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Abstract

Neo-Darwinian evolution has presented a paradigm for population dynamics built on random mutations and selection with
a clear separation of time-scales between single-cell mutation rates and the rate of reproduction. Laboratory experiments
on evolving populations until now have concentrated on the fixation of beneficial mutations. Following the Darwinian
paradigm, these experiments probed populations at low temporal resolution dictated by the rate of rare mutations,
ignoring the intermediate evolving phenotypes. Selection however, works on phenotypes rather than genotypes. Research
in recent years has uncovered the complexity of genotype-to-phenotype transformation and a wealth of intracellular
processes including epigenetic inheritance, which operate on a wide range of time-scales. Here, by studying the adaptation
dynamics of genetically rewired yeast cells, we show a novel type of population dynamics in which the intracellular
processes intervene in shaping the population structure. Under constant environmental conditions, we measure a wide
distribution of growth rates that coexist in the population for very long durations (.100 generations). Remarkably, the
fastest growing cells do not take over the population on the time-scale dictated by the width of the growth-rate
distributions and simple selection. Additionally, we measure significant fluctuations in the population distribution of various
phenotypes: the fraction of exponentially-growing cells, the distributions of single-cell growth-rates and protein content.
The observed fluctuations relax on time-scales of many generations and thus do not reflect noisy processes. Rather, our data
show that the phenotypic state of the cells, including the growth-rate, for large populations in a constant environment is
metastable and varies on time-scales that reflect the importance of long-term intracellular processes in shaping the
population structure. This lack of time-scale separation between the intracellular and population processes calls for a new
framework for population dynamics which is likely to be significant in a wide range of biological contexts, from evolution to
cancer.
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Introduction

The Neo-Darwinian framework of evolution has made a clear

separation between the sources of variation and the processes of

selection in shaping the structure of populations. Within this

framework, previous research on asexually reproducing popula-

tions has focused primarily on random mutations and natural

selection as the dominant forces in evolution [1–9]. In large

populations, changes in viability and growth-rate are assumed to

be driven solely by random changes in genotype, occurring on

long time-scales separated from the physiological time-scale of

reproduction [1,10]. Thus, under constant environmental condi-

tions, the individual division rate is assumed to be stably inherited

along lineages and changes only due to random mutations [7].

The fitness of an asexual population is then simply the population-

average growth rate [3,7,8,11,12] and selection results in a steady

increase in population fitness with time. Following the Neo-

Darwinian paradigm of mutation-selection, experiments on

evolving populations of microorganisms have focused on the

long-term fixation of mutations [1,4,6,10,13,14], successfully

describing the long-term dynamics seen in these populations. In

the limit of large populations, effects such as clonal interference

and multiple mutations can enrich the dynamics of fixation.

Measurements of clonal interference in large populations of yeast

have shown fitness effects that occur on ,100 generation

timescales [4,6]. The dynamics of fixation of genetic mutations

are easy to recognize: because only beneficial mutations are

selected for, the average fitness of the population increases

monotonically. Additionally, the timescales of fixation are

determined by many factors such as the population size, the rate

of beneficial mutations and the fitness advantage they confer. In

the yeast S. cerevisiae the time-scales of fixation in large populations

have been documented to be longer than 100 generations [4,15].

Notwithstanding the success of the Neo-Darwinian framework,

it is important that the intermediate time-scales in which the

processes of selection and variation coexist do not go unstudied.

Recent research has uncovered a rich spectrum of processes that

lead to phenotypic variability over a wider range of time-scales

than those caused by genetic fixation. These include heritable

epigenetic phenotypes that do not show underlying genotypic

changes [16,17]. Thus, along the path to fixation, population
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dynamics involve a wealth of processes beyond genetics that lead

to inherited phenotypic variability, covering the range of time-

scales that span from fast physiological processes that occur within

one generation, to extremely slow mutations that can take

hundreds of generations to become fixed [18]. Little information

exists on the dynamics of processes that lead to adaptation and the

intermediate states of evolving phenotypes enabled by cellular

plasticity, some of which are known to be stably inherited over

many generations [19,20]. A thorough understanding of these

dynamics is required to predict evolution outcomes and under-

stand heterogeneous populations. Recent studies in eukaryotes

have emphasized the importance of inherited epigenetic processes

in shaping phenotypes, including growth rate, that occur on time-

scales similar to reproduction, and can be less stable than genetic

mutations [16,21–23]. However, experiments studying the effects

of epigenetic phenotype changes and inheritance on population

dynamics are still lacking.

