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We describe here the use of nonnegative matrix factorization
(NMF), an algorithm based on decomposition by parts that can
reduce the dimension of expression data from thousands of genes
to a handful of metagenes. Coupled with a model selection
mechanism, adapted to work for any stochastic clustering algo-
rithm, NMF is an efficient method for identification of distinct
molecular patterns and provides a powerful method for class
discovery. We demonstrate the ability of NMF to recover mean-
ingful biological information from cancer-related microarray data.
NMF appears to have advantages over other methods such as
hierarchical clustering or self-organizing maps. We found it less
sensitive to a priori selection of genes or initial conditions and able
to detect alternative or context-dependent patterns of gene ex-
pression in complex biological systems. This ability, similar to
semantic polysemy in text, provides a general method for robust
molecular pattern discovery.

W ith the advent of DNA microarrays, it is now possible to
simultaneously monitor expression of all genes in the

genome. Increasingly, the challenge is to interpret such data to
gain insight into biological processes and the mechanisms of
human disease.

Various methods have been developed for clustering genes or
samples that show similar expression patterns (1–5). However,
these methods have serious limitations in their ability to capture
the full structure inherent in the data. They typically focus on the
predominant structures in a data set and fail to capture alter-
native structures and local behavior.

Hierarchical clustering (HC) is a frequently used and valuable
approach. It has been successfully used to analyze temporal
expression patterns (1), to predict patient outcome among
lymphoma patients (2), and to provide molecular portraits of
breast tumors (3). However, HC has the disadvantages that it
imposes a stringent tree structure on the data, is highly sensitive
to the metric used to assess similarity, and typically requires
subjective evaluation to define clusters. Self-organizing maps
(SOM) provide another powerful approach (4). They have been
successfully used in similar applications, including identification
of pathways involved in differentiation of hematopoietic cells
and recognition of subtypes of leukemia (5). SOMs, however,
can be unstable, yielding different decompositions of the data
depending on the choice of initial conditions. Recently, various
dimensionality reduction and matrix decomposition methods
have been introduced (6–8). However, many questions remain to
be resolved about such methods. These include the key issue of
model selection (that is, how to select the dimensionality of the
reduced representation) and the accuracy and robustness of the
representation.

Here, we describe a technique for extracting relevant biolog-
ical correlations, or ‘‘molecular logic,’’ in gene expression data.
The method is designed to capture alternative structures inher-
ent in the data and, by organizing both the genes and samples,
to provide biological insight. The method is based on nonnega-
tive matrix factorization (NMF). Lee and Seung (9) introduced
NMF in its modern formulation as a method to decompose
images. In this context, NMF yielded a decomposition of human

faces into parts reminiscent of features such as eyes, nose, etc. By
contrast, they noted that the application of traditional factor-
ization methods, such as principal component analysis, to image
data yielded components with no obvious visual interpretation.
When applied to text, NMF gave some evidence of differenti-
ating meanings of the same word depending on context (seman-
tic polysemy) (9).

Here, we use NMF to describe the tens of thousands of genes
in a genome in terms of a small number of metagenes. Samples
can then be analyzed by summarizing their gene expression
patterns in terms of expression patterns of the metagenes. The
metagenes provide an interesting decomposition of genes, anal-
ogous to facial features in Lee and Seung’s work (9) on images.
The metagene expression patterns provide a robust clustering of
samples. Importantly, we also introduce a methodology for
model selection that highlights alternative decompositions and
assesses their robustness.

We apply NMF and our model selection criterion to the
problem of elucidating cancer subtypes by clustering tumor
samples. We are able to demonstrate multiple robust decompo-
sitions of leukemia and brain cancer data sets.

Methods
Description of NMF Method. We consider a data set consisting of
the expression levels of N genes in M samples (which may
represent distinct tissues, experiments, or time points). For gene
expression studies, the number N of genes is typically in the
thousands, and the number M of experiments is typically �100.
The data are represented by an expression matrix A of size N �
M, whose rows contain the expression levels of the N genes in the
M samples.

Our goal is to find a small number of metagenes, each defined
as a positive linear combination of the N genes. We can then
approximate the gene expression pattern of samples as positive
linear combinations of these metagenes.

Mathematically, this corresponds to factoring matrix A into
two matrices with positive entries, A � WH. Matrix W has size
N � k, with each of the k columns defining a metagene; entry
wij is the coefficient of gene i in metagene j. Matrix H has size
k � M, with each of the M columns representing the metagene
expression pattern of the corresponding sample; entry hij rep-
resents the expression level of metagene i in sample j. Fig. 1
shows the simple case corresponding to k � 2.

