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Abstract

The demonstration that humans can learn to modulate their own brain activity based on feedback of
neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although
EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI
(fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to
gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as
pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding
represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its
applications critically depend on the existence of freely available, integrated and user-friendly tools for the
neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package
for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image
preprocessing in real-time, ROIl-based feedback (single-ROlI BOLD level and functional connectivity) and brain
decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing
pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In
addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback
experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-
commercial use. Processing tutorials and extensive documentation are available.

Citation: Sato JR, Basilio R, Paiva FF, Garrido GJ, Bramati IE, et al. (2013) Real-Time fMRI Pattern Decoding and Neurofeedback Using FRIEND: An
FSL-Integrated BCI Toolbox. PLoS ONE 8(12): e81658. doi:10.1371/journal.pone.0081658

Editor: Essa Yacoub, University of Minnesota, United States of America
Received April 17, 2013; Accepted October 15, 2013; Published December 2, 2013

Copyright: © 2013 Sato et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by FAPERJ Sediadas and INNT grants, CAPES, CNPq and by intramural grants from IDOR; RZ was supported by
an MRC clinician scientist award (G0902304). JRS was supported by FAPESP (grant number 2013/10498-6), Brazil. The funder had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.
* E-mail: jorge.moll@idor.org

Introduction Critical advances in functional magnetic resonance imaging
(fMRI) instrumentation and data processing [10] have paved

Humans can learn to modulate their own physiological the way for the implementation of real-time fMRI data analysis
responses, including viscero-endocrine and neural activity [1] ~ and  neurofeedback  [11-15].  Functional ~ MRI-based
especially when provided with contingent feedback signals in neurofeedback (fMRI-NFB) enabled non-invasive modulation of
the form of brain-computer interfaces (BCI), a process that has brain regions at an unprecedented spatial accuracy, including
been dubbed “neurofeedback” 2,3]. EEG-based deep brain structures that are virtually inaccessible by non-

invasive methods.

Combined with multivoxel pattern analysis or “brain
decoding” techniques [16—-18], fMRI-NFB holds great promise
for experimental and clinical neuroscience. Real-time fMRI
neurofeedback and multivoxel pattern analysis are especially

neurofeedback has been extensively used in experimental and
clinical investigation, including in epilepsy, attention deficit
hyperactivity and affective disorders [2,4-6]. BCls may allow
paralyzed patients to control artificial limbs and speech devices

([7,8]; see [3] for an overview). In addition, BCls based on promising to investigate brain states relying on the distributed
invasive recordings hold promise for treating severe networks underlying normal social cognition and emotion and
neurological deficits [9]. their putative changes in psychiatric conditions [19-23].
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Whereas multivoxel pattern analysis and neurofeedback can
be combined to enable real-time fMRI-NFB brain decoding
[12,19-21], the shortfall of freely available, standalone tools
remains a major challenge for the widespread use of fMRI-
NFB. Notable exceptions are AFNI [10], which includes the
SVM-based 3dsvm plugin [19], as well as univariate real-time
fMRI capabilities [10], TurboFIRE (http://hsc.unm.edu/som/
neuro/lab/people.shtml), which allows real-time fMRI analysis
based on GLM and sliding window correlations, and Turbo-
BrainVoyager (Brain Innovation, The Netherlands), a
commercial package that provides real-time fMRI GLM analysis
and neurofeedback functionalities (www.brainvoyager.com/
TurboBrainVoyager.html).

Here we introduce a new toolbox, FRIEND (Functional Real-
time Interactive Endogenous Neuromodulation and Decoding),
which integrates key functionalities, including (1) real-time fMRI
preprocessing, (2) multivoxel pattern analysis and decoding by
support vector machines (SVM) and (3) a flexible, user-defined
neurofeedback module based on univariate (single ROl BOLD
signal or dual ROI correlation), or multivariate SVM analyses,
packaged within a standalone, user-friendly solution. This
toolbox not only streamlines several processing steps, e.g.
image registration, motion correction, spatial smoothing, GLM
calculation, anatomically or functionally-defined ROI selection,
but introduces optimized approaches for automatic map
generation, calculation of dynamic signal correlation among
ROls using sliding windows, and for SVM training/classification.
FRIEND is freely available for download at the Oxford FMRIB
website  (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/OtherSoftware) or
directly from its repository (http://idor.org/neuroinformatics/
friend) under an open-source license for non-commercial use.
The toolbox was developed to address most technical and
conceptual challenges in fMRI real-time classification of brain
states (brain decoding) and neurofeedback. FRIEND does not
require programming or scripting skills, and should be
accessible to most students and researchers conducting fMRI
research. In this article we describe the conceptual
development and technical implementation of FRIEND, and
illustrate some of its potential applications using real-time fMRI
neurofeedback datasets of motor imagery and emotional
elicitation tasks.

Materials and Methods

Ethics statement

All participants provided written consent for participating in
these studies. This study and all data herein presented was
approved by the local ethics committees (Copa D’Or
CEP#137/09 and UFRJ CEP#159.709).