In this paper, we present measurements of population dynamics

in genetically rewired yeast faced with a severe, unforeseen,

regulatory challenge [24]. We have shown before that cells

adapting to overcome this challenge exhibit a spectrum of

intracellular processes on a wide range of time-scales, thus giving

us an opportunity to study novel aspects of population dynamics

[24–29]. The essential gene HIS3 — required for histidine

synthesis — was deleted from its native position in the genome

and replaced under the exclusive regulation of the GAL system,

responsible for galactose utilization. In medium lacking histidine,

upon a switch from galactose to glucose, the GAL system is highly

repressed and the rewired cells encounter a severe challenge. We

have shown before that such populations adapt to grow

exponentially within fast time-scales of ,10 generations and this

adaptation is inherited at the population level [24,25]. Moreover,

detailed experiments have shown that the recovery of the

population is not due to selection of a rare subpopulation; more

than 50% of naı̈ve cells spread on agar plates made with glucose

medium and lacking histidine will develop into a colony of cells

able to grow exponentially, similar to wild-type cells, within two

weeks of plating [24]. Moreover, the fraction of cells that can grow

into adapted colonies on agar plates was shown to actually initially

decrease with time from their first encounter with the glucose

medium [25]. Gene expression measurements have shown that

adaptation was accompanied by a large-scale genomic response

[28], forming temporal patterns involving hundreds of genes and

reflecting dynamics of highly-correlated cells within the population

[29]. Our previous work identified multiple trajectories leading to

adaptation. While in some of the cases mutations can be identified

in the adapted populations, we have shown that adaptation

requires additional processes beyond a mere change in DNA

sequence [26]. Moreover, based on detailed analysis we concluded

that genetic changes could not account for the entire spectrum of

adaptation solutions [25,26].

In the experiments discussed here, a large population of

adapting cells is grown in constant environmental conditions for

hundreds of hours and yet, as shown below, even after exponential

growth resumes we measure a very broad distribution of single-cell

growth rates (s/m is about three times that measured for wild-type

cells). These broad distributions persist for very long durations of

greater than 100 generations, indicating that subpopulations with

a wide range of growth rates coexist for long periods. The mean

growth rate also does not increase monotonically, as is expected

with simple selection, but instead continues to fluctuate throughout

the experiment. Of note is that the fluctuations include plateaus of

long duration and decreases in the average growth rate, indicating

an overall decrease in the population fitness. Additionally, we

measure other phenotypes in the population, including the HIS3p

content, and the ability of cells to grow exponentially. These

phenotypes also fluctuate significantly, throughout the duration of

our experiment, on time-scales of several generations that cannot

be explained by the fixation of a new genotype. These

experimental results show that the phenotypic state of cells in a

constant environment can be metastable, exhibiting variability on

time-scales that broaden our understanding of population

dynamics during regulatory evolution.

Results

Measurements of the cell density of a chemostat culture of

rewired cells show the global dynamics of adaptation and the

population-level response to the genome rewiring challenge (Fig. 1,

blue line). The dynamics following a switch from galactose to

glucose are characterized by four phases: I) an exponential

increase in cell density; II) an exponential drop in density due to a

reduction in the average growth-rate; III) an exponential increase

in density reflecting a growing fraction of the population resuming

high growth rates; and IV) a more stable, high-density state

indicative of an adapted population [24]. These phases have the

hallmarks of an evolutionary process. Nevertheless, adaptation

takes place without selection and on time-scales (,10 generations)

that are much faster than those observed in other known

laboratory evolution experiments [1,6,10,25,30]. At first glance,

the population seems fully adapted to the glucose medium in phase

IV. Surprisingly, a closer look reveals that although the population

as a whole is able to sustain a qualitatively high cell density, it

exhibits significant fluctuations both in its average behavior as well

as in single-cell phenotype distributions. During phase IV, the cell

density fluctuates, indicating that the average yield, and thus the

average growth-rate and cellular metabolism, fluctuated on long

time-scales of many generations (see Fig. S1 for analysis of these

fluctuations and their significance in comparison with the behavior

of a wild-type strain). In that same time-period, samples of cells

were taken from the chemostat at 3-hour intervals and spread on

agar plates made with a glucose medium similar to that feeding the

chemostat. The number of cells that were able to grow visible

colonies on the agar plate represents the fraction of cells exhibiting

a stable, adapted phenotype (see Methods) and reaches 100% at

the beginning of phase IV (Fig. 1, red line). Surprisingly, this

seemingly fully-adapted population then exhibits fluctuations in

the fraction of adapted cells, indicating that the adapted

phenotype is not stably inherited [25]. Note that the fluctuations

in the adapted phenotype are significant; there are instances in

which the fraction of adapted cells in the population drops to low

values of ,10%. These measurements show that while the average

population growth is exponential, new cells are continuously being

born in the chemostat that are not able to stably propagate the

adapted phenotype in glucose and thus to grow a colony on an

agar plate. The fluctuations in the fraction of adapted cells seem to

decay on a time scale of ,100 generations, converging to values

close to 100%.