Given a factorization A � WH, we can use matrix H to group
the M samples into k clusters. Each sample is placed into a cluster
corresponding to the most highly expressed metagene in the
sample; that is, sample j is placed in cluster i if the hij is the largest
entry in column j (Fig. 1).

We note that there is a dual view of decomposition A � WH,
which defines metasamples (rather than metagenes) and clusters

Abbreviations: NMF, nonnegative matrix factorization; HC, hierarchical clustering; SOM,
self-organizing maps; AML, acute myelogenous leukemia; ALL, acute lymphoblastic
leukemia.

‡To whom correspondence should be addressed. E-mail: mesirov@broad.mit.edu.

© 2004 by The National Academy of Sciences of the USA

4164–4169 � PNAS � March 23, 2004 � vol. 101 � no. 12 www.pnas.org�cgi�doi�10.1073�pnas.0308531101



the genes (rather than the samples) according to the entries of
W. We do not focus on this view here, but it is clearly of great
interest.

NMF provides a natural way to cluster genes and samples,
because it involves factorization into matrices with nonnegative
entries. By contrast, principal component analysis provides a
simple way to reduce dimensionality but requires that the
matrices be orthogonal, which typically requires linear combi-
nation of components with arbitrary signs. NMF is more difficult
algorithmically because of the nonnegativity requirement but
provides a more intuitive decomposition of the data.

NMF Algorithm. Given a positive matrix A of size N � M and a
desired rank k, the NMF algorithm iteratively computes an
approximation A � WH, where W and H are nonnegative
matrices with respective sizes N � k and k � M. The method
starts by randomly initializing matrices W and H, which are
iteratively updated to minimize a divergence functional. The
functional is related to the Poisson likelihood of generating A
from W and H, D � �i,j Ai,jlog(Ai,j�(WH)i,j) � Ai,j � (WH)i,j. At
each step, W and H are updated by using the coupled divergence
equations (10):
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A simpler version of the NMF update equations that minimizes
the norm of the residual ��A-WH��2 has also been derived in ref.
10. When applying the method to a medulloblastoma dataset

(see Results), where we knew the underlying substructure, we
observed that the divergence-based update equations were able
to capture a subclass that the norm-based update equations did
not. This is why our implementation of NMF uses the divergence
form (see Data Sets and software).

Model Selection. For any rank k, the NMF algorithm groups the
samples into clusters. The key issue is to tell whether a given rank
k decomposes the samples into ‘‘meaningful’’ clusters. For this
purpose, we developed an approach to model selection that
exploits the stochastic nature of the NMF algorithm. It is
based on our group’s previous work on consensus clustering
(11) but adds a quantitative evaluation for robustness of the
decomposition.

The NMF algorithm may or may not converge to the same
solution on each run, depending on the random initial condi-
tions. If a clustering into k classes is strong, we would expect that
sample assignment to clusters would vary little from run to run.
(Note that sample assignment depends only on the relative
values in each column of H.)

For each run, the sample assignment can be defined by a
connectivity matrix C of size M � M, with entry cij � 1 if samples
i and j belong to the same cluster, and cij � 0 if they belong to
different clusters. We can then compute the consensus matrix, C� ,
defined as the average connectivity matrix over many clustering
runs. (We select the number of runs by continuing until C�
appears to stabilize; we typically find that 20–100 runs suffice in
the applications below.) The entries of C� range from 0 to 1 and
reflect the probability that samples i and j cluster together. If a
clustering is stable, we would expect that C will tend not to vary
among runs, and that the entries of C� will be close to 0 or 1. The
dispersion between 0 and 1 thus measures the reproducibility of
the class assignments with respect to random initial conditions.
By using the off-diagonal entries of C� as a measure of similarity
among samples, we can use average linkage HC to reorder the
samples and thus the rows and columns of C� .

