transitivity
(Tr), degree centralization (Cd) and closeness centralization (Cc). Nodes are colored by the

4Thanks to the authors of these studies for use of the data: Mark Mizruchi for the Interlock network; Scott Gest for the 6th grade data;
Lisa Keister for the River City Elite data; Walter Powell for the Biotechnology exchange data.
5The Prosper project is funded by NSF/HSD: 0624158, W. T. Grant Foundation 8316 & NIDA 1R01DA018225-01.
6The Colorado Springs HIV network was made available through the following grant: NIH R01 DA 12831 (PI Morris) Modeling HIV
and STD in Drug User and Social Networks, NIDA.
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relative closeness centrality. Directed edges are represented by an arc while undirected
edges are not. The substantive variability in these networks should help us determine how
much sampling bias is contingent on network structure.

2.2 Network Position Measures
We focus on four classes of measures: centrality, centralization, topology and homophily.
For centrality, we measure degree, closeness, betweenness, and Bonacich power scores. For
directed networks, we distinguish between in and out degree but treat the network as
undirected for the other three scores. For Bonacich power centrality, we choose β as 0.75
times the largest Eigenvalue. Since centrality is an individual-level score, we measure
system reliability as the Pearson’s correlation coefficient between the true and observed
scores.

2.3 Network Structure Measures
All other scores are measured at the graph level and we calculate a simple relative bias score
as:

(1)

This score tells us the percentage difference of the observed value under sampling relative to
the true value observed in the complete network. Positive values indicate that node-sampling
inflates the score. Negative values indicate that the score is deflated. In addition to overall
bias, we are also interested in the variability of the score as a function of sampling. Thus all
figures include the mean, inner-quartile range and 10th/90th percentiles.

2.3.1 Centralization—We calculate network centralization scores for each individual
centrality measure using Freeman’s standard (1979) formula. These capture the dispersion in
centrality -- the extent to which the network is “star-like”, with high values indicating highly
unequal distributions and low values indicating fairly equal distributions. Centralization
scores are strongly affected by density, so comparisons across networks are difficult, though
trends within networks should be informative. As we discuss in the results sections, other
indicators for distribution inequality may be more robust to sampling errors.

2.3.2 Topology—We focus on 6 measures of network topology. The first measures
capture connectivity, focusing on the fraction of the population in the largest component and
bicomponent, key indicators of structural cohesion (Moody & White 2003). A component of
a network is a maximal set of nodes reachable through at least a single path.7 The largest
component thus marks the limiting extent of people reachable through the network. By
definition, a component may be disconnected by the removal of a single node.
Bicomponents, in contrast, are maximal sets that can only be disconnected by removing 2 or
more nodes, and each pair of nodes is linked through at least two node-independent paths.
As such, bicomponents offer a potentially more robust structure for diffusion than
components (Moody & White 2003).

The third topological measure is the average path distance between nodes. A path in a
network is a sequence of adjacent edges linked by nodes, and the shortest path connecting
two nodes is the geodesic; if two nodes are unreachable the distance between them is
infinite. While average distance is an easily interpretable statistic within a connected

7In the case of directed networks, we calculate the weakly connected component, ignoring the direction of the edges.
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network, infinite values due to unconnected pairs make calculating a simple summary score
such as the mean impossible. As such, we use ‘closeness’ instead of distance, calculated as
1/distance. Since the lim(dist→inf) of 1/dist is zero, we score unconnected pairs as zero.
High average closeness values indicate that the network is compact, with many pairs
separated by small distances.

The extent to which triples are closed in a network captures local clustering, or the
likelihood that “a friend of a friend is a friend.” We measure local clustering with the
transitivity ratio—the proportion of all two-step paths that are also 1-step paths. Networks
with high transitivity are locally clustered.

While transitivity captures the extent of locally closed triads, the full triad census
summarizes much more of the topological information in a network (Wasserman and Faust,
1994). Holland and Leinhardt (1976) and Wasserman (1977) provide scoring to test for the
shape of the network macro structure based on tau statistics, conditional on the distribution
of dyads. Johnsen (1985, 1986) provides a number of models that capture clustering and
hierarchy in networks. Here we calculate tau statistics based on a ranked cluster (RC) model.
For directed networks8, the ranked-cluster model describes settings where ordered sets of m-
cliques are arranged in a hierarchy. For our purposes, we are less interested in the actual
level of hierarchy than in the stability of the distribution given missing data.