FRIEND Toolbox Overview

FRIEND was developed at the Cognitive and Behavioral
Neuroscience Unit, D’Or Institute for Research and Education
(http://idor.org/neuroinformatics/friend), Rio de Janeiro, Brazil.
The package was coded in Object PASCAL (Delphi® 2007 and
Lazarus 1.0.10) and C? (Microsoft Visual Studio® 2008
Professional and GNU Compiler Collection 4.8.1). FRIEND is
multiplatform, running on Microsoft Windows® (XP or later),
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Apple Macintosh (OS X 10.8 and above) and Linux (Debian,
CentOS 6.4). A mid/high end workstation is required (e.g. PC:
Quad-core i7, 8 GB RAM or above, Macintosh: Quad-core Intel
Core i5, 8 GB RAM or above) in order to enable smooth online
data preprocessing, classification and contingent stimulus
delivery. FRIEND employs multithread coding for speeded up
processing in multiple core workstations. This feature is
implemented by calling embedded FSL routines (http://
www.fmrib.ox.ac.uk/fsl/) into different threads. The original FSL
codes were not modified for parallel processing. All steps of
image registration, motion correction, feature selection (based
on either SVM or general linear model [GLM] “functional
localizers”, or on a priori ROIs) and SVM classification can
generally be performed within a TR of 1.5 seconds or less
(single-shot EPI, 64x64 to 80x80 matrix, 22-37 slices.

The real-time preprocessing module includes options for
univariate (ROI-based) and multivariate SVM data analysis
[24,25] and/or classification, coupled with the visual
neurofeedback module. This enables participants to use their
own local (single ROI or combined ROIs) or distributed brain
signals (correlation among ROIs or multivoxel pattern-based
brain decoding using SVM) to modulate performance in a wide
range of behavioral (e.g., motor task), cognitive (e.g., motor
imagery) or emotional tasks (e.g., basic, social or moral
emotions). Figure 1 shows a flowchart describing FRIEND’s
main pipeline elements.

The FRIEND toolbox currently embeds components from the
FSL ([26]; http://www.fmrib.ox.ac.uk/fsl/) and from the libSVM
([27]; http://lwww.csie.ntu.edu.tw/~cjlin/libsvm/) libraries, both
freely available packages with stable releases that have been
extensively validated by the scientific community. FRIEND also
incorporates a number of modules and routines designed
specifically to simplify the conduction of real-time fMRI
neurofeedback experiments, while allowing extensive control of
parameters and quality control. Furthermore, to allow for
controlled studies, FRIEND offers the option of running an
experiment with contingent (“real”) or non-contingent (e.g.,
random or non-informative) neurofeedback. Thus, participants
may be randomly assigned to a neurofeedback or to a control /
non-feedback group.

Data Acquisition and Processing Overview

Data collection begins with the acquisition of a high-
resolution gradient-echo T1-weighted structural anatomical
volume (reference anatomical image, RAI) and one high signal-
to-noise echo-planar (EPI) volume (reference functional image,
RFI), which are used as image registration references.
Functional images are then obtained using the real-time
acquisition pipeline. The experimental design is described in an
ASCIl design file while other parameters (preprocessing
parameters, type of feature selection, if any, and feedback
characteristics) are entered into the software interface window
(Figure 2).

FRIEND's real-time functionalities inherently require proper
access to the functional volumes as soon as they are acquired.
Thus, real-time fMRI data (single EPI volumes) must be
available from the MR scanner in a suitable data format
immediately following reconstruction. It should be noted that

December 2013 | Volume 8 | Issue 12 | e81658


http://hsc.unm.edu/som/neuro/lab/people.shtml
http://hsc.unm.edu/som/neuro/lab/people.shtml
http://www.brainvoyager.com/turbobrainvoyager.html
http://www.brainvoyager.com/turbobrainvoyager.html
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/othersoftware
http://idor.org/neuroinformatics/friend
http://idor.org/neuroinformatics/friend
http://idor.org/neuroinformatics/friend
http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Real-Time fMRI Decoding and Neurofeedback: FRIEND

< & &
BOLD Correlation Training E:> Classification
it Acquisition of anatomical and functional images of reference rt rt off/rt
Configuration of input parameters® rt rt off/rt rt
Acquisition of real-time functional images rt rt off/rt rt
Image processing |Coregistration and skull stripping of reference images using FSL rt rt off rt
Spatial and temporal processing of functional images rt rt off rt
fMRI data statistics (GLM maps) and features extraction using FSL rt rt off rt
Training of classifier with libSVM library off
Statistics Mean ROI(s) BOLD extraction from preprocessed images rt rt
ROI(s) correlations rt
Brain state scoring based on projections from trained SVM rt
. User task instructions rt rt off rt
Participant
& Neurofeedback figures® rt rt rt
% User task instructions rt rt off rt
é Neurofeedback figures® rt rt rt
3 | Experimenter |Head motion estimates rt rt off rt
. Activation maps rt rt off rt
Classification accuracy rt

off: offline processing, rt: real-time processing

*Study directory, type of classification, brain reference images, number of volumes, TR, statistical thresholds, etc.