We then evaluate the stability of clustering associated with a
given rank k. Although visual inspection of the reordered matrix
C� can provide substantial insight (see Fig. 3), it is important to
have quantitative measure of stability for each value of k. We
propose a measure based on the cophenetic correlation coeffi-
cient, �k(C� ), which indicates the dispersion of the consensus
matrix C� . �k is computed as the Pearson correlation of two
distance matrices: the first, I-C� , is the distance between samples
induced by the consensus matrix, and the second is the distance
between samples induced by the linkage used in the reordering
of C� . In a perfect consensus matrix (all entries � 0 or 1), the
cophenetic correlation coefficient equals 1. When the entries are
scattered between 0 and 1, the cophenetic correlation coefficient
is �1. We observe how �k changes as k increases. We select
values of k where the magnitude of the cophenetic correlation
coefficient begins to fall (see below).

Results
We illustrate the use of NMF and our model selection criteria
with three problems in elucidating cancer subtypes. The first
involves acute leukemia, the second medulloblastoma, and the
third a collection of central nervous system tumors.

Leukemia Data Set. The distinction between acute myelogenous
leukemia (AML) and acute lymphoblastic leukemia (ALL), as
well as the division of ALL into T and B cell subtypes, is well
known. In an early gene expression analysis of cancer (5), we
explored how SOM could rediscover these distinctions in a data
set of 38 bone marrow samples (12). Here, we reuse this data set
to compare various clustering methods with respect to their
efficacy and stability in recovering these three subtypes and their
hierarchy. We note that this data set has become a benchmark

Fig. 1. A rank-2 reduction of a DNA microarray of N genes and M samples is
obtained by NMF, A � WH. For better visibility, H and W are shown with
exaggerated width compared with original data in A, and a white line
separates the two columns of W. Metagene expression levels (rows of H) are
color coded by using a heat color map, from dark blue (minimum) to dark red
(maximum). The same data are shown as continuous profiles below. The
relative amplitudes of the two metagenes determine two classes of samples,
class 1 and class 2. Here, samples have been ordered to better expose the class
distinction.
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in the cancer classification community. It contains two ALL
samples that are consistently misclassified or classified with low
confidence by most methods. There are a number of possible
explanations for this, including incorrect diagnosis of the sam-
ples. We have included them in our analysis but expect them to
behave as outliers.

We first applied HC to the leukemia data. The tree structure
produced by HC depends on the choice of linkage metric used
to determine which groups of data points to join as the tree, or
dendrogram, is constructed from the leaves upward. We used
two metrics: the average linkage and average-group or centroid
linkage methods. Given a tree, we obtained two clusters by
cutting the tree at its top branching point. To test the stability of
the clusters, we ran HC for various numbers of input genes.

HC proved unstable in that its performance varied substan-
tially with respect to the number of input genes (Fig. 2). It
correctly found the AML–ALL distinction only when using the
average linkage metric and only in the range of 1,800–3,200 input
genes (the only incorrect assignments involve one of the known
outlier samples). We then examined whether the tree correctly
found the next important distinction: between ALL-T and -B. In
fact, inspection of the trees for various numbers of genes showed
that ALL-T, ALL-B, and AML samples tend to be intermingled
at lower levels, and that ALL-B samples split into two groups in
a more or less consistent fashion. For example, at n � 3,000 input
genes (see supporting information, which is published on the
PNAS web site), looking further down the tree, the ALL branch
splits into two groups, with one group containing only B cell
samples and the other containing B and T cell samples. The latter
group finally splits at the next level into a B and a T cell group
(exposing a second B cell subclass). Thus, the distinction be-
tween ALL-B and -T is not recovered a priori, inasmuch as the
B cells never appear together by themselves in one branch.

We next examined the stability of SOM, which (like NMF) are
defined by a stochastic procedure depending on initial condi-
tions. We have previously shown SOM are capable of distin-
guishing between AML and ALL (5). However, the consensus
matrix for the SOM with k � 2 classes reveals the classification
is not stable. Depending on the initial conditions, SOM may split
the data as [AML] vs. [ALL-T � ALL-B] or as [AML � ALL-T]

vs. [ALL-B]. This ambiguity is reflected in an interference
pattern in the consensus matrix (Fig. 3a). The metastability can
be illustrated by a double-well potential; the SOM follows one of
the two trajectories depending on the initial conditions.

We might conjecture that a SOM with k � 3 classes would
distinguish ALL-T and -B, but it does not. Instead, a similar
metastable situation arises (see supporting information). Rather
than converging only to the expected three-class partition
(ALL-T, ALL-B, AML), SOM also finds another minimum in
which B and T cell ALL are mixed. As a result, the leukemias
cannot be robustly clustered into the three main biological
classes by a SOM with k � 3 classes. Only with four classes can
SOM distinguish ALL-T and -B, with the latter split into two
groups as we previously reported (5).