Perhaps the most general treatment of a network’s topology is a block-model (White et al
1976). A blockmodel ideally reduces a complex network to a manageable number of
equivalent positions that capture the underlying network structure. Unfortunately, there is no
single-indicator summary for a block-model, making it difficult to contrast the “true”
partition with the partition identified in the missing-data perturbed network. We can,
however, ask how similar any two arbitrary network partitions are with the rand statistic.
The rand statistic (Rand 1971) tells us the proportion of pairs in one partition that are
similarly grouped (together or apart) in a second partition.9 Thus, to capture the robustness
of the global network structure, we first partition the network with ConCorr (arbitrarily set
to depth 3), then compare the partition observed in each sampled network to that observed in
the full network (for all pairs remaining in both networks). We are not claiming that each of
these networks is best fit by a depth=3 ConCor partition. Rather, we simply want a way to
capture the overall robustness of the role structure to sampling, and the ConCorr partition
provides a simple mechanism for doing so using a well-known and commonly used
technique.10 In principle, high rand statistics at low sampling levels should indicate that one
can effectively enumerate summary network positions with the sampled data, regardless of
the topological complexity of the network.

2.3.3 Homophily—The measures described above focus purely on network structure, but
many researchers are interested in the intersection of network structure with behavior (e.g.
Cohen 1983; Haynie 2001; Bramoullé, Djebbari, Fortin 2009; Steglich, Snijders, and
Pearson 2010). In most cases, researchers ask how similar connected nodes are to each other

8For undirected networks, the RC model is identical to the multiple clusters model, since only triads without asymmetric arcs are
allowed.
9We have chosen to use the unadjusted rand. The unadjusted rand does not adjust for random expectations, or the fact that some of the
correct pairings would have arisen simply by chance. Practically, a researcher will want to know if person A and person B are grouped
in the same manner as the level of missing data increases. For a researcher’s purpose, a partition is no less good just because a random
partition would also have explained some of the similar pairings. In that sense, the adjusted rand makes it harder to answer the basic
question: are people still placed in the same groups if there is missing data?
10Similarly, there are many other algorithms for block modeling a network (Anderson, Wasserman, and Faust 1992; Batagelj,
Ferligoj, and Doreian 1992), and we are not claiming that concor is the optimal choice. It is, however, well-known in the literature
having been used in some of the most cited social network work, fairly quick to calculate, and can be implemented to run uniformly
across many networks.
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with respect to a given attribute. We focus on two sorts of homophily here. First, homophily
with respect to structure is best captured with network degree homophily, also known as the
level of assortative mixing. We calculate assortative degree mixing as the edgewise
correlation on degree. High positive values indicate that nodes with many ties are connected
to others with many ties and those with few to others with few. Strong negative values
indicate disassortative mixing, where people with many ties are connected to those with few.

The challenge to measuring attribute homophily on a diverse sample of networks is finding
an attribute sufficiently consistent across networks to provide comparison. Since no such
attribute exists naturally in these data, we assign attributes to nodes in each network in a way
that creates a known level of homophily. To do so, we first randomly “seed” the network
with values of a uniform random variable. We then apply a peer-influence model (Friedkin
1990) to adjust the values of the variable across nodes until a minimum level of homophily
is achieved. These attributes are then fixed for the nodes across all runs. Here we use two
levels of homophily to test for strength effects, where high homophily measures may be
more (or less) robust to missing data. We again measure homophily as edgewise correlation,
using values of .35 and .75.

Table 1 summarizes the measures and provides the known values for each of the networks
studied.

2.4 Network Sampling Setup
For each network, we randomly select a proportion of nodes to remove, reconstruct the
network without these nodes or any of their contributing edges, and compute the scores of
interest. These are then recorded for comparison to the known values. We repeat this process
1000 times for each level of missingness, evaluated at 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60,
and 70 percent. We use a simple “listwise” procedure to reconstruct the network. Only those
nodes sampled are included in the reconstructed network. This is the standard method used
in prior work (Galaskiewicz 1991; Costenbader & Valente 2003; Borgatti et al 2006) and
reflects a common idea that unsampled nodes are also unknown.11 Practically, we ignore
any nominations from a sampled node to a non-sampled node.

2.5 Analysis strategy
The amount of information generated by this research design presents a formidable data-
summary challenge: we have mean and variability scores for 12 networks across 12 levels of
missingness over 22 network measures. Our strategy is to first provide graphical summaries
for each network to provide a qualitative portrait of the missingness effect. We then
summarize over all of the networks using marginal distributions or regression models. We
refer to the graphical summaries as mosaic plots. Figure 2 presents a simple example of one
network and one measure to guide the interpretation of the remaining summary figures. Here
we examine the robustness of in-degree for the River City elite network. The first panel
shows the scatter plot of observed in-degree after sampling (y-axis) by the true in-degree (x-
axis), for one draw at 5 missingness levels. As we can see, the slope of each line drops as
missingness increases. Thus, as missing data levels increase, there is lower fidelity to the
true value, or a lower correlation between true and observed in-degree. The second panel
summarizes this result over 1000 iterations, plotting the mean level as a dark line, the inner-
quartile range as dark grey and the 10th/90th percentile as light gray.