2 Figures from software distribution (thermometer, ring) or provided by user

Figure 1. Flowchart of three FRIEND processing pipelines for neurofeedback. (1) BOLD level real-time display from pre-
defined ROIs; (2) Real-time functional connectivity neurofeedback based on the correlation between the signals from different ROls;
(3) Support Vector Machine based neurofeedback, defined on the basis of projected values onto the discriminative hyperplane.

doi: 10.1371/journal.pone.0081658.g001

FRIEND does not access the imaging data directly from the
scanner. Instead, it reads the data from a shared folder where
the reconstructed images are saved in real time. To the best of
our knowledge, real-time data reconstruction and export (or
online access to reconstructed images) is currently available
from at least three of the main manufacturers (Philips Medical
Systems, Siemens Medical Solutions and GE Medical
Systems). Siemens has a built-in tool, which is standard
starting from release VB15 [20]. Philips provides the DRIN-
dumper as a clinical research tool, and real-time solutions for
GE scanners are also available ([28]; see also https:/
github.com/cni/rtfmri). In addition to the proprietary software
mentioned above, there are also other options for real-time
data handling (e.g., FieldTrip, http:/fieldtrip.fcdonders.nl). So
far, FRIEND has been tested with Philips and Siemens
scanners.

In its current implementation, FRIEND requires at least one
condition of no interest (i.e., baseline), which should be
included between blocks of the main experimental conditions,
in order to allow for online signal normalization and detrending.
These steps are important to minimize the effects of MRI signal
drifts (see 12).

The graphical user interface (GUI) control window includes
online charts for functional image registration to the reference
volume (including translation, rotation and root mean square
error [RMS]). Accuracy estimates (correct classification of
individual functional volumes when using SVM), normalized
signal in selected ROIs (i.e., BOLD changes) and sliding
window correlations among ROls can be dynamically evaluated
in the same control window during real-time fMRI (Figure 3).

Real-time Image Preprocessing

The first step consists of an affine co-registration of RFI to
RAI (12 degrees of freedom, using the FLIRT routine (http:/
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). ~This transformation is
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Study Dir : C:\projetos\NFB_MOTOR
Subject : SUBJO0S
RAI : C:\projetos\NFB_MOTOR\SUBJOOS5\RAL. nii
RFI : C:\projetos\NFB_MOTOR \SUBJO00S5\RFI.nii

TR: 2 v | Sliding Window Size : | 3 v

Func Volumes : | 200 v
Prefix : C:\projetos\NFB_MOTOR\SUBJ00S\RUNO 1\DRIN-
Design : C:\PROJETOS\NFB_MOTOR\NFB_IMAGETICA.TXT
Baseline cond : STOP
T-test cutoff:  1.96 v

Offset: |4 vi| Cluster: |3 -

Model suffix : [ vJ

Current run suffix : RUNO1|
\/ OK L x Cancel ‘

Figure 2. Typical parameters for a study session in
FRIEND (anatomical and functional volumes of reference,
number of volumes, and statistical thresholds, among
others). Additional parameters (e.g., % of higher voxels for
GLM feature selection, inclusion of motion parameter variables
in the GLM model, FWHM values) can be modified by editing
an input text file.

doi: 10.1371/journal.pone.0081658.g002

subsequently used to adjust incoming EPI images during the
functional runs both to the RFI (for pipeline processing) and
RAI (for real-time activation map overlay) via the real-time
motion correction routine based on FSL routines. Motion

December 2013 | Volume 8 | Issue 12 | 81658


https://github.com/cni/rtfmri
https://github.com/cni/rtfmri
http://fieldtrip.fcdonders.nl
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT

) FRIDD

HewProgct. YOI Qeply Qualky Contrdl pted

Condition : INDIGNATION Scan in process : 122

Percentagi' <0.63% (-51.98%) / -0.63% Cont.:

s ‘ i I N e

0

Figure 3. FRIEND’s control window, including: the main
menu (A), training and feedback buttons (B), current
experimental condition (C), rotation in radians (D),
translation in mm (E) and root mean square error from
motion parameters (F). User-defined neurofeedback stimuli
to be presented to participants (a thermometer in this case) are
displayed when the feedback option is selected (G). For single
ROI processing, time-course, mean signal within specified
ROls, signal change and condition blocks will be shown (H). In
the case of sliding-window ROI correlation analysis, a similar
graph shows the level of correlation, sliding window size and
upper and lower bounds of correlation targets (). During the
SVM classification sessions, the interface shows the
classification phase, the current scan and the model-based
cumulative classification accuracy (J).

doi: 10.1371/journal.pone.0081658.g003

estimation and correction can be performed using the
embedded MCFLIRT ([29]; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
MCFLIRT) library (-cost is set to normcorr and interpolation to
trilinear sampling, which are the default options in MCFLIRT).
Following image registration, spatial Gaussian smoothing of the
EPI volumes based on a user-defined FWHM parameter can
also be carried out. In order to minimize MRI signal trends,
voxel intensities are mean-corrected by the average signal
from the previous baseline condition, specified in a design
matrix file.