We then applied NMF to the data set. With rank k � 2, NMF
consistently recovered the ALL-AML biological distinction with
high accuracy and robustness, with respect to the number of
features or genes (Fig. 2). Moreover, NMF always converges
toward the same attractor, ALL-AML, regardless of initial
condition (Fig. 3b).

Higher ranks k reveal further partitioning of the samples. Fig.
4a shows the consensus matrices generated for ranks k � 2, 3, 4,
5. Clear block diagonal patterns attest to the robustness of
models with 2, 3, and 4 classes, whereas a rank-5 factorization
shows increased dispersion. This qualitative observation is re-
f lected quantitatively in the decreased value of the cophenetic
correlation �4 (Fig. 4b).

The clusters show a nested structure as k increases from 2 to
4, and the nesting captures the known subtypes. For k � 2, the

Fig. 2. Number of ALL or AML samples improperly clustered by agglomera-
tive HC and NMF as a function of the number of features (genes). One hundred
clustering computations were performed at intervals equally spaced between
1,000 and 6,913 of the most highly varying genes. Results are shown as
continuous lines for clarity. HC, agglomerative HC using Pearson correlation
and two different linkage methods [average and average-group (or cen-
troid)]. NMF, a rank-2 factorization is performed with a fixed random initial
condition.

Fig. 3. Consensus clustering matrices without reordering for data from
leukemia samples averaged over 50 connectivity matrices using 5,000 of the
most highly varying genes according to their coefficient of variation. (a)
Consensus matrix for a two-centroid SOM shows superposition of two clus-
tering solutions, ALL-AML and ALLB-[ALLT�AML]. A relative probability of
about two-thirds is estimated by looking at the color-coded consensus: yellow
(
70%) for the first pattern and light blue (
30%) for the second. Metasta-
bility of the two-centroid SOM with respect to random initial conditions is
illustrated by the motion of a rolling ball on a double-well potential. (b)
Consensus matrix for a rank-2 NMF. The 0–1 pattern indicates highly robust
classification. NMF stable attractor leads to ALL-AML partition irrespective of
random initial condition. The lack of reordering ordering highlights the two
ALL samples that consistently cluster with the AMLs (discussed in more detail
in ref. 5).
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classes correspond to ALL and AML samples. For k � 3, the
partition reflects the ALL-T and -B distinction within the ALL
class. For k � 4, a fourth class appears which is deemed robust
by our model selection; its biological significance is unclear.

NMF has a number of strengths compared to HC and SOM in
these studies. NMF appears to be more stable than HC with
respect to the number of features or genes in the data set. It
appears to be more stable than SOM in finding two clusters and
in showing robust convergence to the three known biological
classes for rank 3. Finally, NMF best elucidated the nested
substructure of the data.

Medulloblastoma Data Set. We next analyzed gene expression data
from childhood brain tumors known as medulloblastomas. The
pathogenesis of these tumors is not well understood, but it is
generally accepted that there are two known histological sub-
classes: classic and desmoplastic, whose differences can clearly
be seen under the microscope. In previous work, we found genes
whose expression was statistically correlated with those two
histological classes (13).

We applied both HC and SOM to these data to see whether
the desmoplastic subclass ever cleanly clustered by itself. Fig. 5
shows the dendrogram of the hierarchical structure obtained for
the medulloblastoma data set. The desmoplastic samples are
scattered among the leaves. There is no level of the tree where
we can split the branches and expose a clear desmoplastic cluster.
We applied SOM to the same data by using two to eight centroids
and again were unable to find a distinct desmoplastic class.

When we applied NMF to the medulloblastoma data, we were
able to expose a separate desmoplastic class. NMF predicted the
existence of robust classes for k � 2, 3, and 5 (Fig. 6). The
desmoplastic subtype cluster appears at k � 5, where one of the
discovered classes is almost entirely made up of desmoplastic
samples. Even if one were unaware of the underlying biology, this
clustering would stand out because of the steep drop off in the
cophenetic coefficient for k � 5. NMF sample assignments for
k � 2, 3, and 5, display an approximate nesting of putative
medulloblastoma classes, similar to that seen in the leukemia
data set (see supporting information).