11This listwise procedure is not necessary, however, since in practice people may name nodes that themselves are not sampled, as
when children nominate friends who are absent from school the day of the survey. In such cases, we have some information from each
respondent about ties to an alter, though no information about ties from/among missing alters. One of the simplest “imputation”
methods available is to include those nodes in the network. We explore this strategy in the companion imputation paper.
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We can see that the overall slope of the mean line in panel two is flat, indicating that in-
degree is quite robust in this network. Fitting a linear term to this line yields a −0.006 slope
(on 10% units); we can then expect a correlation of 0.982 between the true and observed
score if we were to sample only 70% of the nodes in this network. Moreover, the variation
around the line is quite small. We calculate a total deviation score (υ) to measure this
variability. Total deviation is equal to the square root of the total sum of squares of the
observed minus the mean divided by n. As deviation increases, the total uncertainty in our
estimate increases. This effectively captures the relative size of the shaded region in each
panel. The total deviation here is .0005, which is among the smallest we will observe.12

3. Results
3.1 Network Position scores

Figure 3 presents the summary results for the 6 centrality scores. Since in- and out-degree
are the same as total degree for the undirected networks, we have shaded those columns for
ease of reference. Looking across the rows lets us compare networks with respect to their
sensitivity to missingness, while looking down the columns lets us compare the relative
effects within networks of different centrality scores. The generally declining slopes tell the
obvious story that accuracy is lower as less of the network is sampled. The range of these
effects is quite large, however. For the co-citation network, for example, sampling only 50%
of the nodes would leave us with expected degree scores that correlate at about 0.95 with the
true value [1−5*(0.01) =.95], dropping to a correlation of 0.93 if we sampled only 30%. On
the other hand, a 50% sample from the Gangon prison network would leave us with a total
degree score that correlates at 0.66 with the true score, dropping to 0.54 at a 30% sample,
and the results would be much worse for betweenness centrality.

In the directed networks, we see that in-degree is usually more robust to sampling than out-
degree, though that effect may be strongest for the highly-centralized (in-degree) networks,
such as the River City Elites. For the four measures based largely on degree (Bonacich
Power being a degree-weighted score), we see generally higher total variation among the
smaller networks (even though these are based on percent of nodes removed, not absolute
number), with the exception of the 6th-grade Prosper network. This may be due, in part, to
the strong sex-segregation here – effectively giving us two small networks weakly linked
rather than one larger network. The River-City elite network has a very robust in-degree
profile, but a weak out-degree profile. Since this is a “who do you think is influential”
network, there is strong agreement on the most important players in the setting and thus in-
degree is robust. The two high-school networks have a fairly strong negative slope (−0.05;
→ a correlation of 0.75 at 50% sampling), but this is also very narrowly distributed.

The more dependent a score is on system features, the greater effect missing data has on the
resulting bias, and often so in a non-linear way. Closeness centrality, for example, often
shows a sharp decline in fit for small amounts of missingness that later levels off. In general,
closeness centrality is quite sensitive to moderate levels of missing data. So, while the
average linear slope is −0.037 for the Coauthorship network, the effect of missingness levels
out after 10% missing at a correlation of about 0.7. Betweenness centrality has a more linear
response to missingness, but the slope is generally quite steep, and the effect is evident for
both small and large networks. Table 2 summarizes these curves by giving the proportion
missing data that would produce a target correlation between the true and observed score,

12In the summary tables, we also include the R2 for the regression of the observed score against percent missing. While intuitive, this
conflates the slope of the line with the variability around the line – a nearly flat relation between missingness and the observed score is
good, indicating the score is robust to missing data. Such a relation will generate a low R2, but you can get the same R2 if you have a
steep line but high variability, so R2 alone is insufficient to account for certainty.
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based on a quadratic model fit to our simulation results (to better capture the curves evident
in Figure 3). Thus, we see that in the interlock network, you would achieve a correlation
with the true degree score of 0.9 or greater if you had up to 23% missing node data, while
having between 23% and 40% will likely yield a correlation of at least 0.8.

