

NIH Public Access

Author Manuscript

Cancer Prev Res (Phila). Author manuscript; available in PMC 2013 December 02.

Published in final edited form as:

Cancer Prev Res (Phila). 2010 March ; 3(3): . doi:10.1158/1940-6207.CAPR-09-0188.

Finasteride modifies the relation between serum C-peptide and prostate cancer risk: results from the Prostate Cancer Prevention Trial

Marian L. Neuhouser^{1,*}, Cathee Till¹, Alan Kristal^{1,2}, Phyllis Goodman¹, Ashraful Hoque³, Elizabeth A. Platz⁴, Ann W. Hsing⁵, Demetrius Albanes⁵, Howard L. Parnes⁶, and Michael Pollak⁷

¹Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024

²Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195

³Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030

⁴Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205

⁵Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892

⁶Prostate and Urologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892

⁷Departments of Medicine and Oncology, McGill University, Montreal, Canada H3A 2T5

Abstract

BACKGROUND—Hyperinsulinemia and obesity-related metabolic disturbances are common and have been associated with increased cancer risk and poor prognosis.

METHODS—Data are from a case-control study within the Prostate Cancer Prevention Trial (PCPT), a randomized, placebo-controlled trial testing finasteride vs. placebo for primary prevention of prostate cancer. Cases (n=1803) and controls (n= 1797) were matched on age, PCPT treatment arm, and family history of prostate cancer; controls included all eligible non-whites. Outcomes were biopsy-determined. Baseline bloods were assayed for serum C-peptide (marker of insulin secretion) and leptin (an adipokine) using ELISA. Logistic regression calculated odds ratios for total prostate cancer and polytomous logistic regression calculated odds ratios for low-grade (Gleason < 7) and high-grade (Gleason < 7) disease. Results were stratified by treatment arm for C-peptide.

RESULTS—For men on placebo, higher vs. lower serum C-peptide was associated with a near two-fold increased risk of high-grade prostate cancer (Gleason 7) (multivariate-adjusted OR= 1.88, 95% CI 1.19-2.97, p trend = 0.004). When C-peptide was modeled as a continuous variable, every unit increase in [log(C-peptide)], resulted in a 39% increased risk of high-grade disease (p=0.01). In contrast, there was no significant relationship between C-peptide and high-grade

^{*}Corresponding Author: Division of Public Health Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North, M4-B402 Seattle, WA 98109-1024 Tel: 206-667-4797 Fax; 206-667-7850 mneuhous@fhcrc.org. Clinicaltrails.gov identifier no. 6432686

prostate cancer among men receiving finasteride. Leptin was not independently associated with high-grade prostate cancer.

CONCLUSIONS—These results support findings from other observational studies that high serum C-peptide and insulin-resistance, but not leptin, are associated with increased risk of high-grade prostate cancer. Our novel finding is that the C-peptide-associated risk was attenuated by use of finasteride.

Keywords

prostate neoplasms; finasteride; obesity; insulin; insulin resistance; C-peptide; leptin

INTRODUCTION

Metabolic dysfunction is a recognized risk factor for carcinogenesis, including carcinogenesis of the prostate (1-3). Important examples of metabolic dysfunction include hyperinsulinemia and insulin resistance (1, 2). These clinical characteristics are of particular interest since insulin-activated signaling involves pathways known to be involved in carcinogenesis (4-7).

Several biologically plausible mechanisms may underlie the role of insulin in carcinogenesis. For example, insulin promotes cell division; thus, a metabolic milieu of hypersinsulinemia is likely to promote cellular proliferation and hyperplasia (8-10). Alternatively, insulin may facilitate carcinogenesis by favoring cell survival and inhibiting apoptosis through effects on AKT and MTOR (11, 12), allowing accumulation of genetic damage.

Increasing evidence suggests that obesity is a strong risk factor and/or adverse prognostic factor for cancer, including prostate cancer (13, 14). While the mechanism for the obesity-prostate cancer association is not definitively identified, one possibility is that obesity-related hyperinsulinemia could lead to inappropriate survival and proliferation of insulin-receptor positive at-risk and/or transformed prostate epithelial cells (8, 10, 15-17). Consistent with this view, plasma levels of C-peptide, which serve as a marker of insulin secretion, increase with obesity (8, 18, 19), and higher levels are associated with increased risk of prostate-cancer specific mortality (7). Other evidence suggests that insulin may influence cancer risk through effects on inflammation, oxidative stress or sex hormones (5). Regardless of the mechanism, targeting the insulin axis for cancer prevention is attractive since insulin axis components are modifiable by diet, weight loss, physical activity and pharmacological approaches (20-22).

Biomarkers of metabolic dysfunction and insulin resistance include glucose, insulin, C-peptide, glycosylated hemoglobin and calculated measures, such as HOMA (homeostasis model of assessment) (23). Of these, C-peptide has been used as the biomarker of insulin secretion in many population-based studies (7). Proinsulin is synthesized by the pancreas and cleaved into insulin and C-peptide prior to release in the circulation. In non-fasting samples, C-peptide is considered a more reliable marker of insulin secretion since, compared to insulin, it has a longer half-life and is metabolically stable (7, 24).

Three investigations have examined these biomarkers, excess glucose, insulin and insulin resistance, in relation to risk of breast and colorectal cancers (25-27), but relatively few studies have investigated insulin resistance or C-peptide with prostate cancer risk. A Swedish cohort study reported an inverse association of high vs. low plasma C-peptide with overall prostate cancer risk. However, a non-significant increased risk of aggressive disease (defined as Gleason 8, lymph node metastasis, PSA > 50, bone metastasis or prostate

cancer death) was observed in the cohort (28). More recently, the Physicians' Health Study showed that men diagnosed with prostate cancer who had higher vs. lower baseline C-peptide had a more than two-fold risk of dying from their prostate cancer. These results became somewhat attenuated after controlling for BMI and clinical characteristics such as Gleason grade and stage (7). Further subgroup analysis revealed that overweight men who also had elevated C-peptide had a four-fold increased risk of death from prostate cancer (7). A recent nested case-control study (n=100 prostate cancer cases/400 controls) reported OR = 2.55 (95% CI 1.18-5.51, p, trend = 0.02) for the fourth vs. first quartile of serum insulin (29). In contrast, a multi-ethnic study of 114 prostate cancer cases and 484 controls reported no association of prediagnostic C-peptide with prostate cancer risk (30).

An alternative and equally plausible pathway by which obesity may increase prostate cancer risk is via adipokines. Adipose tissue synthesizes these peptides (or adipokines) such as leptin and adiponectin, and the more adipose tissue the greater the synthesis of these peptides (31, 32). Leptin was originally identified as a satiety signal, but other functions were subsequently identified, including involvement in glucose and fatty acid oxidation, complex orchestrating of the hormonal control of food intake, regulation of other hormones (i.e., growth hormone, reproductive hormones) and a role in the promotion of mitogenic activity (31, 32). In addition, *in vitro* studies have suggested that leptin inhibits apoptosis and promotes cell proliferation in prostate cancer cells (33-35), rendering it a potential mediator of the relationship between obesity and cancer risk.