Functional Localizers and Feature Selection

When using ROI or SVM-based neurofeedback, users may
opt for running General Linear Model (GLM)-based statistics
[30] on the initial dataset (e.g., first functional run) to be used
as a functional localizer for single-region neurofeedback, for
dual-region correlation analysis or before SVM training. This
step employs embedded routines from the FSL library
(feat_model and fsl_glm, see http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FEAT), allowing for a priori-defined statistical contrasts, which
can be used for optional feature selection/masking of relevant
voxels identified by a functional localizer or training session
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(see [31]). It is important to note that because this is a feature
selection step, the GLM is carried out off-line (not in real-time)
after the first run (“training session”). This is an important step
for the following reasons: (i) for single ROl neurofeedback or
dual-ROl real-time correlation, using a percentage of the more
active voxels within selected anatomical ROIs can better
capture individual differences; (ii) whole brain classification
analysis leads to high dimensionality of the data, including
confounders and irrelevant variables, so a feature selection
step (e.g., using a combination of a priori ROIs, GLM and/or
SVM-based thresholded maps) helps reducing dimensionality;
and (iii) these procedures minimize the possibility that
artifactual or uninformative voxels bias the results.

Support Vector Machines (SVM)

Training SVM Classifiers. The rationale for the use of SVM
is its intrinsic ability to deal with the typical fMRI datasets,
which contain typically tens of thousands voxels, i.e., when the
number of features far exceeds the number of measurements.
Ultimately, the goal of machine learning methods applied to
fMRI data is to maximize the ability to make predictions about
new, unobserved data, i.e., to allow generalization from
observed data (“training”) to new datasets [32,33].

In FRIEND’s control window (Figure 3), when the “training”
checkbox is selected, the SVM classifier will be initially trained
with brain activation patterns associated with the specified
conditions of interest in the training fMRI dataset. In addition, in
order to increase the signal-to-noise ratio, each example is built
by computing an average volume over three (or another user-
defined number) previous volumes (sliding window average).

The main concept behind the two-class SVM methodology is
to determine a mapping from input data (activation pattern) to
output experimental condition in order to correctly classify it.
Once this function is estimated, it can be used to obtain scores
for predictions of the classes of new observations [12], based
on their input data (see Figure 4; [34,35]). The input data is the
normalized BOLD signal intensity of input voxels.

The brain voxels of an fMRI image volume are first mapped
onto an input vector x, and this vector is then labeled according
to the respective experimental condition when this scan was
acquired [19,20]. This initial data is used to train the classifier
to discriminate between the experimental conditions of interest
(currently, a two-class SVM classifier is implemented). The
trained SVM is then used in the subsequent brain decoding
sessions (testing sessions), in which participants engage in the
same tasks and conditions of interest.

Real-time Classification and Neurofeedback. After
training a SVM on the initial dataset, predictions about the
current cognitive/neural state of the subject can be made in
real-time based on incoming fMRI image volumes. At this
stage, neurofeedback is delivered by presenting visual
feedback stimuli that are contingent on SVM classification.
Although the classification is based on categorical output data,
linear SVM can provide the distance of a new observation to
the separating hyperplane, the classification boundary between
conditions [35]; this projection (“decision value”) is then used to
define the neurofeedback display. The projection of a new
image volume on the discriminating hyperplane is given by (x"w

December 2013 | Volume 8 | Issue 12 | 81658
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Figure 4. lllustration of how neurofeedback stimuli are defined based on the calculated projections on the SVM
discriminant hyperplane. The black and white circles are observations of two different types of stimuli (e.g., positive and negative
emotional condition). The basic concept is that after training a two-class linear SVM, a discriminant hyperplane is defined (in light
blue). Next, each new fMRI volume is projected on this hyperplane (decision function) and a score is attributed, reflecting the
relative distance from the classification boundary (intersection with separating hyperplane). This score is then categorized in order
to determine which visual image will be displayed to the participant as a feedback.

doi: 10.1371/journal.pone.0081658.g004

+b), where w is a vector containing the hyperplane coefficients proxy of the underlying cognitive state of the participant.
and b is a constant. In other words, the relative position of the Further information about real-time classification/projection can
input data projection to the classification boundary of the be found in [12,19,34,35].

discriminative hyperplane is the measure that will define which In Figure 5 (right panel), the shape of the ring changes
figure (from a bitmap-grid stimulus set) will be displayed as a progressively from a distorted to a perfect ring according to the
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Time

Figure 5.

Example of feedback figures displayed in motor imagery (left) and emotional (right) neurofeedback

protocols. FRIEND provides default neurofeedback figures (thermometer and rings), but user-defined ones may be used instead.
The displayed words (GO/STOP and positive/negative) are cues for the specific task to be performed by participants.

doi: 10.1371/journal.pone.0081658.g005

two-class SVM classification (decision function values). In this
example, the most distorted shape is associated with incorrect
classification, and the progressively smoother rings are
associated with increasing distance of the correctly classified
example from the SVM decision boundary. Increasing distance
from the SVM decision boundary indicates that the activation
pattern is more distinctive of one category (cognitive state) as
compared with the other. Figure 6 depicts the display interface
for real-time activation maps (image voxel intensity of current
scan normalized by the previous n-averaged baseline condition
images, which can be scrolled in real-time).