As a simple summary of the effect of network structural features on the centrality score
sensitivity to missingness, Table 3 presents the correlation between measures of network
structure and the beta slope coefficients from Figure 3.13,14

While regressions with 12 cases have limited statistical power, the only measure that is
consistently significant is the dispersion of degree, particularly in-degree15. The more
unequal the degree distribution, the more robust the centrality scores will be to random
missingness. These correlations are extremely strong, often in the range of 0.9. Since the
dispersion of degree is a form of network centralization (centralization scores correlate at
about 0.7 with the standard deviation scores in this sample of networks), these results
suggest that when the network is highly centralized, random missingness will have only a
minor effect on the reliability of the centrality scores. This is exactly what we expect given
the literature on network robustness coming out of the preferential attachment literature
(Albert, Jeong, and Barabasi 2000); when networks are highly centralized they tend to be
robust to random missingness (but may be at greater risk to targeted missingness, see part
II). It is important to note, however, that there is a non-linear relationship between the effect
of missing data and centralization. As indegree standard deviation grows larger so too does
the bias slope (so lower bias), but this rate of increase decreases at higher levels of
centralization. Figure 4 below summarizes this (non-linear) effect of in-degree centralization
for robustness. Inversely, more cohesive networks tend to be less robust to missing data.16

The effects are qualitatively similar for variability in the centrality correlations, with the
overall network degree centralization having a pronounced effect. When in-degree is highly
dispersed, there is lower variability in the response to missingness, suggesting, again, that
the networks are more robust to random missingness when they are centralized. In addition,
there are consistent effects for size, such that larger networks have lower variability and
higher correlations with the true scores, though these effects do not hold controlling for
centralization.

3.2 Network Structure
As we turn our attention to the network structure measures, we move from a simple node-
level correlation to a bias coefficient. We calculate bias as the percent difference from the

13The measures of network structure include: size, density, indegree standard devition, outdegree standard deviation, degree standard
deviation, mean of the true score, directed network, limited degree, and percent in the largest bicomponent. The mean of the true score
is the mean of the actual measure of interest for that network. In the case of centrality scores, we take the mean of the centrality score
over all individuals in the network. In the case of single measure scores, such as the tau statistic, the mean of the true score is simply
the measure for that network. Directed network is a 0/1 binary variable indicating whether the network is symmetric or not. Limited
degree is a 0/1 binary variable indicating whether the network has a degree distribution truncated by the survey collection process—
for example, only allowing one to name a maximum of 7 friends.
14We have also run HLMs to characterize the relationship between network properties and the beta slope coefficients. Here, we take
all bias values across all networks and model it simultaneously using an HLM. The main predictor of bias is the level of missing data.
We allow the coefficient on percent missing to vary across networks. We then model that coefficient at the second level (the network)
as a function of different network properties. We run separate models for each predictor at the second level. The second level
interaction is analogous to the correlations reported in Table 3. The results, on the whole, closely track the tables reported here, and we
opt for the correlational measure for the sake of simplicity.
15For undirected graphs, of course, direction must be irrelevant. Our guess is that the distinguishing power of in-degree is a joint
effect of the real dispersion of degree and the limitations affected by limited-degree survey designs on out-degree. However, when
regressing the sensitivity score against both degree dispersion and a marker for limited out-degree, the dispersion score was uniformly
the best predictor.
16This rate of decrease slackens at high levels of cohesiveness for the degree based measures and increases for betweenness centrality.
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true score, so a value of 0.5 would mean that the observed score is 50% larger than the true
score, while a value of 1 is double that observed. For reference in the mosaic plots, we have
added lines at −.5 and .5. A flat mean line suggests that the resulting network score is
unbiased when data are missing at random, a positive sloping line that the observed score is
too large, and a negative slope that the resulting score underestimates the true value. A bell-
shaped shaded region implies that the uncertainty of the estimate increases with more
missing data.

3.2.1 Network Centralization—Figure 5 presents the mosaic bias plot for network
centralization. The first impression from this figure is of one of inconsistency across scores
and networks. Some clarity can be had by focusing on the 4 degree-based measures, then
sorting by network size. Among the smallest networks (first 3 columns), you see large
uncertainty and a smoothly increasing bias. Among the larger networks, bias tends toward
zero, with fairly flat lines and narrow uncertainty bands. The exceptions are the out-degree
centralization scores for the prosper network and the two high-school networks. These three
all have a fixed-nomination design and are less robust to missing data. Note this bias is
somewhat less when direction is ignored, consistent with Butts’ findings (Butts 2003). Fixed
out-degree networks have larger bias because they have lower centralization (as degree is
truncated) and degree centralization responds more strongly to missing data when
centralization is low; here, degree centralization is not driven by the very high degree nodes,
making it more susceptible to random removal of nodes. We can see this clearly in Table 5,
where degree standard deviation is positively correlated with robustness to missing data,
although this effect weakens at higher levels of degree standard deviation.