Finding effective measures for prostate cancer prevention are important clinical and public health priorities, particularly for high-grade disease that typically has a poor prognosis. Therefore, we sought to better understand both of these potential mechanisms (insulin secretion/insulin resistance and leptin) in relation to prostate cancer risk in the Prostate Cancer Prevention Trial.

MATERIALS AND METHODS

Study Design and Study Population

The Prostate Cancer Prevention Trial (PCPT) was a randomized, placebo-controlled trial testing whether the 5 α -reductase inhibitor, finasteride, could reduce the 7-year period prevalence of prostate cancer. Details regarding study design and participant characteristics have been described previously (36). Briefly, at 221 clinical centers across the United States 18,880 men aged 55 years and older with a normal digital rectal exam (DRE) and prostatespecific antigen (PSA) level 3.0 ng/ml, as well as no history of prostate cancer, severe benign prostatic hyperplasia, or clinically significant co-morbid conditions that would have precluded successful completion of the study protocol, were randomized to receive finasteride (5 mg/day) or placebo. During the course of the PCPT, men underwent annual DRE and PSA measures and a prostate biopsy was recommended for all men with an abnormal DRE or a finasteride-adjusted PSA of 4.0 ng/ml (37). At the final study visit, all men without a previous diagnosis of prostate cancer were offered an end-of-study biopsy. Biopsies were collected under transrectal ultrasonographic guidance and a minimum of six biopsy specimens (cores) were collected from each participant. All biopsies were reviewed both by a local study pathologist and a central study pathologist (38, 39). Discordant pathology interpretations were arbitrated by a referee pathologist and concordance was achieved in all cases (36, 38, 39). Pathologists were blinded to the randomization arm of all participants. Tumors were graded with the Gleason system by central pathology review at the Prostate Diagnostic Laboratory (Denver, CO). Low-grade prostate cancer included tumors with Gleason score <7 and high-grade tumors were those with Gleason score 7 (36). Study procedures were approved by Institutional Review Boards at each of the participating clinical centers, the Southwest Oncology Group (SWOG, San Antonio, TX)

and the SWOG Data and Statistical Center (Fred Hutchinson Cancer Research Center, Seattle, WA). All men signed informed consent. An independent data safety and monitoring committee met every six months throughout the course of the trial to review data on safety, adherence and diagnosis of prostate cancer (36).

This report presents data from a nested-case control study in the PCPT. Cases were men with biopsy-determined prostate cancer identified either during an interim or end-of-study biopsy and who had baseline serum available for analysis (n=1803). We retained the low and high-grade classifications as used in the original trial report for these analyses (low grade = Gleason < 7; high grade = Gleason 7) (36). Controls were selected from men who completed the end-of-study biopsy procedure, had no evidence of prostate cancer and had archived baseline serum samples (n=1797). Controls were frequency matched to cases on distributions of age (in 5-year age groups), PCPT treatment arm (finasteride vs. placebo) and positive family history for first degree relative with prostate cancer; controls were oversampled to include all non-whites.

Data Collection

Blood Collection and Processing—Nonfasting blood specimens were collected at screening (approximately three months prior to randomization) and yearly thereafter. Venous blood was drawn into collection tubes without anticoagulant, refrigerated and shipped via overnight courier to the PCPT specimen repository where they were centrifuged, aliquoted and stored at -70° C until analysis (40).

Laboratory Analysis—Serum C-peptide and leptin concentrations were assayed with a standard ELISA using a single production lot of reagents (Diagnostic Systems Limited, Webster, TX). All assays were conducted in duplicate and the mean of the duplicate measures are reported. Two sets of QC samples (from pooled specimens) were included for quality control and the coefficients of variation (CVs) from these QC pools were 5.6% and 3.8% for the C-peptide assays and 4.9% and 4.5% for the leptin assays. Laboratory technicians were blinded to both the randomization assignment and case-control status of all participants.

Other Data—Demographic, personal medical history, family history of prostate cancer and lifestyle habits, such as smoking, alcohol and physical activity habits were collected by self-report at baseline; the measurement characteristics of many of these self-assessment tools are published (41-43). Height and weight were assessed at the baseline clinic visit using a standard protocol (44) and weight was assessed annually thereafter. Body mass index (BMI) was calculated as [weight(kg)/height(m²)] and standard clinical cutpoints categorized BMI as normal = BMI < 25.0; overweight = BMI 25.0 to < 30.0; and obese = BMI 30.0 (45). Circumferences of the abdomen, waist, hip and thigh were measured at 1-year post randomization (46). As the body circumference measurements were voluntary, some clinical centers did not participate, resulting in missing data for [n=348 (10%)] of the participants.

Statistical Analysis—The control group was oversampled with minorities to include all control-eligible non-whites. Thus, baseline demographic and lifestyle characteristics were adjusted for race (white vs. non-white) using linear regression to calculate least squares means for continuous variables and adjusted percents for categorical variables.

Serum concentrations of C-peptide and leptin were categorized into quartiles based on the distribution in the controls. Logistic regression was used to calculate odds ratios and 95% confidence intervals for risk of total prostate cancer and polytomous logistic regression was used to calculate odds ratios and 95% confidence intervals of both low-grade and high-grade

prostate cancer. The polytomous regression with a generalized logit link permits a model including both low-grade and high-grade cancers as outcomes in the same model, contrasted with no cancer. Model covariates were carefully selected based on a priori information about potential confounding as well as diagnostic procedures completed as part of our modeling exercises. Final covariates included age, race (white/non-white), family history of first-degree relative with prostate cancer, insulin use at baseline, BMI and smoking (packyears of smoking). Since this nested case-control study was part of a randomized, controlled trial, we had an *a priori* hypothesis that there may be effect modification of the active agent in the trial, finasteride, on C-peptide or leptin in relation to prostate cancer risk. We also hypothesized that there could be effect modification by measures of adiposity (e.g., BMI, waist circumference), particularly for leptin since it is produced by adipocytes. Tests for multiplicative interaction were conducted by entering cross-product terms of C-peptide and finasteride or measures of adiposity and testing these terms with the Wald test. We conducted a mediating factors analysis with BMI and leptin to determine whether any observed BMI-prostate cancer risk associations were explained by leptin. All statistical tests are two-sided with p<0.05 considered statistically significant. SAS (version 9.0, Cary, NC) was used for all statistical analyses.

RESULTS

Cases and controls did not differ with respect to race-adjusted BMI, age, body circumferences, family history of prostate cancer, current smoking status or alcohol habits. Controls reported higher levels of physical activity than cases (10.6% vs. 8.2% were very active, p=0.02). Controls also had more total pack-years of smoking (p=0.02) and were more likely to report a diagnosis of diabetes or use insulin and other diabetes medications at baseline compared to cases (p=0.05) (Table 1).