Central Nervous System Tumors. Finally, we present an analysis of
four types of central nervous system embryonal tumors. The data
set comes from our previous work (13) and consists of a total of
34 samples: 10 classic medulloblastomas, 10 malignant gliomas,
10 rhabdoids, and 4 normals, representing four distinct mor-
phologies. The original paper (13) also analyzed eight samples
from primitive nueroectodermal tumors; these did not form a
distinct tight class or subclass using either supervised or unsu-
pervised clustering and were not studied in this analysis.

Unsupervised HC does not give a clear four-class split of the
data (Fig. 7a). The dendrogram seems to suggest a split into two
or three classes. Examining the actual tumor types, we find the
split into two classes groups the normals and malignant gliomas
on one branch and the medulloblastomas and rhabdoids on the
other. At the next level, the medulloblastomas and rhabdoids are
split in two subbranches, but the normal samples and gliomas
stay largely clustered (see supporting information). The hierar-
chical dendrogram does not seem to suggest a preferred sub-
structure consistent with the known four classes in the data.

SOM clustering of this data set (Fig. 7b) indicates that a
three-centroid clustering is the most robust, with the highest
cophenetic coefficient. As in the case of HC, the normal and
malignant glioma samples consistently cluster together in this
case (see supporting information). The four-centroid clustering
shows instability with a corresponding drop in �k. We do not
recover the correct split into four tumor types using a SOM
approach.

NMF, together with consensus clustering, gave strong evi-
dence for a four-class split of the data with a correspondingly
high cophenetic coefficient (Fig. 7c). Examining the tumor types
of the samples (see supporting information), we find that only
two of them are placed in the incorrect cluster. Thus, we see that
NMF gives a more accurate clustering of this data set.

Fig. 4. (a) Reordered consensus matrices averaging 50 connectivity matrices
computed at k � 2–5 for the leukemia data set with the 5,000 most highly
varying genes according to their coefficient of variation. Samples are hierar-
chically clustered by using distances derived from consensus clustering matrix
entries, colored from 0 (deep blue, samples are never in the same cluster) to
1 (dark red, samples are always in the same cluster). Compositions of the
leukemia clusters determined by HC of consensus matrices are as follows: for
k � 2 : {(25 ALL), (11 AML and 2 ALL)}, k � 3 : {(17 ALL-B), (8 ALL-T and 1 ALL-B),
(11 AML and 1 ALL-B)}, k � 4 : {(11 ALL-B), (7 ALL-B and 1 AML), (8 ALL-T and
1 ALL-B), (10 AML)}. (b) Cophenetic correlation coefficients for hierarchically
clustered matrices in a.

Fig. 5. Illustration of model selection with NMF on the medulloblastoma
data set. HC used DCHIP’s analyzer (www.biostat.harvard.edu�complab�dchip)
and centroid linkage. The NMF class assignments for k � 2, 3, and 5 are shown
color-coded. At k � 5, seven of nine desmoplastic samples (highlighted in red
on dendrogram) fall into the same NMF class. More detailed sample class
assignments are given in supporting information.
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Discussion
We describe here the use of NMF to reduce the dimensionality
of expression data from thousands of genes to a handful of
metagenes. In addition, we describe a model selection method-
ology based on the consensus of sample assignment across
random initial conditions. Although NMF is not hierarchical per
se (9), we show that as the rank k increases the method uncovers
substructures, whose robustness can be evaluated by a cophen-
etic correlation coefficient. These substructures may also give
evidence of nesting subtypes. Thus, NMF can reveal hierarchical
structure when it exists but does not force such structure on the
data like HC does. In addition, agglomerative techniques like
HC sometimes struggle to properly merge clusters with many
samples. Thus, NMF may have an advantage in exposing mean-
ingful global hierarchy.

In application to three cancer data sets, we show that NMF is
able to recover biologically significant phenotypes and identify
the known nested structure of leukemia classes. The use of
consensus clustering with the NMF approach makes the selec-
tion of the number of classes an objective consideration of the
quantitative cophenetic coefficient rather than a subjective
evaluation. In the cases studied, NMF appears to be more

accurate and robust to the choice of input genes than HC and
more stable than SOM.

In ref. 9, Lee and Seung observed that NMF (in contrast to
principal component analysis) yields a sparse parts-based rep-
resentation of data useful for the recognition of features in
human faces and in text. Parts are sets of elements that tend to
cooccur in samples. The parts provide components or visible
variables as a reduced representation of the original hidden
variables. In our application to gene expression, parts refer to
metagenes representing genes that tend to be coexpressed in
samples. NMF decomposes gene expression patterns as an
additive combination of a few metagene patterns. Just as NMF
is able to distinguish different meanings of words used in
different contexts (polysemy), NMF metagenes can overlap and
thus expose the participation of a single gene in multiple
pathways or processes. Such context dependency is not captured
by standard two-way clustering methods or by supervised marker
analysis that insists on mutual exclusion of features.