Bonacich centrality is a nice bridge between system and local, and shows a marginally larger
sensitivity to missingness, with slope coefficients larger across the networks than observed
for the pure degree scores. The relation to missingness is smooth and monotonic, with the
networks appearing more centralized as missingness increases. Again, larger, more
centralized networks are less prone to bias under conditions of missing data (with this effect
weaker at higher levels of centralization). For example, the Interlock network (small, with
low degree standard deviation) yields an average bias above .5 with 32 percent of the
network missing, while the Colorado Springs network (larger, with higher degree standard
deviation) yields an average bias of .5 with 77 percent of the network missing. See Table 4
for more details.

The system centrality measures tell two stories. Closeness centralization is remarkably
robust across networks. In most networks the relation centers on zero, suggesting that the
closeness centralization score would be accurately measured even with significant levels of
random-missing data. Only the smallest network, with 43 nodes, has a visible positive slope
or generally large variability. Betweenness centrality, in contrast, is widely variable across
networks, with two general patterns. In nine of the twelve test cases, betweenness
centralization presents a smoothly decreasing bias with missingness levels. In the other three
networks, we observe a rapidly increasing bias that quickly returns to zero. This is likely
occurring due to the low starting values of the betweenness scores. Small changes quickly
increase the percent score, but when missingness is nearly complete, the centralization score
tends toward zero and thus returns to the observed value.17 We note that this effect also
appears to be driven largely by the normalizing denominator for centralization, since the
analogous figures for the standard deviation of betweenness centrality is monotonic.

17The correlation between the bias slopes and the true betweenness values is strongly negative; networks with smaller starting values
are thus more likely to have initially positive slopes (which eventually return to zero).
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Taken as a whole, the major predictors of bias and variance for centralization are size and
degree deviation (greater size and centralization are associated with less bias and variance),
although directed/undirected status and percent in the largest bicomponent is important for
out-degree and betweenness. In both cases, directed, more cohesive networks are less robust
to missing data and have larger variance. More cohesive networks are actually more robust
to missingness when percent in the largest bicomponent is smaller (between .5 and.6 for our
data), but less robust at higher levels of cohesiveness.

3.2.2 Topology—The mosaic plots in Figure 6 show analogous results for 6 measures of
global network structure. Turning first to simple measures of connectivity, we see that
connectivity decreases with sample missingness. The proportion of the population in the
largest connected component tends toward a “rotated-J” shape, staying flat until about 30%
of the population is removed, then turning fairly steeply to smaller average component sizes.
The variability around component size is quite narrow, and combined these indicate that
basic connectivity is robust to random missingness. The pattern is not merely a reflection of
size; as the 6th grade friendship network (n=147) and the two high-school networks (n=556
& 619 respectively) have nearly flat response curves with extremely narrow bounds. On
average, it is necessary to remove 74 percent of the network before the bias crosses the .5
level and 55 percent before the bias crosses the .25 level (see Table 6).

While component size gives the upper limit of reachability, bicomponent size captures the
extent of the population that is re-connected through multiple cycles. The proportion in the
largest bicomponent tracks the component size results strongly, although with slightly
steeper slopes in the smaller networks. The correspondence of these two curves suggests that
estimates of connectivity will be fairly robust to random missingness, at least so long as
70% to 80% of the sample is captured. The Biotech, Couathorship and Colorado Springs
networks are the exceptions to this rule, exhibiting more bias than the other networks.
Tellingly, these three networks have low levels of cohesion. Networks with low cohesion are
subject to disconnection with missing data and thus underestimate the size of the largest
bicomponent and component. This is clear in Table 7, where percent in the largest
bicomponent is positively correlated with robustness in the bicomponent/component
columns.

We next turn our attention to the “small-world” statistics, focusing on mean closeness
(normalized by log(sample size)) and the transitivity ratio (the proportion of directed triads
that are closed). Recall we capture the number of steps between nodes with a closeness score
(1/distance) so as the score trends negative, the average closeness is going down, and thus
the distance is going up, though not dramatically. As missingness increases, we see over-
estimates of the distance between pairs; this, intuitively, must be due to the loss of
“bridging” nodes that lower path-lengths disproportionately. Such nodes are likely a
minority, but the odds of hitting one of them increase with missingness, leading to an under-
estimate of path length. Over all of the networks, it requires 63 percent of the nodes to be
removed before bias reaches .5 (see Table 6). The bias on mean distance is especially high
when density is low: in sparse networks, the connections between nodes are more dependent
on a given path, making distance harder to measure with high levels of missing data.

The transitivity ratio remains largely constant as the proportion missing increases, showing a
nearly flat line for all networks except the smallest (interlock). There appears to be a minor
negative bias for the next two largest networks (Sorority & Prison), reaching mean bias of
about −25% when the network is missing 70% of the cases. But for most networks, the
transitivity ratio remains unbiased in the face of heavy randomly missing data. For all
networks, the error variability increases with missingness, although this is especially true in
the smaller networks.
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The combined effect of over-estimating the distance between nodes and a consistent
transitivity estimate suggests that small-world statistics will be under-estimated under
conditions of missing data; with the average path length being larger than it should be in the
presence of missing data while the clustering coefficients will remain largely stable.