Unadjusted baseline serum C-peptide concentrations did not differ between cases and controls (Table 2). To determine whether finasteride influenced serum C-peptide, we assayed the blood specimens of a random subset of participants (n=267) at both baseline and two years later. While mean concentrations of C-peptide increased for all men between baseline and year 2, there was no evidence that finasteride differentially affected these changes. Mean baseline-year 2 differences did not vary by treatment arm, even after adjustment for years since baseline blood draw and participant weight change from baseline to year 2 (data not shown).

Our initial modeling included the combined arms of the trial [intervention (finasteride) and placebo] and the interaction term between treatment arm and C-peptide. Notably, we observed a statistically significant interaction of C-peptide with treatment arm (p-interaction=0.04 for all cancers and p=0.03 for Gleason 7). Therefore, all remaining models were stratified by treatment arm. Additionally, since men with self-reported diabetes at baseline might have higher circulating C-peptide due to disease-associated poor glycemic control, we conducted additional analyses excluding diabetic men to determine whether they were driving the observed associations. However, as these analyses did not materially alter the results or their interpretation, men with diabetes at baseline were retained in the final model.

Table 3 gives results for multivariate-adjusted associations of serum C-peptide with prostate cancer risk, stratified by treatment arm. In the placebo arm, C-peptide was associated with modest increases in risk for total and low-grade disease (OR = 1.21, 95% CI 0.93-1.57, p trend = 0.11 for all cancers). Findings for high-grade disease were considerably stronger. For men in the placebo arm, those with higher baseline serum C-peptide concentrations had a nearly two-fold, statistically significant increased risk of high-grade prostate cancer,

compared to men with lower baseline serum C-peptide (OR=1.88, 95% CI 1.19-2.97, p trend = 0.004). While the PCPT defined high-grade as Gleason 7, analyses where high-grade was restricted to Gleason 8 were equally strong, but cell sizes very small and confidence intervals very wide. Therefore, data presented are for Gleason < 7 and 7 only. We next examined C-peptide as a continuous variable. In analyses where C-peptide was modeled as [log(C-peptide)], associations with high-grade disease were strong. For every unit increase in [log(C-peptide)], men randomized to placebo had a 39% increased risk of high-grade prostate cancer (p<0.01).

In contrast to the C-peptide risk associations observed in the placebo arm, among men randomized to finasteride, there was no evidence for C-peptide-associated risk with either total prostate cancer, low-grade or high grade-disease, even for men with high serum Cpeptide. For low-grade disease, there was a suggestion of lowered risk among finasteride users (OR for high vs. low C-peptide = 0.77, 95% CI, 0.54-1.09). However, for high-grade disease, prostate cancer risk estimates hovered around unity. Results were similar when high-grade was defined as Gleason 8. Likewise, when C-peptide was modeled as a continuous variable there was a modest suggestion of lowered risk for low-grade disease; for each unit increase of [log (C-peptide)] the odds ratio for prostate cancer was 0.87, 95% CI 0.72-1.05, p trend = 0.16. In the continuous model, no association was observed between Cpeptide and high-grade prostate cancer for men taking finasteride. All results in Table 3 were repeated, restricting the sample to men who were black or non-Hispanic white (i.e., excluding all other race groups). The results and their interpretation did not differ from models where all race/ethnicities were included. We also found no differences in risk across race groups, albeit sample sizes were small (data not shown). Therefore, the final models as presented included all non-white and white men.

Adiposity strongly influences insulin-resistance and C-peptide. In this study sample, the correlations of BMI and waist circumference with serum C-peptide were r= 0.25 and r=0.27, respectively. To investigate whether these adiposity measures modified the association between C-peptide and prostate cancer risk, we modeled C-peptide with the following interaction terms in separate models: (1) BMI 25.0-29.9 (overweight), BMI 30.0 (obese); (2) elevated waist circumference (102 cm); (3) elevated waist:hip ratio (1.0); and (4) a category termed "very high risk of metabolic dysfunction" defined as BMI 30.0 + waist circumference 102 cm, or BMI 35.0 (45). We restricted these analyses to the placebo arm and we present high-grade disease only since this was the group with the elevated risk in the Table 3 models. The results in Table 4 are presented for low and high C-peptide (above and below the median concentration) and for each model the reference group is the lowest risk category (i.e., low C-peptide + normal BMI; or low C-peptide + waist-hip ratio < 1.0). We observed no evidence for effect modification of C-peptide by measures of adiposity.

We conducted several other exploratory analyses in an attempt to further understand why the C-peptide-high-grade disease association was observed only in the PCPT placebo arm. First, we examined whether results may have been biased by the fact that PCPT participants had end-of-study biopsies in addition to biopsies by indication throughout the trial. However, analyses stratified by end-of-study vs. for-cause biopsy and analyses stratified by year of diagnosis did not change the interpretation of results. Similarly, neither adjusting for time since blood draw, prostate volume, trends in PSA nor changes in participant weight over time altered the results or their interpretation (data not shown).

To fully understand the associations of obesity-related factors with prostate cancer risk, particularly high-grade disease, we next investigated whether serum leptin was associated with prostate cancer risk (Table 5). Specifically, we conducted a mediating factors analysis

to understand whether leptin mediates the association of obesity with prostate cancer risk, as suggested by *in vitro* studies (33, 35). Our initial modeling did not demonstrate an interaction of finasteride with leptin, so for these models the intervention and placebo arms are combined. When BMI is modeled as the primary exposure, the odds ratio for high-grade prostate cancer among obese men is 1.39 (95% CI 1.03-1.87, p-trend = 0.03). Obesity was associated with a modest inverse association with low-grade disease (OR= 0.80, 95% CI 0.64-1.0, p-trend = 0.04). Leptin alone was likewise inversely associated with low-grade but not high-grade prostate cancer. In the mediating factors analysis, the BMI association with high-grade disease remains strong, even after including leptin in the model. Finally, we reran the C-peptide models again (from Table 3) but controlling for leptin. C-peptide continued to be associated with high-grade disease in the placebo arm (but not finasteride arm) even after controlling for leptin (OR = 1.99, 95% CI 1.24-3.19, p-trend < 0.001, data not shown). The association of obesity with high-grade prostate cancer risk does not appear to be mediated by leptin.

DISCUSSION

In the Prostate Cancer Prevention Trial, men in the placebo arm of the trial who had higher serum C-peptide had a nearly two-fold increased risk of high-grade prostate cancer, relative to men with lower serum C-peptide. The results suggest that metabolic abnormalities are associated with prostate cancer risk, but the mechanism appears to be through insulin resistance and not via adipokines, such as leptin. The C-peptide findings were independent of the principal risk factors for prostate cancer: age, race and family history of prostate cancer (47). The observed associations were also independent of adiposity measures, such as BMI and waist circumference, which recent reports suggest are important prostate cancer risk factors (14, 48, 49). For every unit increase in [log(C-peptide)] there was a 39% increased risk of high-grade prostate cancer. These findings are strengthened by the fact that all men underwent either interim (cases only) or end-of-study (cases and controls) biopsies in the PCPT (36). Thus, the control group is not contaminated with any pre-clinical cases, as may be the case with other studies.