ROIl-based Neurofeedback

In the case of model-driven experiments, FRIEND allows the
use of ROIs not only for real-time visualization of online brain
activity but also for ROI-based neurofeedback. The GUI allows
selecting ROIs from standard atlases (MNI, AAL, etc), from a
mask file or from the GLM results of a functional localizer scan,
which can be saved as ROls for subsequent use. A moving-
average BOLD signal from these regions can then be displayed
(e.g., as a thermometer or a moving ring). As demonstrated in
previous studies, participants can modulate BOLD activity of
specific ROIs, guided by neurofeedback signals [11,28,36]. The
basic concept is to use a block-design paradigm in which
participants are instructed to try to increase or decrease BOLD
signal averaged within an ROI, with the aid of a feedback
display (see Video S1). The feedback values are given by the
ratio [(average BOLD signal of the ROI) — (average BOLD
signal of the ROI during the previous baseline condition)] /
(average BOLD signal of the ROI during the previous baseline
condition) rescaled to the interval 0-100%.

PLOS ONE | www.plosone.org

Figure 5 depicts two experimental designs using a
thermometer and rings as feedback. Users may easily create
and specify their own visual stimuli (JPEGs) to be employed as
contingent feedback signals. In Figure 5 (left panel), the
thermometer level is specified by the change in ROIl-based
image intensity of the current EPI image, normalized by the
signal average of the n-preceding baseline volumes (n being
the number of volumes to be averaged in the preceding block
of the user-defined baseline condition).

ROIl-based Functional Connectivity Neurofeedback
FRIEND also allows functional connectivity-based
neurofeedback using a sliding window and Pearson correlation
coefficients of the signal between two ROls. In the current
version, only two ROIs are employed, thus whole brain
functional connectivity maps are not available in real-time
(though this feature can be implemented by advanced users).
This approach enables experiments probing the effects of
endogenous modulation of the connectivity between user-
defined ROIs (including cortico-subcortical connectivity that
cannot be assessed using non-invasive EEG-based methods).
At each new volume acquisition, the coefficient is iteratively
calculated over the last L scans (a user-defined parameter). To
accomplish this, the mean intensity roi= Y, x;/m is calculated

i=1m
over the m voxels of the ROI, roi at each time point t for

subsequent calculation of the ROl mean roi= Y roi;/L. Thus,
t=1:L

for ROIs A and B, the Pearson correlation coefficient over a L-
sliding window at time t is:

December 2013 | Volume 8 | Issue 12 | e81658
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Figure 6. Real-time brain activation mapping, depicting the ratio [(average BOLD signal of the ROI during the three last
scans) — (average BOLD signal of the ROI during the previous baseline condition)] / (average BOLD signal of the ROI
during the previous baseline condition) for each voxel on the participant’s native space using an arbitrary image

threshold.
doi: 10.1371/journal.pone.0081658.g006
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Our pilot studies indicate that more stable values of
p(correlations) are obtained with L=[70,...,15]. This real-time
functional connectivity measure can then be displayed as a
feedback to the participant via user-defined visual cues (e.g., a
thermometer). The mean value of the time-varying correlation
scale (used to set the midline value of the feedback
thermometer) employs a sigmoid-weighting discounting
function (slope=1), which provides estimates that are more
influenced by more recent values, relative to earlier ones (the
number of volumes entered in this weighting function can be
set by the user, but our experience suggests that a value of 10
volumes may be adequate). The upper and lower bounds of

p(A,B)

PLOS ONE | www.plosone.org

the correlation scale (which define the top and bottom levels of
the thermometer) are defined on the basis of the calculated
standard deviation of the correlation coefficients over the last L
(e.g., 10) volumes. The multiplier of standard deviations is set
to 1 by default, but can be changed as well. This provides a
smooth and flexible control of the feedback thermometer
feedback, and a more “natural” experience for participants
whilst they attempt to modulate their own ROIl-based
correlations.  An illustration of functional connectivity
neurofeedback is shown in Video S2.

Performance Optimization and Quality Monitoring

All image processing  steps, including  network
communication and image transfer, image registration, feature
selection and post-processing (based on single ROl BOLD,
SVM or dual-ROI sliding correlation) and neurofeedback GUI
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display can be performed in under 1.5 seconds (generally
within 1 second) on a proper workstation. For this purpose, a
number of optimizations were conducted.

In the Windows version, a DLL containing the FSL 4.1
commands was built to enable full control of command
execution. Another reason to build a DLL is the simplified
creation of functions related to the pipeline that receives
internal memory data structures. This avoids excessive read/
write files from disk by exchanging between functions instead
of files, by using pointers to already allocated memory, leading
to improved performance. Furthermore, having one DLL file
replacing sets of different binaries is another advantage. The
libSVM DLL was incremented with functions that enable direct
reading of Analyze/NIfTI files and of memory data structures.
Additionally, an experimental, optional automatic motion
detection routine was implemented in FRIEND, based on root
mean squared deviations (RMS) from a moving average over n
scans (currently set to 40, according to our initial experience).
This feature may be useful both to allow the experimenter to
monitor a participant's motion online and to notify the
participant if he/she is moving beyond tolerable ranges during
image acquisition. The threshold for the excessive movements
is user-defined, but we are currently employing an RMS
threshold of .4 (absolute deviation from the mean RMS), based
on Jenkinson [37] and on our own piloting observations.
Furthermore, this same threshold can be used by FRIEND to
automatically discard volumes associated with head movement
events, therefore minimizing contamination of single ROI,
correlation or SVM estimates during real-time fMRI
neurofeedback experiments. A similar approach of discarding
unreliable scans has been employed in a recent study [38].
Furthermore, when significant motion is detected, FRIEND’s
motion detection module communicates with the feedback
module, “freezing” the feedback (i.e., the displayed ring or
thermometer level), therefore visually informing participants
about their own excessive movement (this is illustrated in Video
S2).