The final two measures capture indicators of global network shape. In the first case, we use
the distribution of triads (relative to chance expectations) as an indicator of overall network
structure. The results for the tau statistic are very consistent: the tau statistic trends lower
with increasing missingness (approaching zero), and we see a −50% bias at about 30%
missing across all networks (the slope of − 0.12 is nearly the same across networks). The
one exception is the smallest network, which has a slightly more negative slope and extreme
variability.

Finally, for the ConCorr partitions, the rand statistic decreases slightly relative to the true
value, but the line is remarkably flat as more data is removed. This indicates that even in the
face of dramatically high missing data, one would likely classify pairs of nodes similarly
(those in the same position together, those in different partitions apart), and thus would
likely draw similar substantive conclusions.18 Our blockmodel measure only deals with the
partitioning of nodes and ignores the larger macro picture encapsulated in an image matrix.
We have thus run additional analyses where the measure of interest is based on the
partitioning of nodes and the image matrix (see also Žnidaršič, Ferligoj, and Doreian 2012).
The results are included in the Appendix and suggest, generally, that a measure based on the
image matrix and node partitioning is less robust to missing data. On average, one can only
have 40% missing data and still maintain a bias score under .5, as opposed to almost 70% in
the case of just the partitioning.

Looking over all networks and all topology measures (see Table 7), networks that are more
cohesive are more robust to the removal of missing nodes. The variance results are more
heterogeneous, with some measures exhibiting high levels of variance, and others very little,
but in general networks that are more centralized have less variable profiles.

3.2.3 Homophily—Figure 7 presents the results for structural and attribute homophily. If
the prior topology results are remarkable in their consistency and robustness in the face of
missing data, the assortative mixing statistics tell just the opposite story, with dramatically
inconsistent results and significant bias as missingness increases. Note first that to fit these
figures we had to increase the length of the y-axis (so the range is now +/− 4), and even in
the face of this we often get out-of-range variability. In half of the networks we find almost
no bias (slope near 0 and relatively narrow variability bands that cross the zero line), in two
we have positive bias and in the remaining 4 negative bias.

For both in and out degree mixing, the bias and variance scores correspond directly with the
true degree-degree correlations. Networks with negative but absolutely small correlations
(Interlock and Prosper for in-degree and Interlock, Prosper and Sorority for out-degree) have
strongly positive slopes and large variance. Here, the low initial starting points exaggerate
the proportional, or bias based, measure of error. The slopes are positive as the missing data
pushes the degree-degree correlations to higher values (by condensing the range of the
degree distribution). Conversely, networks with positive but small correlations have strongly
negative slopes and large variances. This explains the results for the Sorority, Prosper and

18We have also included the results for the adjusted rand in the appendix. The adjusted rand statistic has higher bias overall than the
unadjusted rand, requiring much lower levels of missing data to yield the same level of bias. This suggests that the partitions under
missing data mirror the true partitions quite closely, but that some of this matching can be explained by chance expectations (or would
have happened anyway just by randomly pairing the non-missing people together).
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Co-citation network for in-degree, as well as the extreme plot for the Elite network for out-
degree (where the true correlation is close to 0).

The behavioral results appear largely consistent with the earlier structural results, and are
remarkably consistent in the face of high levels of missingness. The “high behavioral”
simulation asks what happens to the edgewise correlation score for an attribute that is
highly-correlated (0.7+) in the original network. The “low behavioral” analysis does the
same for an attribute that correlates at 0.35 or better. When the homophily attribute is very
strong, data missing-at-random has almost no effect in 9 of the 12 networks, with only the
smallest or most centralized networks having a strong difference. Thus the elite network
tends to underestimate the correlation, as does the biotech network (both highly centralized),
while the interlock network has the largest variability.

The mean story is almost the same for the lower correlation score, but the variability is much
higher, suggesting that as missingness increases we become systematically less likely to be
able to draw an observation close to the mean line. Smaller and less centralized networks are
less robust to missing data and also have higher levels of variance (note that the effect of
centralization weakens or even reverses at higher levels of centralization). See Table 9. For
the same level of missing data, smaller networks have fewer dyads informing the homophily
estimate and thus have higher bias and uncertainty.