In contrast, men taking finasteride had no apparent increased risk for high-grade prostate cancer, even for men with high serum C-peptide. The strength of the interaction of Cpeptide with finasteride was somewhat unexpected. Finasteride inhibits 5α -reductase, which converts testosterone to the more potent and biologically active dihydrotestosterone (36, 50). We do not have evidence that finasteride affects C-peptide per se since analysis of the small subset (n=267) of specimens assayed for both baseline and year 2 serum C-peptide did not support a C-peptide reducing effect by finasteride. There is some evidence, though, that finasteride may indirectly affect metabolic function. Two previous reports demonstrated that finasteride slows weight gain trajectories (51, 52). If the finasteride-induced decreased weight gain slope affected some of the downstream events that are up-regulated by Cpeptide (e.g., AKT, mTOR) (12, 17), then finasteride could essentially override C-peptide driven events without affecting C-peptide itself. Another possible explanation is that proliferation of neoplastic cells in the prostate may depend on both insulin and androgens. Since androgen levels (as DHT) are reduced among men on finasteride, neoplastic progression could be slowed despite high insulin levels. It is also possible that multiple mechanisms are at work. Investigations using methods developed for genetic epidemiology that simultaneously model metabolic and hormonal pathways, and finasteride's role in those pathways, may be a particularly useful approach to use in the future to understand these complex relationships (53-55). Regardless of the underlying biological mechanism, the evidence that men with higher serum C-peptide who used finasteride, but did not have an increased prostate cancer risk, may be clinically meaningful and should be investigated further.

The results from the PCPT placebo arm are consistent with most, but not all previous studies of C-peptide and prostate cancer risk. The Physicians' Health Study (PHS) reported that risk of death from prostate cancer was over two-fold higher for men with higher vs. lower Cpeptide (7). Unlike the PCPT, however, the PHS observed an interaction of BMI with Cpeptide such that men in the highest C-peptide quartile who were also overweight (BMI > 25.0) had a four-fold increased risk of prostate cancer mortality, but those with high Cpeptide who were not overweight had no increased risk of prostate cancer death (7). It is possible that the PCPT did not have sufficient variation in adiposity measures to detect an interaction effect with C-peptide as only 25% of the study sample was of normal BMI. Other studies have reported on insulin and insulin resistance measures, such as HOMA (homeostasis model of assessment). Two studies conducted in Chinese men support a positive association of insulin or insulin resistance with prostate cancer risk (5, 6), as does one recent study of Finnish men (29). In contrast to the positive reports for C-peptide and other measures of metabolic dysfunction, Borugian reported no association of serum Cpeptide with prostate cancer risk, but the study was very small (n= 57 cases) and no results were reported by disease stage or Gleason grade (30).

Despite the increasing evidence in this and other reports that metabolic dysfunction increases prostate cancer risk (5, 7, 13, 48), one somewhat paradoxical observation still exists. Several observational studies have reported inverse associations of diabetes with prostate cancer risk (14, 56, 57). Because diabetes is a disease of disordered glucose metabolism, and often the consequence of obesity (18, 58), evidence suggesting that diabetes reduces prostate cancer risk is curious. Diabetic men also have altered sex hormone profiles as a consequence of their disease (59), which could possibly explain the relationship, but how these complex pathways weave together to affect disease risk is yet to be determined. A particularly complex piece of this clinical picture is the marked heterogeneity of diabetes. For example, many patients with type II diabetes initially have hyperinsulinemia, but in latter stages of the disease actually have hypoinsulinemia, a state that may further reduce androgens and potentially reduce prostate cancer risk (14, 60). Alternatively, the link between diabetes and decreased prostate cancer risk may relate to drugs used to treat diabetes rather than diabetes itself. Metformin is very commonly used in the treatment of type II diabetes (61), and metformin has recently been shown to have potent antiproliferative properties (62). These may relate not only to metformin-induced reduction in the hyperinsulinemia seen in type II diabetics, but also to direct mechanisms of growth inhibition related to metformin activation of the AMP-kinase signaling pathway (63-66). In addition, many diabetics routinely use statins due to co-morbid cardiovascular symptoms; statins have been noted to lower prostate cancer risk (67, 68). Future studies, rather than simply examining relationships between diabetes and prostate cancer, may provide more insight into mechanisms by exploring individually the specific relationships between risk and the levels of various hormones (including insulin), glucose, measures of obesity, and anti-diabetic drug use. Although not definitive, several recent studies have raised the question of increased cancer risk among diabetics who use insulin, in contrast to possibly reduced risk among those who use metformin (69, 70).

Our finding of no relationship of leptin to high-grade prostate cancer risk is a potentially important one, particularly with regard to formulating programs for prevention and control. Evidence to support an association of leptin with prostate cancer is inconsistent from observational studies. A Swedish case-control study reported a relative risk of 2.4 for high vs. low serum leptin in relation to prostate cancer risk (71). However, two subsequent case-control studies in China and Norway reported no statistically significant association of leptin with prostate cancer (6, 72). A more recent case-control study in Texas (USA) also reported no association of leptin with prostate cancer risk (73). However, the PCPT presented here are consistent with results from a study using the fatless A-ZIP/F-1 transgenic mouse model.

These animals are insulin-resistant and are in a chronic state of inflammation, but they lack white adipose tissue and thus, have near undetectable levels of adipokines, such as leptin (74, 75). Nunuz et al reported that the A-ZIP/F-1 mice produced more skin and mammary tumors than wildtype mice (using a classical topical DMBA application for the skin cancers and breeding with C3(1)/T-Ag transgenic mice for the mammary cancers). The tumors developed in spite of very low levels of adipokines, but high levels of insulin and inflammatory factors and up-regulation of insulin-regulated signaling pathways involved in carcinogenesis. The authors and others conclude that the obesity-cancer association may be mediated by insulin resistance and inflammation, rather than adipokines (74, 75). Our results in the PCPT are similar; C-peptide was strongly associated with increased risk of prostate cancer and the effects remain strong after controlling for obesity-related factors. The relationships were attenuated by finasteride. Conversely, the association of obesity with prostate cancer risk was not mediated by leptin. Such findings quite likely have relevance for future programs of prostate cancer prevention and control wherein it might be most effective to improve measures of insulin sensitivity as a measure of prevention and control.

This study has several strengths. The PCPT was a large placebo-controlled randomized trial. The trial design specified that prostate cancer outcomes would be based on biopsy results. As such, the control group used in these analyses all had negative prostate biopsies, largely eliminating the possibility that controls may have had undiagnosed or undetected disease. Other strengths include the carefully collected data throughout the course of the trial, the central pathology laboratory for uniform adjudication of all cases (including adjudication of Gleason grade). Limitations should also be noted, including the fact that the PCPT included few minorities. While we oversampled non-white controls to increase power for analyses by race, the power for any race-specific subgroups was limited. Further, few deaths from prostate cancer have occurred in the PCPT so we are unable to conduct analyses to examine mortality as an endpoint.