In terms of performance, considering the acquisition of EPI
volumes with 64x64x22 voxel resolution (3.75x3.75x5mm using
an FOV=240mm) and whole brain analysis, and employing a
PC Intel Core i7 3930v (12 cores), 16GB RAM, SSD 128GB,
the processing time for each step was approximately as
follows: head motion correction = 562ms; SVM training
(including GLM for feature selection) = 10s; SVM testing <
100ms.

lllustrative Applications

Below we provide illustrative examples of the three main
types of real-time fMRI neurofeedback protocols currently
available with FRIEND. These examples comprise the results
of three typical participants for each type of fMRI-NFB protocol
currently being conducted in our institution. We chose to report
single participants for the sake of clarity and illustration. They
are nonetheless fairly representative of results currently being
obtained in group studies.

Participants were scanned on a 3T Achieva system (Philips
Medical Systems, The Netherlands) equipped with gradients
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capable of 80mT/m amplitude and 200mT/m/ms slew rate,
using an 8-channel head coil. A standard 2D gradient-echo EPI
sequence was employed using the following parameters: TR/
TE=2000/30ms, FOV=240x240mm?, matrix=64x64, slice
thickness=5mm, 22 slices, EPI direction = AP, with SPIR fat
saturation.

Motor Imagery Data: ROI based neurofeedback

Three hundred EPI volumes per session (three sessions)
were acquired in this experiment. Participants were instructed
to perform a motor imagery task based on a finger tapping
sequence using their right hand. The paradigm consisted of a
block design in which blocks of motor imagery (15 volumes
each) alternated with rest (also 15 volumes). Task instruction
and feedback stimuli were displayed using an LCD monitor
visualized using a mirror attached to the head coil. The
neurofeedback protocol required the participant to increase the
level of the thermometer while performing the imagery task,
which evoked BOLD increases in the left lateral premotor
cortex among other regions related to motor control. The ROI
(left premotor area) was chosen based on a template from a
meta-analysis [39]. Three-dimensional locations and
boundaries of motor and premotor cortices were based on the
same meta-analysis. During the functional localizer session,
only the instruction cues were briefly presented to the subject
(“STOP” for rest, “GO” for motor imagery).

In this example, the participant (male, 31 y/o) was successful
in increasing BOLD signal in his left premotor cortex, with the
activation cluster size extension increasing progressively
across neurofeedback sessions (number of active voxels: 24,
25 and 38, respectively). This type of neurofeedback approach
is rather straightforward and can be useful in a number of
studies, including clinical trials. The ability to use fMRI
neurofeedback to increase activation in the premotor cortex
has potential clinical applications, such as for motor
rehabilitation in stroke patients [40]. An illustrative video is
provided as a supplementary material (Video S1).

In order to evaluate the real-time preprocessing effects on
the ROI activation index (calculation described previously in
subsection 2.6), we compared our real-time implementation to
the offline processing using standard FSL-FEAT. This
evaluation was based on the data from three single subjects.
The correlations between real-time and offline preprocessing
activation indexes (over time) were above 0.99 in all
participants.

Emotional memory data: SVM-based brain decoding

In this example, participants were asked to identify two types
of emotionally salient autobiographical memories: positive and
negative. These memories were used as the main conditions.
As a baseline condition, neutral memories (e.g., daily routines)
were employed. Participants were cued with visually presented
keywords to engage in their positive, negative or neutral
memories. In the functional localizer scan, participants only
saw the cues of the above conditions and performed the task
without feedback. A two-class SVM was trained to discriminate
between the positive and negative emotional memories based
on the distributed voxel patterns of BOLD signals from EPI
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preprocessed images. In the subsequent classification runs,
the same design was employed, but this time combined with
neurofeedback. The experiment comprised four runs (first,
SVM training followed by three classification/neurofeedback
sessions), with two hundred ninety-six volumes acquired in
each run. A block-design was employed, and each emotional
block (4 positive and 4 negative per run; 22 volumes each) was
interleaved with the neutral condition (8 blocks per session, 15
volumes each) for disengagement from the preceding condition
and for signal normalization/detrending purposes. The temporal
sliding window for scans averaging was 3 volumes (6
seconds). Before training the SVM, a voxel selection procedure
was carried out off-line by calculating a GLM map and then
thresholding it for absolute t-values greater than 5.5 (pooling
voxels passing this threshold for all pairwise contrasts among
the neutral, positive and negative conditions). No anatomical, a
priori masks were used in this experiment. The feedback
values were based on the SVM decision values for each newly
acquired dataset (average of the last 3 volumes). Note that
only classification must be carried out in real time, since SVM
training (and voxel selection using GLM) are performed offline
on the training run. During the neurofeedback sessions, the
task cue (keyword pointing to the specific positive, negative or
neutral memory) was briefly displayed and then followed by the
time-varying feedback stimuli (in this example, the ring figures).
Depending on the value associated with the decision function,
the ring became progressively more distorted or smoother.
Real-time feedback was thus contingent on how well a
participant’s current pattern of brain activity approached the
target defined during the training session (positive or negative
emotional memory; see Video S3).