4. Conclusion
This paper has explored the effect of missing data on a variety of network measures using a
large number of empirical networks. Following past work (Borgatti et al. 2006), we
examined the effect of missing data by removing nodes at random from a known network,
calculating the statistics of interest on the reduced network and comparing those estimates to
those from the true network. We restricted the study to missing-at-random node removal as a
means of simplifying the presentation and discussion. We considered empirical networks of
varying size and features while examining network measures of centrality, centralization,
topology and homophily. By including a large number of networks and measures, we were
able to fully describe how and, more importantly, when, missing data would lead to
seriously flawed and uncertain estimates.

The results, on the whole, suggest that many network measures can be measured accurately
even with high levels of missing data. The exact relationship between bias and missing data
varies, however, by the network of interest. For example, larger, more centralized networks
are generally more robust to missing data. Other results are more contingent, depending on
both the network measure and the network type. Networks that are more cohesive are less
robust for centrality measures but more so for measures of topology. Similarly, directed
networks are less robust than undirected networks for most centrality measures, but there are
few systematic differences for the other network measures.

The overall level of bias is also clearly a function of the network measure itself, as some
measures are more susceptible to missing data than others—although, of course, all
measures are less accurate as missingness increases. For example, all centrality measures
have higher bias with more missing data, but degree based measures are more robust than
closeness or betweenness centrality. This differs from some past studies that found little
difference across centrality types (Borgatti et al. 2006). Our results may differ from past
studies as they focused on Erdos random networks, which are considerably less clustered
and hierarchical than the empirical networks considered here. This also reiterates the
importance of examining missing data on networks with a wide variety of features,
including those typically found in observed social networks (Wang et al. 2012). The
topology results suggest that structural measures can be captured well with high levels of
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missing data, with transitivity and Concorr particularly robust. Distance and the tau statistic
are comparatively more prone to error as missingness increases. Finally, for the homophily
measures, behavioral similarity shows almost no bias as missing data increases, while
mixing by degree performs considerably poorer.

What are the practical implications of these results? First, the results suggest that different
collection strategies are necessary for networks of different sizes—at least as it pertains to
dealing with the problem of missing nodes. Larger networks are more robust to missing
respondents but are also more prone to missing data in the first place. The onus is thus larger
in smaller networks to find those last few respondents, but this should also be easier to
accomplish. Alternatively, in larger networks, the cost of finding specific respondents may
be prohibitive: they may be harder to find while the gain in accuracy is small. Second, if one
is faced with large levels of missing data, it may be necessary to use a network measure
robust to missingness. For example, if one is interested in homophily but there are high
levels of missing data, it may be advantageous to focus on behavioral homophily, as
opposed to degree-degree mixing. Or, for macro-structural measures, it may be more useful
to examine blockmodeling solutions than distance or bicomponent size. Finally, the results
suggest that a researcher must be clear about their tolerance for bias. A researcher interested
in a certain network type and network measure would have to collect very different amounts
of data to achieve different levels of accuracy. Tables 2, 4, 6, and 8 offer a convenient means
to asses target levels, but it is still necessary to know how much bias is acceptable to answer
the question at hand.

This paper, while useful in its own right, has also laid the groundwork for future work on
missing data in social networks. The simplifying assumption of missing-at-random will be
dropped in Part II of this study. Following the work of Huisman (2009) we will examine
how missing data affects the validity of network measures when missingness is correlated
with centrality. The results will be based on two types of centrality (degree and closeness) as
well as 4 correlations between centrality and missingness (−.75, −.25, .25 and .75). In the
final part of the project, we will consider practical options for dealing with missing data
problems. We will consider different treatments of the partial information, while
incorporating a small ego network sample into the estimation process. The hope, in the end,
is to provide a practical, comprehensive guide for workers in the field: a researcher will
know how biased their estimates are likely to be and how best to deal with such limitations.
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Appendix: Alternative Measures for ConCorr
This appendix describes the results from 2 supplemental ConCorr analyses. The ConCorr
results in the main text use the rand statistic to measure the effect of missing data. The rand
statistic captures how many pairs of people are correctly placed into the same/different
blocks, compared to the true partition on the full network. As an alternative, this appendix
provides the results for the adjusted rand statistic, which accounts for chance expectations
(and only counts pairs placed into the same group). Specifically, the adjusted rand can be
written as:
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In addition to the adjusted rand statistic, we also provide results for a completely different
type of blockmodel measure—one that takes into account both node partitioning and the
image matrix. The rand statistic only captures the partitioning of nodes into blocks but says
little about the macro structure implied by the blockmodel. We have thus rerun the analysis
using a measure dependent on the image matrix as well as the node partitioning.
Specifically, we begin the analysis by computing the blockmodel on the network of interest.
We then use the densities (note not 0s and 1s) in the image matrix, as well as the block
memberships, to create a predicted probability matrix. In this predicted probability matrix,
the probability of a tie between person i and j is the probability of a tie between the blocks
that i and j are in (i.e. the densities in the image matrix). We then correlate the elements of
the true probability matrix with the elements of the same matrix estimated under conditions
of missing data (restricted to those cases who are sampled in that iteration). The measure
thus incorporates both the image matrix, as those densities are used to fill in the predicted
probabilities, and the partitioning, as the partitioning determines which densities in the
image matrix are selected for each i, j pair.