In conclusion, these results from the PCPT suggest that men with elevated C-peptide have an increased risk of high-grade prostate cancer. The lack of support in the PCPT for an association of leptin with prostate cancer suggests that the obesity-cancer associations may be mediated by insulin-resistance rather than by adipose-derived factors, such as leptin. The findings reported here confirm and extend results from other cohorts (7). Because insulinresistance type syndromes respond well to lifestyle and pharmacological treatments, consideration should be given to preventive interventions to lower insulin resistance as a means of prostate cancer prevention. Our finding that men with elevated C-peptide who also used finasteride had no increased prostate cancer risk is novel. Further research is needed to understand the clinical significance and mechanisms underlying the finasteride-C-peptide interaction presented in this report. We cannot rule out the possibility that C-peptide levels may be of use in defining a subpopulation of men for whom finasteride-based prevention programs would be particularly useful.

Acknowledgments

The authors are deeply grateful to the PCPT participants and clinic staff. The authors wish to acknowledge the scientific contributions of Drs. Scott Lippman, Ian Thompson, M Scott Lucia, Regina Santella and Catherine Tangen.

Funding This work was supported by the National Cancer Institute at the National Institutes of Health, United States Department of Health and Human Services (P01 CA108964).

REFERENCES

- Hsu I, Kim S, Kabir M, Bergman R. Metabolic syndrome, hyperinsulinemia and cancer. Am J Clin Nutr. 2007; 86(Supplement):867S–871S.
- 2. Zhou J, Blackburn GL, Walker A. Symposium introduction: metabolic syndrome and the onset of cancer. Am J Clin Nutr. 2007; 86(Supplement):817S–819S.
- Laukkanen JA, Laaksonen DE, Niskanen L, et al. Metabolic syndrome and the risk of prostate cancer in Finnish men: a population-based study. Cancer Epidemiol Biomarkers Prev. 2004; 13(10): 1646–1660. [PubMed: 15466982]
- Costello LC, Franklin RB. The intermediary metabolism of the prostate: a key to understanding the pathogenesis and progression of prostate malignancy. Oncology. 2000; 59:269–282. [PubMed: 11096338]
- Hsing AW, Gao Y, Chua S, Deng J, Stanczyk FZ. Insulin resistance and prostate cancer risk. J Natl Cancer Inst. 2003; 95:67–71. [PubMed: 12509402]
- Hsing AW, Chua S, T GY, et al. Prostate cancer risk and serum levels of insulin and leptin: a population-based study. J Natl Cancer Inst. 2001; 93:783–789. [PubMed: 11353789]
- Ma J, Li H, Giovannucci E, et al. Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet. 2008; 9(11):1039–1047.
- Kahn BB, Flier JS. Obesity and insulin resistance. Journal of Clinical Investigation. 2000; 106(4): 473–481. [PubMed: 10953022]
- White MF, Kahn CR. The Insulin Signaling System. The Journal of Biological Chemistry. 1994; 269(1):1–4. [PubMed: 8276779]
- Venkateswaran V, Haddad AQ, Fleshner NE, et al. Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts. J Natl Cancer Inst. 2007; 99(23): 1793–1800. [PubMed: 18042933]
- Chan JM, Stampfer MJ, Ma J, et al. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J Natl Cancer Inst. 2002; 94:1099–1109. [PubMed: 12122101]
- Gottlob K, Majewski N, Kennedy S, et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Gene Dev. 2001; 15(11):1406–1418. [PubMed: 11390360]
- Calle R, Rodriguez C, Walker-Thurmond K, Thun M. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003; 348:1625–1638. [PubMed: 12711737]
- Gong Z, Neuhouser ML, Goodman PJ, et al. Obesity, diabetes, and risk of prostate cancer: results from the Prostate Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev. 2006; 15(10): 1977–1983. [PubMed: 17035408]
- 15. Kaaks R, Lukanova A. Energy balance and cancer: the role of insulin and insulin-like growth factor-I. Proceedings of the Nutrition Society. 2001; 60:91–106. [PubMed: 11310428]
- 16. Cox ME, Gleave ME, Zakikhani M, et al. Insulin receptor expression by human prostate cancers. The Prostate. 2009; 68(1):1–8.
- Kitazawa M, Shibata Y, Hashimoto S, Ohizumi Y, Yamakuni T. Proinsulin C-peptide stimulates a PKC/IkappaB/NF-kappaB signaling pathway to activate COX-2 gene transcription in Swiss 3T3 fibroblasts. Journal of Biochemistry. 2006; 139(6):1083–1088. [PubMed: 16788059]
- Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors. JAMA. 2003; 289:76–79. [PubMed: 12503980]
- Bray GA. Medical consequences of obesity. J Clin Endocrinol Metab. 2004; 89:2583–2589. [PubMed: 15181027]
- Kelley D, Goodpaster B. Effects of physical activity on insulin action and glucose tolerance in obesity. Medicine & Science in Sports and Exercise. 1999; 31:S619–S623. [PubMed: 10593537]
- Barnard ND, Scialli AR, Turner-McGrievy G, Lanou AJ, Glass J. The effects of a low-fat, plantbased dietary intervention on body weight, metabolism, and insulin activity. Am J Med. 2005; 118:991–997. [PubMed: 16164885]