Whereas the original application of NMF focused on grouping
elements into parts (using the matrix W), we take the dual
viewpoint by focusing primarily on grouping samples into clus-
ters using the metagene expression profiles given by the matrix

Fig. 6. (a) NMF model selection for a data set of 25 classic and 9 desmoplastic
medulloblastoma tumors [n � 5,893; M � 34 (14)]. At each rank k, a consensus
matrix, averaging 50 connectivity matrices, is reordered by using HC (color
map as Fig. 4). In addition to a robust two-class partition (not shown), the
consensus is strong for k � 3, 5, indicating reproducible partitioning of
samples into two, three, and five classes but not four or six. (b) Cophenetic
correlation coefficients corresponding to the HC of consensus matrices for k �
2–7 shows a dip at k � 4, where reproducibility is poor, and suggests k � 5 as
the largest number of classes recognized by NMF for this data set.

Fig. 7. Analysis of central nervous system embryonal tumors using 5,560
genes. The data set consists of 34 samples, including 10 classic medulloblas-
tomas, 10 malignant gliomas, 10 rhabdoids, and 4 normals. (a) The dendro-
gram from HC indicates two or three major subclasses but gives no clear
indication of a four-class split. (b) Reordered consensus matrices for k � 2–5
centroid SOM clusterings from 20 initial conditions. Cophenetic correlation
argues for a three-class decomposition. (c) Reordered consensus matrices for
20 NMF initial conditions (50 NMF iterations each), for k � 2–5 (color scale
same as Fig. 2). Cophenetic correlation coefficient suggests the existence of at
most four robust classes.
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H. The utility of NMF for gene expression sample clustering
stems from its nonnegativity constraint, which facilitates the
detection of sharp boundaries among classes. We observed that
as more NMF iterations are performed, the metagene profiles
become more localized in sample space and their supports
overlap less (i.e., decreasing the off-diagonal portion of HHt). At
the end the metagene profiles are positive, sparse, localized, and
relatively independent, which makes a natural compact decom-
position for interpretation. In contrast, spectral decomposition
(principal component analysis or singular value decomposition)
of expression data produces eigengene profiles that are com-
pletely independent but complex, dense, and globally supported.

Despite its promising features, NMF has the limitation of
somewhat greater algorithmic complexity, especially compared
with the simplicity of HC. This can be addressed by casting the
NMF update equations in a computationally efficient matrix
form. Stabilization of connectivity matrices can also be used to
monitor convergence and minimize the number of NMF itera-
tions. This forms the basis of our implementation (see Data Sets
and Software)

We note that Kim and Tidor, in a recent independent study
(14), have applied NMF applications to cluster genes (rather
than samples) and to predict functional relationships in yeast.
Heger and Holm (15) have also recently applied NMF to a
different biological problem: recognition of sequence patterns
among related proteins.

In summary, NMF is a powerful technique for clustering
expression data and can be combined with a quantitative eval-
uation of the robustness of the number of clusters. When applied
to data where subtypes were known, but hidden from the
algorithm, it performed well and captured the hierarchical
nature of the data as the number of clusters was increased. The
challenge that remains is to provide a meaningful biological
interpretation to the NMF discovered classes when the class
labels and substructure of the data set are unknown.

Data Sets and Software. Data sets are published as supporting
information. The leukemia data, containing 38 bone marrow
samples hybridized on Affymetrix Hu6800 chips, is a reduced
version of the original data used in ref. 5. The medulloblastoma
data with 34 tumors hybridized on Affymetrix HuGeneFL is data
set B from ref. 13. Codes for NMF divergence reducing equa-
tions, as well as for model selection and reordering of the
consensus matrices, are provided on our website as MATLAB
(Mathworks, Natick, MA) m-files.

We acknowledge useful discussions with members of the Cancer Genom-
ics program (The Eli and Edythe L. Broad Institute, Massachusetts
Institute of Technology and Harvard University), in particular Stefano
Monti. This work was funded by grants from the National Institutes of
Health. J.-Ph.B. is funded by an Informatics Fellowship grant from
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