Table A1

Maximum percent missing to remain under target bias: ConCorr Results

Network Target Bias ConCorr: Unadjusted Rand ConCorr: Adjusted Rand ConCorr:
Predicted
Probability Matrix

Interlock .25 * 2 3

.5 * 14 20

Prison .25 * 1 4

.5 * 16 24

Sorority .25 * 1 9

.5 * 17 34

6th Graders .25 * 9 23

.5 * 34 65

Coauthor .25 * 9 57

.5 * 28 *

Prosper .25 * 11 16

.5 * 32 45

Co-Citation .25 * 9 22

.5 * 34 *

Elites .25 61 4 1

.5 * 21 13

HS 13 .25 * 5 9

.5 * 26 39

BioTech .25 56 1 8

.5 * 9 27

HS 24 .25 * 3 7

.5 * 22 30

Csprings .25 * 1 5

.5 * 14 25

Mean (Std Dev) .25 68.1 (4.6) 4.7 (3.8) 13.7 (15.4)
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Network Target Bias ConCorr: Unadjusted Rand ConCorr: Adjusted Rand ConCorr:
Predicted
Probability Matrix

.5 70 (0) 22.2 (8.5) 38.5 (19.9)

*
Cases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means.

The maximum percent missing was calculated based on a quadratic fit to the data.
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Highlights

• We examine the effect of missing data on measures of centrality, topology and
homophily.

• We examine measurement bias and variability across 12 empirical networks.

• Measurement bias varies systematically across network measures and network
types.

• Larger, more centralized networks are generally more robust to missing data.

• Cohesive networks are robust to missing data when measuring topology but not
centralization.
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Figure 1.
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Figure 2.
Missingness comparison example, River City Elites and in-degree

Smith and Moody Page 21

Soc Networks. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Centrality Score Robustness
Each subgraph plots the distribution of the correlation between the true centrality score and
the score computed on the network with nodes removed at random. The dark line represents
the mean, inner-quartile range with dark gray and 10th/90th percentiles with light gray. β is
the regression coefficient of correlation regressed against percent missing (divided by 10),
and thus represents the expected drop in correlation for each 10% decline in sample
coverage. For example, if we sampled 80% of the Sorority population, we would expect a
correlation for closeness centrality of [1−2*(0.068)=] 0.86. υ represents the average
observed deviation (square-root of total sum of squares divided by n) and R2 is the
proportion of the variance explainable with the linear regression term. Shaded columns
indicate undirected networks.
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Figure 4.
Dependence of centrality sensitivity to missingness by in-degree Centralization
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Figure 5.
Centralization Score Robustness
Each subgraph plots the distribution of the bias between the true centralization score and the
score computed on the network with nodes removed at random. The dark line represents the
mean, inner-quartile range with dark gray and 10th/90th percentiles with light gray. β is the
regression coefficient of bias regressed against percent missing (divided by 10), and thus
represents the expected change in bias for each 10% decline in sample coverage. υ
represents the average observed deviation (square-root of total sum of squares divided by n)
and R2 is the proportion of the variance explainable with the linear regression term. Shaded
columns indicate undirected networks.
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Figure 6.
Topology Score Robustness
Each subgraph plots the distribution of the bias between the true topology score and the
score computed on the network with nodes removed at random. The dark line represents the
mean, inner-quartile range with dark gray and 10th/90th percentiles with light gray. β is the
regression coefficient of bias regressed against percent missing (divided by 10), and thus
represents the expected change in bias for each 10% decline in sample coverage. υ
represents the average observed deviation (square-root of total sum of squares divided by n)
and R2 is the proportion of the variance explainable with the linear regression term. Shaded
columns indicate undirected networks.
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Figure 7.
Homophily Score Robustness
Each subgraph plots the distribution of the bias between the true homophily score and the
score computed on the network with nodes removed at random. The dark line represents the
mean, inner-quartile range with dark gray and 10th/90th percentiles with light gray. β is the
regression coefficient of bias regressed against percent missing (divided by 10), and thus
represents the expected change in bias for each 10% decline in sample coverage. υ
represents the average observed deviation (square-root of total sum of squares divided by n)
and R2 is the proportion of the variance explainable with the linear regression term. Shaded
columns indicate undirected networks.
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