- 22. Wolever TMS, Mehleng C. Long-term effect of varying the sources or amount of dietary carbohydrate on postprandial plasma glucose, insulin, triacylglycerol, and free fatty acid concentrations in subjects with impaired glucose tolerance. Am J Clin Nutr. 2003; 77:612–621. [PubMed: 12600851]
- 23. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005; 365(9468):1415–1428. [PubMed: 15836891]
- 24. Wei EK, Ma J, Pollak MN, et al. C-peptide, insulin-like growth factor binding protein-1, glycosylated hemoglobin, and the risk of distal colorectal adenoma in women. Cancer Epidemiol Biomarkers Prev. 2006; 15(4):750–755. [PubMed: 16614119]
- Giovannucci E. Insulin, insulin-like growth factors and colon cancer: A review of the evidence. J Nutr. 2001; 131:3109s–3120s. [PubMed: 11694656]
- 26. Okumura M, Yamamoto M, Sakuma H, et al. Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvement of PKC-alpha and PPAR expression. Biochem Biophys Acta. 2002; 1592:107–116. [PubMed: 12379472]
- Kabat GC, Kim M, Chlebowski RT, et al. A longitudinal study of the metabolic syndrome and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2009; 18:2046–2053. [PubMed: 19567502]
- Stocks T, Lukanova A, Rinaldi S, et al. Insulin resistance is inversely related to prostate cancer: a prospective study in Northern Sweden. Int J Cancer. 2007; 120(12):2678–2686. [PubMed: 17278097]
- Albanes D, Weinstein SJ, Wright ME, et al. Serum insulin, glucose, indices of insulin resistance, and risk of prostate cancer. J Natl Cancer Inst. 2009; 101(18):1272–1279. [PubMed: 19700655]
- Borugian MJ, Spinelli JJ, Sun Z, et al. Prediagnostic C-peptide and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2007; 16(10):2164–2165. [PubMed: 17932367]
- Baratta M. Leptin from a signal of adiposity to a hormonal mediator in peripheral tissues. Medical Science Monitor. 2002; 8(12):RA282–292. [PubMed: 12503048]
- Harris R. Leptin much more than a satiety signal. Ann Rev Nutr. 2000; 20:45–75. [PubMed: 10940326]
- Onuma M, Bub J, Rummel T, Iwamoto Y. Prostate cancer cell-adipocyte interaction: leptin mediates androgen-independent prostate cancer cell proliferation through c-Jun NH2-terminal kinase. J Biol Chem. 2003; 278:42660–42667. [PubMed: 12902351]
- Saglam K, Aydur E, Yilmaz M, Goktas S. Leptin influences cellular differentiation and progression in prostate cancer. J Urol. 2003; 169(4):1308–1311. [PubMed: 12629349]
- Frankenberry KA, Somasundar P, McFadden DW, Vona-Davis LC. Leptin induces cell migration and the expression of growth factors in human prostate cancer cells. Am J Surg. 2004; 188(5): 560–565. [PubMed: 15546570]
- 36. Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med. 2003; 349:215–224. [PubMed: 12824459]
- Thompson IM, Chi C, Ankerst DP, et al. Effect of finasteride on the sensitivity of PSA for detecting prostate cancer. J Natl Cancer Inst. 2006; 98(16):1128–1133. [PubMed: 16912265]
- Lucia MS, Darke AK, Goodman PJ, et al. Pathologic characteristics of cancers detected in the Prostate Cancer Prevention Trial: Implications for prostate cancer detection and chemoprevention. Cancer Prevention. 2008:1–7.
- 39. Lucia MS, Epstein JI, Goodman PJ, et al. Finasteride and high-grade prostate cancer in the Prostate Cancer Prevention Trial. J Natl Cancer Inst Monogr. 2007; 99(18):1375–1383.
- 40. Kristal AR, King IB, Albanes D, et al. Centralized blood processing for the selenium and vitamin E cancer prevention trial: effects of delayed processing on carotenoids, tocopherols, insulin-like growth factor-I, insulin-like growth factor binding protein 3, steroid hormones, and lymphocyte viability. Cancer Epidemiol Biomarkers Prev. 2005; 14(3):727–730. [PubMed: 15767358]
- Neuhouser ML, Kristal AR, McLerran D, Patterson RE, Atkinson J. Validity of short food frequency questionnaires used in cancer chemoprevention trials: Results from the Prostate Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev. 1999; 8:721–725. [PubMed: 10744133]

- Neuhouser ML, Kristal AR, Patterson RE, Goodman PJ, Thompson IM. Dietary supplement use in the Prostate Cancer Prevention Trial: implications for prevention trials. Nutr Cancer. 2001; 39:12– 18. [PubMed: 11588893]
- 43. Kristal AR, Arnold KB, Schenk JM, et al. Dietary patterns, supplement use and risk of symptomatic benign prostatic hyperplasia (BPH): Results from the Prostate Cancer Prevention Trial. Am J Epidemiol. 2008; 167:925–934. [PubMed: 18263602]
- 44. Lohman, T.; Roche, A.; Martorell, M. Anthropometric standardization reference manual. Human Kinetics Books; Champaign, IL: 1988.
- 45. Expert Panel on the Identification Evaluation, and Treatment of Overweight in Adults. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. Am J Clin Nutr. 1998; 68:899–917. [PubMed: 9771869]
- 46. Satia-Abouta J, Patterson RE, Schiller RN, Kristal AR. Energy from fat is associated with obesity in U.S. men: Results from the Prostate Cancer Prevention Trial. Prev Med. 2002; 34:493–501. [PubMed: 11969348]
- 47. Brawley OW, Knopf K, Thompson I. The epidemiology of prostate cancer Part II: The risk factors. Sem Urol Oncol. 1998; 16:193–201.
- Gong Z, Agalliu I, Lin DW, Stanford JL, Kristal AR. Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men. Cancer. 2007; 109(6):1192–1202. [PubMed: 17311344]
- Rodriguez C, Freedland SJ, Deka A, et al. Body mass index, weight change, and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol Biomarkers Prev. 2007; 16(1):63–69. [PubMed: 17179486]
- Makridakis N, Reichardt JKV. Pharmacogenetic analysis of human steroid 5a reductase type II: comparison of finasteride and dutasteride. J Mol Endocrinol. 2005; 34(3):617–623. [PubMed: 15956333]
- Song Y, Tangen C, Goodman PJ, et al. Finasteride, prostate cancer, and weight gain: Evidence for genetic or environmental factors that affect cancer outcomes during finasteride treatment. Prostate. 2008; 68(3):281–286. [PubMed: 18163420]
- 52. Roehrborn CG, Lee M, Meehan A, Waldstreicher J. Effects of finasteride on serum testosterone and body mass index in men with benign prostatic hyperplasia. Urology. 2003; 62:894–899. [PubMed: 14624915]
- 53. Kooperberg C, Tuczinski I, LeBlanc ML, Hsu L. Sequence analysis using logic regression. Genet Epidemiol. 2001; 21:S626–631. [PubMed: 11793751]
- Hung RJ, Brennan P, Malaveille C, et al. Using hierarchical modeling in genetic association studies with multiple markers: application to a case-control study of bladder cancer. Cancer Epidemiol Biomarkers Prev. 2004; 13(6):1013–1021. [PubMed: 15184258]
- 55. Chatterjee N, Kalaylioglu Z, Moslehi R, Peters U, Wacholder S. Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions. Am J Hum Genet. 2006; 79(6):1002–1016. [PubMed: 17186459]
- 56. Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Diabetes mellitus and risk of prostate cancer (US). Cancer Causes Control. 1998; 9:3–9. [PubMed: 9486458]
- 57. Waters KM, Henderson BE, Stram DO, et al. Association of diabetes with prostate cancer risk in the multiethnic cohort. Am J Epidemiol. 2009; 169(8):937–945. [PubMed: 19240222]
- Cowie CC, Rust KF, Byrd-Holt DD, et al. Prevalence of diabetes and impaired fasting glucose in adults in the US population: National Health And Nutrition Examination Survey 1999-2002. Diabetes Care. 2006; 29(6):1263–1268. [PubMed: 16732006]
- Stellato RK, Feldman HA, Hamdy O, Horton ES, McKinlay JB. Testosterone, sex hormonebinding globulin, and the development of Type 2 diabetes in middle-aged men. Diabetes Care. 2000; 23:490–494. [PubMed: 10857940]
- 60. Li C, Ford ES, McGuire LC, et al. Trends in hyperinsulinemia among nondiabetic adults in the U.S. Diabetes Care. 2006; 29:2396–2402. [PubMed: 17065674]
- Holman RR, Paul SK, Bethel A, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in Type 2 diabetics. The New England Journal of Medicine. 2008; 359:1577–1589. [PubMed: 18784090]