SVM classification accuracy in discriminating between the
two emotional states tended to increase across three
consecutive neurofeedback sessions in three healthy
participants (male, 29 y/o: 77%, 85%, 95%; female, 34 y/o:
61%, 62%, 77%; female, 23 y/o: 59%, 70%, 75%). An example
of a SVM weight vector map depicting the most discriminant
regions in a single participant (male, 29 y/o) is shown in Figure
7. Accurate emotional decoding and modulation have several
potential applications, ranging from basic understanding on the
role of endogenous modulation of distributed patterns of brain
activity associated with specific emotional states, to clinical
application in mood disorders [41].

As in the previous example, we evaluated the consistency of
our real-time approach by comparing SVM projection time
series computed with FRIEND’s real-time pipeline with those
obtained following offline standard FSL-FEAT preprocessing.
The correlations between real-time and offline SVM projections
(over time, calculated as described in subsection 2.5.1) were
above 0.97 for all three participants.

ROIl-based Functional Connectivity Neurofeedback

In this example, participants (one 43 y/o man, one 30 y/o
woman and one 48 y/o woman) identified two types of
emotionally salient autobiographical memories associated with
either guilt or indignation feelings, and were cued to evoke
these memories in the scanner (these comprised the main
conditions). As a baseline condition, a mental subtraction task
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was employed consisting of subtracting 7’s from an initial
arbitrary number (e.g. for number 113: 106, 99, 92, etc).
Participants were cued visually with keywords (projected on an
LCD screen) to engage in the guilt, indignation or subtraction
conditions. In the first session (functional localizer), participants
engaged in conditions above without neurofeedback. This first
run was used to select active voxels (based on the FSL-FEAT
routine embedded in FRIEND) within pre-defined anatomical
ROIs (MNI coordinates; anterior temporal lobe: x=58, y=0,
z=-8, 4mm sphere; subgenual cortex: x=-6, y=26, z=-9, 6mm
sphere; coordinates modified from [42]). In the subsequent
neurofeedback session, the same design was employed, but
this time combined with contingent feedback stimuli
(thermometer levels). The thermometer levels reflected the
correlation values between ROI time series, updated every TR
(see Video S2).

The functional localizer session comprised two hundred
volumes, while the neurofeedback session comprised three
hundred and sixty volumes. A block-design was employed, and
each emotional block (4 guilt and 4 indignation per run; 15
volumes per block in the first run; 35 volumes per block in the
second session, which involved neurofeedback) was
interleaved with a subtraction block (8 blocks per session, 10
volumes per block in each session). Real-time ROI-to-ROI
correlations from the second session of all three participants
are shown (Figure 8). Because head movements can give rise
to spurious correlations, a RMS threshold consisting of the
average of the previous 40 volumes + 0.4 absolute RMS value
was employed (see Figure 8).

FRIEND real-time implementation was compared to the
standard FSL-FEAT offline preprocessing by considering the
time-variant values of sliding window correlations from three
participants. Pearson correlation coefficients between real-time
and offline time-variant correlations (calculated as described in
subsection 2.6) were above 0.95 for all participants.

Discussion

We have introduced FRIEND, a new toolbox enabling real-
time fMRI-NFB using single region of interest (based on the
level of BOLD activity compared to a baseline signal) or
multiple brain regions (using support vector machine-based
multivoxel pattern analysis). The GUI runs natively in Microsoft
Windows®, with available versions for Apple Macintosh® and
Linux platforms. FRIEND is a fully documented and freely
available toolbox for the research community, and allows
straightforward (1) data preprocessing, (2) feature selection
(ROI or GLM-based), (3) SVM training/classification and (4)
customized neurofeedback. Furthermore, the close integration
of FRIEND with FSL renders it an interesting platform for
further developments from a wider community.

FRIEND does not require installation of additional software
beyond the operational system, except if users wish to call
routines from Matlab for more customized processing.
Additionally, FSL and libSVM are embedded in FRIEND,
allowing users to have direct access to key parameters of
these packages through a simple GUI. Furthermore, for
advanced users, full access to advanced configuration
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Figure 7. Weight map from the SVM classification of a participant of an emotional memory neurofeedback session. The
weights are SVM coefficients determining the discriminant hyperplane, which depicts the relevance of each voxel for the
classification between positive and negative conditions. Blue/red colors refer to the sign of these coefficients (negative/positive,
respectively). FRIEND saves a NIfTI file containing these maps, which can be viewed using any MRI visualization software. This is
only an illustrative map with an arbitrary threshold and slice selection.

doi: 10.1371/journal.pone.0081658.g007

parameters is possible through text editing of an ASCII file.
FRIEND can employ a technically unlimited number of ROls for
time-course analysis, or SVM-based training and data
classification, offering a wide range of options for image
visualization, analysis and neurofeedback strategy. The
pipeline and most preprocessing steps (e.g., sliding window
averaging and spatial smoothing) were designed with the main
goal of allowing the handling of noise while keeping flexibility
for developing more personalized setups (processing
parameters, feedback stimuli, etc). Finally, it is important to
highlight some choices made during the development of
FRIEND: (i) Delphi/Lazarus language was used because the
executable package is fast and allows building flexible
graphical user interfaces; (ii) preprocessing steps (motion-
correction and anatomical registration) are based on FSL
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routines, an open source and well-established suite in the
neuroimaging community. As herein implemented, it runs in
feasible time for real-time applications; (iii) real-time multivoxel
pattern classification using SVM is carried out by libSVM, an
open, efficient and widely validated library in the academic
community.