- Zakikhani M, Dowling RJ, Fantus IG, Sonenberg N, Pollak M. Metformin is an AMP kinasedependent growth inhibitor for breast cancer cells. Cancer Res. 2006; 66(2):10269–10273. [PubMed: 17062558]
- 63. Zakikhani M, Dowling RJ, Sonenberg N, Pollak MN. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prevention Research. 2008; 1(5):369–375. [PubMed: 19138981]
- Pollak M. Insulin and Insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008; 8(12):915–928. [PubMed: 19029956]
- Algire C, Zakikhani M, Blouin MJ, Shuai JH, Pollak M. Metformin attenuates the stimulatory effect of high-energy diet on in vivo LLC1 carcinoma growth. Endocr Relat Cancer. 2008; 15(3): 833–839. [PubMed: 18469156]
- Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007; 67(22):10804–10812. [PubMed: 18006825]
- 67. Hoque A, Chen H, Xu X-C. Statin induces apoptosis and cell growth arrest in prostate cancer cells. Cancer Epidemiol Biomarkers Prev. 2008; 17:88–94. [PubMed: 18199714]
- Jacobs EJ, Rodriguez C, Bain EB, et al. Cholesterol-lowering drugs and advanced prostate cancer incidence in a large U.S. cohort. Cancer Epidemiol Biomarkers Prev. 2007; 16:2213–2217. [PubMed: 17971518]
- 69. Currie CJ, Poole CD, Gale EAM. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009 epub ahead of print:1-12.
- Hemkens LG, Grouven U, Bender R, et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia. 2009 epub ahead of print: 1-13.
- Stattin P, Soderberg S, Hallmans G, et al. Leptin is associated with increased prostate cancer risk. A nested case-referent study. J Clin Endocrinol Metab. 2001; 86:1341–1345. [PubMed: 11238530]
- 72. Stattin P, Kaaks R, Johansson R, et al. Plasma leptin is not associated with prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2003; 12(5):474–475. [PubMed: 12750247]
- Baillargeon J, Platz EA, Rose DP, et al. Obesity, adipokines, and prostate cancer in a prospective population-based study. Cancer Epidemiol Biomarkers Prev. 2006; 15(7):1331–1335. [PubMed: 16835332]
- Hursting SD, Nunez NP, Varticovski L, Vinson C. The obesity-cancer link: lessons learned from a fatless mouse. Cancer Res. 2007; 67(6):2391–2393. [PubMed: 17363554]
- 75. Nunez NP, Oh WJ, Rozenberg J, et al. Accelerated tumor formation in a fatless mouse with type 2 diabetes and inflammation. Cancer Res. 2006; 66(10):5469–5476. [PubMed: 16707476]

Table 1

Race-Adjusted Baseline Demographic and Lifestyle Characteristics of the PCPT Participants (n=3600)¹

		Prostate	e Cancer		ΡŹ
	Case	es (n=1803)	Contro	ols (n=1797)	
Race	n	%	n	%	
White	1674	92.8	1426	79.4	
Black	82	4.5	174	9.7	
Other	47	2.6	197	11.0	
	LS Mean	95%CI	LS Mean	95%CI	
Age (years)	63.6	63.3-63.8	63.7	63.4-63.9	0.5
Body Mass Index [wt(kg)/ht(m) ²]	27.5	27.3-27.7	27.6	27.4-27.8	0.4
Waist circumference (cm)	101.8	101.3-102.3	102.3	101.8-102.8	0.1
Waist:Hip ratio	0.96	0.95-0.96	0.96	0.96-0.96	0.7
Smoking (pack-years)	14.0	13.2-14.8	15.3	14.6-16.1	0.0
Alcohol intake (g/day)	9.7	9.0-10.4	9.2	8.5-9.9	0.2
	n	% (adjusted) 1	n	%(adjusted) 1	
Intervention arm ³	761	43.0	763	41.7	0.4
Diabetes or insulin use	84	5.3	133	6.8	0.0
Family history of prostate cancer	384	20.8	382	21.8	0.4
Body Mass Index [wt(kg)/ht(m) ²]					
Normal (< 25.0)	498	27.7	447	25.3	0.1
Overweight (25.0-29.9)	913	50.8	941	53.2	0.1
Obese (30.0)	376	21.3	391	21.3	0.9
Physical activity					
Sedentary	309	17.6	313	17.1	0.6
Light activity	746	41.3	738	41.5	0.9
Moderate activity	592	32.9	550	30.8	0.2
Very active	149	8.2	188	10.6	0.0
Smoking status					
Never smoker	644	35.4	615	34.6	0.6
Current smoker	122	7.1	138	7.3	0.8
Past smoker	1037	57.5	1044	58.1	0.6
Education					
High school or less	308	17.6	348	18.9	0.3
Some college/college degree	490	27.7	542	29.7	0.2
Graduate/professional school	1004	54.7	906	51.4	0.0

 I Least squares means and adjusted percents are adjusted for race (white vs. non-white) due to the inclusion of all non-whites in the control group (see methods section for details).

 2 p values are adjusted for race using linear regression to calculate least squaresd means, adjusted percents and p-values (see methods section for details).

 3 Intervention arm participants were randomized to finasteride.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Table 2

Distributions of C-Peptide in the Prostate Cancer Prevention Trial

	-		Mean	5	3£tho∠	5 oth	75
	1				tile	%tile	%tile
All participants	3600		3.64	2.32	1.86	3.08	4.88
Cases	1803		3.64	2.32	1.87	3.14	4.87
Controls	1797		3.63	2.33	1.84	3.03	4.90
		Baseline :	Baseline and Year 2 Serum C-Peptide (ng/ml) I	Serum	C-Peptide ((Im/gn)	
	=	Baseline Median	Baseline Mean	ß	Year 2 Median	Year 2 Mean	ß
All Participants ¹	267	3.08	3.56	2.18	4.06	4.46	2.71
Cases							
All cases	127	3.32	3.84	2.25	4.32	4.78	2.77
Placebo	67	3.21	3.60	2.05	4.27	4.46	2.64
Finasteride	60	3.91	4.10	2.45	4.52	5.13	2.89
Controls							
All controls	140	2.78	3.32	2.08	3.58	4.14	2.62
Placebo	73	2.76	3.23	2.05	3.81	4.24	2.46
Finasteride	67	2.89	3.41	2.13	3.11	4.03	2.80

Table 3

Associations of Serum C-peptide Concentrations with Prostate Cancer Risk by in the PCPT by treatment arm (placebo/finasteride)

Neuhouser et al.

Placebo Arm <1.	<1.842391.0	1.85-3.03	3.04-4.90	4.91	P-trond
able-adjusted I able-adjusted I able-adjusted I	.39 .0				nnn n- r
able-adjusted I able-adjusted I able-adjusted I	39				
able-adjusted I able-adjusted I able-adjusted I	0.	266	280	247	0.11
able-adjusted I able-adjusted I		1.25 (0.98,1.61)	1.37 (1.07,1.76)	1.21 (0.93,1.57)	
able-adjusted able-adjusted					
able-adjusted I able-adjusted I	191	209	205	171	0.49
able-adjusted	1.00	1.26 (0.96, 1.64)	1.29 (0.99, 1.69)	1.09 (0.82, 1.45)	
able-adjusted					
iable-adjusted	35	49	63	65	0.004
	1.00	1.51 (0.95, 2.42)	1.95 (1.24, 3.07)	1.88 (1.19, 2.97)	
I		D D	Continuous model ²	lel ²	
		OR	95% CI	p-value	
Gleason < 7		1.06	0.91, 1.23	0.44	
Gleason 7-10		1.39	1.09,1.76	0.01	
	Quê	rtile of serun	Quartile of serum C-peptide concentration (ng/ml)	ncentration (n	g/ml)
Finasteride Arm <1.	<1.84	1.85-3.03	3.04-4.90	4.91	<i>P</i> -trend
All Cases					
No. cases 19	193	165	203	194	0.55
OR _{multivariable-adjusted} 1. (95% CI)	1.0	0.72 (0.53,0.98)	0.84 (0.63,1.14)	0.86 (0.63,1.17)	
Gleason < 7*					
No cases 12	126	89	126	107	0.39

Placebo Arm	10.1	000-00T			
ORmultivariable-adjusted ^I (95% CI)	1.00	0.61 (0.43, 0.87)	0.84 (0.60, 1.17)	$\begin{array}{ccc} 0.84 & 0.77 \\ (0.60, 1.17) & (0.54, 1.09) \end{array}$	
Gleason 7-10*					
No. cases	60	63	70	81	0.67
OR _{multivariable-adjusted} (95% CI)	1.00	$\begin{array}{c} 0.87\\ (0.57,1.32) \end{array}$	0.90 (0.59, 1.36)	1.07 (0.71, 1.62)	
		Ŭ	Continuous model ²	del ²	
		OR	95% CI	p-value	
Gleason < 7		0.87	0.72, 1.05	0.16	
Gleason 7-10		0.96	0.76, 1.20	0.69	

in use at baseline, body mass index [wt(kg)/ht(m)²], smoking (pack-years).

The odds ratios for prostate cancer risk using both low-grade and high-grade disease (Gleason < 7 and Gleason 7-10) as outcomes in the same model were calculated using polytomous logistic regression with generalized logit link; model includes both low-grade (Gleason < 7) and high-grade (Gleason 7-10), contrasted with no cancer.

² For the continuous models, the odds ratios represent the change in risk for each unit increase in [log (C-peptide)].

Table 4

Adiposity-C-Peptide Interactions in Relation to High-Grade* Prostate Cancer in the PCPT (placebo arm only)

		C-Pep	tide < 3	.08 ng/ml ¹	C-Pep	tide 3	.08 ng/ml ¹
Adiposity Measures	Total n	Cases (n)	OR ²	95% CI	Cases (n)	OR ²	95% CI
BMI							
Normal (BMI $< 25 \times C$ -peptide)	49	25	1.0 (ref)		24	1.43	0.77,2.66
Overweight (BMI 25.0- 29.9 × C-peptide)	106	41	0.80	0.47,1.36	65	1.40	0.66, 2.96
Obese (BMI $30.0 \times C$ -peptide)	57	19	1.62	0.84, 3.15	38	0.72	0.30, 1.72
Waist Circumference							
Waist < 102 cm × C- peptide	92	45	1.0 (ref)		47	1.50	0.95, 2.38
Waist $102 \text{ cm} \times \text{C-}$ peptide	104	34	0.98	0.58, 1.66	70	1.03	0.54, 1.97
Waist:Hip Ratio							
Waist:Hip $< 1.0 \times C$ -peptide	160	69	1.0 (ref)		91	1.56	1.09, 2.23
Waist:Hip $1.0 \times C$ -peptide	36	10	0.73	0.35, 1.49	26	0.98	0.41, 2.33
Very High Risk ³							
Low risk \times C-peptide	145	63	1.0 (ref)		82	1.71	1.19, 2.47
Very high risk \times C-peptide	46	15	1.20	0.57, 2.54	31	0.59	0.27, 1.28

¹Median serum C-peptide concentration = 3.08 ng/ml.

 2 All odds ratios are adjusted for age (continuous), race (white vs nonwhite), family history of prostate cancer, insulin use at baseline, BMI continuous (except the model with BMI interactions), and pack-years of cigarettes smoked (continuous). P-values for all interaction tests are > 0.10.

 3 Very High-Risk is defined as: BMI >= 30 + waist circumference >= 102 cm, or BMI>=35 (see text for details).

* Polytomous regression used in analysis but only high-grade results are shown in Table 4.

Table 5

Associations of Leptin with low and high-grade prostate cancer in the PCPT (n=3565)¹

	Gleason <7 (n= 1224)	= 1224)		Gleason 7 (n=	7 (n= 486)	
	Odds Ratio ²	95% CI	p-trend	Odds Ratio ²	95% CI	p-trend
Model						
BMI * alone						
Normal (< 25.0)	1.0 (referent)		0.04	1.0 (referent)		0.03
Overweight (25.0-29.0)	0.83	0.70, 0.99		1.04	0.81, 1.33	
Obese (30.0)	0.80	0.64, 1.00		1.39	1.03, 1.87	
Leptin alone						
Q1 (<5.2 ng/ml) ³	1.0 (referent)		0.003	1.0 (referent)		0.48
Q2 (5.2-8.6 ng/ml)	0.94	0.77, 1.16		1.22	0.92, 1.62	
Q3 (8.6-13.3 ng/ml)	0.88	0.71, 1.08		1.06	0.79, 1.43	
Q4 (> 13.3 ng/ml)	0.72	0.58, 0.90		1.18	0.88, 1.57	
BMI and Leptin						
Normal (< 25.0)	1.0 (referent)		0.62	1.0 (referent)		0.05
Overweight (25.0-29.0)	0.88	0.73, 1.07		1.03	0.78, 1.37	
Obese (30.0)	0.96	0.73, 1.26		1.46	1.01, 2.10	
Q1 Leptin ³	1.0 (referent)		0.04	1.0 (referent)		0.65
Q2 Leptin	0.98	0.79, 1.21		1.18	0.87, 1.60	
Q3 Leptin	0.92	0.73, 1.16		0.98	0.70, 1.36	
Q4 Leptin	0.75	0.58, 0.98		0.98	0.68, 1.40	

Cancer Prev Res (Phila). Author manuscript; available in PMC 2013 December 02.

 ${}^{\mathcal{J}}_{}$ Quartiles of leptin are based on the distribution in the controls.

 $^*_{BMI} = [wt(kg)/ht(m)^2]$