One key limitation for the development and application of
fMRI neurofeedback is the fact that MRI imposes a behaviorally
restrictive and non-natural environment and is an expensive
technology, in sharp contrast to EEG or near-infrared
spectroscopy (NIRS). Nonetheless, fMRI neurofeedback may
prove to be useful in establishing anatomically more refined
models that could be adapted to more portable technologies
such as EEG. In addition, the fast pace of development of
immersive, virtual reality technologies will help make the MRI
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Figure 8. Correlation curves from the second session from all three subjects. Green lines represent head motion (RMS
threshold). Gray columns represent subtraction blocks, while emotional blocks are represented in blue (indignation) and red (guilt)
columns. The initial five volumes, which are discarded from the correlation calculus, are shown in black. The correlation was

computed using a sliding window of 10 volumes.
doi: 10.1371/journal.pone.0081658.g008

environment a more ecological one. Moreover, there is initial
evidence showing that fMRI neurofeedback allows rapid
learning, so that participants may “transfer” the acquired ability
to modulate their brain states to behavior outside the scanner
[23].

Functional MRI is perhaps the only technology allowing for
measuring brain function non-invasively with reasonable spatial
accuracy, including in subcortical regions that are key for
cognitive mechanisms such as emotion, motivation, mood and
decision-making [43,44]. As such, fMRI neurofeedback is in a
unique position to contribute to the understanding of how
endogenous, voluntary modulation of brain regions / networks
may help improve cognition, emotion and behavior.

Another important aspect is that individual variability of brain
states and how they change in response to neurofeedback is a
poorly understood issue. This is more critical given the lack of
normative databases. This difficulty is due to the early stage of
development of this technology, however, and should be
lessened by the establishment of standardized protocols and of
normative databases [45] for specific brain states that will come
along with a wider use of “reverse-inference” type studies and
fMRI-neurofeedback. Significant efforts on these aspects are
actually under way [44,45].
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Conclusion and Future Perspectives

The future use of MRI neurofeedback will critically depend on
both technical advances in this technology, as well as on the
successes obtained in its experimental and clinical applications
[46,47]. Important advances will likely arise from (1) the
growing ability to mathematically/topographically represent
progressively more complex brain states according to specific
cognitive, emotional or motivational domains, (2) the
establishment of brain signatures of dysfunctional states
associated with neuropsychiatric conditions, as well as of
adaptive states that can be enhanced by neurofeedback
training and (3) the success of properly designed experimental
and clinical, randomized controlled trials in showing the efficacy
of this approach. We hope that the availability of new tools,
such as the one herein presented, will contribute to a wider use
of fMRI neurofeedback in experimental basic and clinical
research settings.

Supporting Information

Video S1. ROIl-based BOLD level feedback. The video
shows a motor task experiment where input parameters
(reference anatomical and functional images, TR, number of
functional volumes, baseline condition, etc) are entered in the
FRIEND interface before clicking the “Feedback” button on the
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control window. The condition blocks are specified in the ASCII
file at the “Design” field. Motion parameters are shown in the
first three graphs (from top to bottom) during real-time
acquisition and processing. ROIl-based BOLD signal and
percent signal change are shown on the bottom graph. Task
instructions and neurofeedback figures (shown to participants
via projection) can also be observed by the experimenter by
choosing the NFB Figures option in the Display menu. In this
particular example, a thermometer is used to provide the
neurofeedback. The thermometer describes the ratio [(average
BOLD signal of the ROI) — (average BOLD signal of the ROI
during the previous baseline condition)] / (average BOLD signal
of the ROI during the previous baseline condition). BOLD
signal (red line) and % signal change (green) are shown in
bottom left panel. Average % signal change is provided at the
end of the session (right panel).

(MP4)

Video S2. Correlation-based feedback. The video shows an
emotion task experiment (autobiographical ~memories
associated with either guilt or indignation). Input parameters
(reference anatomical and functional images, TR, number of
functional volumes, baseline condition, etc) are entered in the
FRIEND interface before clicking the Feedback button on the
control window. Motion parameters are shown in the first three
graphs during real-time acquisition and processing (rotation
and translation for x, y and z in blue, green and red,
respectively; the first volume of the run is assumed as the
reference image). The average image signal across voxels
contained in each of the two ROls is shown in the fourth graph
(re-scaled using Z-transformation). The bottom graph shows a
sliding window correlation between the two ROlIs in yellow. The
green line represents a moving average of the real-time
correlation (+ one standard deviation), defining an interval for
maximum and minimum values of the feedback scale
(thermometer). The experimenter can visualize the task
instruction and neurofeedback figures by clicking on the “NFB
Figures” option in the Display menu. In this particular example,
a thermometer is used to provide neurofeedback to the
participant. During excessive motion, the thermometer is frozen
and turns into gray to warn participants.
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