Throughout phase IV there are also striking dynamics in the

HIS3p distribution in the population. Using a strain of rewired

yeast with HIS3p tagged with GFP, we measured the dynamics of

HIS3 protein content of individual cells utilizing a home-made

flow cytometer on-line with the chemostat. Figure 2a shows that

the average HIS3-GFP content of the population fluctuates with

time, by up to a factor of two, hundreds of hours into phase IV

(Fig. S2 shows the stability of the home-made cytometer). Figure

S3 shows similar fluctuations in a repeated experiment. These

dynamics are consistent with our previous measurements showing
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slowly-varying fluctuations in the mRNA levels in similar

population experiments [29]. As shown before, the precise pattern

of expression was irreproducible between repeated experiments.

Single-cell measurements show that HIS3p is broadly distrib-

uted within the population (Fig. 2b). Previously, variations in

phenotype in clonal populations have broadly been categorized as

‘‘noise’’; resulting from molecular and cellular stochastic processes

[31,32]. Although epigenetic processes could in principle lead to

traces of trans-generation correlations in the fluctuations, implicit

in that categorization is a time-scale reflecting the molecular gene

expression processes on the order of, or less than the cell division

time. The mean expression of HIS3p shown in Figs. 2a and in the

distributions of Fig. 2b, exhibit relaxation dynamics on time-scales

on the order of several generations, much beyond previous

measurements of correlated fluctuations in microorganisms [33].

Furthermore, although the mean expression varies as a function of

time, the shape of the single-cell protein distributions was

preserved throughout phase-IV. Remarkably, Fig. 2c shows that

all the distributions of Fig. 2b collapse to a single curve by

subtracting the mean and dividing by standard deviation. Figure

S4 shows that this scaling preserves the shape of the distributions

for the entire range of phase IV. This type of universality was

discussed in our previous publication [34] which concluded that

the shape of the distributions cannot be determined by a specific

intracellular process. Moreover, consistent with the measurements

in ref. [34], the variance throughout phase-IV is a quadratic

function of the mean (Fig. S5), showing that throughout the

adaptation process a single population-average variable deter-

mines the gene expression distribution. Thus, a universal, single-

parameter scaling of the essential HIS3p distribution indicates that

the population as an entity plays a critical role in the dynamics; the

wide protein-content distribution among cells does not result from

intracellular noise fluctuations in gene expression but rather from

collective population processes [29]. Note that the slowly-varying

population-average fluctuations, lasting many generations as

observed here, reflect a cooperative process between cells. Thus,

if the expression level would fluctuate independently in each cell,

these fluctuations would be averaged out in our large populations

of 1010 cells. Thus, comparison with previously published results

shows that the gene expression in the case of an absolutely essential

gene in an adapting population is not fundamentally different from

other (essential or non-essential, highly regulated or constitutive)

genes in cell populations grown under a wide range of conditions

[34].

So far we have shown measurements of the population-average

density, the fraction of adapted cells in the population, and the

single-cell protein distributions, which all indicate that the

population exhibits a highly-dynamic structure during phase-IV.

Next, we present single-cell measurements that show that the

ability to grow and growth-rates themselves are not stably

inherited. Single-cell growth rate is an important parameter in

evolutionary and population biology as an indicator of cellular

fitness relying on the functionality and coordination of cellular

subsystems. We used a microscopy assay to measure the

instantaneous growth rate of single cells throughout phase-IV.

Cells from batch culture were switched from galactose to glucose

and propagated throughout the adaptation phases by serial

dilutions. Large samples of these batch cultures were then

measured to gain a broad statistical view of the single-cell

growth-rate distribution. We have shown before that the

adaptation dynamics including the four phases observed in

chemostat experiments, are reproduced in batch cultures [25].

Figure S6 also shows that, similar to the chemostat experiment of

Fig. 1, the fraction of adapted cells in the batch cultures fluctuates

over long durations during phase IV of the dynamics. Importantly,

by growing the populations in dilute batch cultures with excess

nutrients for the entire growth period, we can ensure that there are

no stressed cells in the population due to nutrient limitation. Note

that the propagating populations remained large throughout the

experiments and never went through bottlenecks [35] (see

Methods). For each experiment, at different time points through-

out the propagation, the instantaneous growth rate of hundreds of

cells were measured using the method described in reference [36]

(Methods). Each measurement was limited to a short duration of

,3 generations, allowing us to capture the phenotypic variability

in the population while ensuring a single-exponent growth curve

(Rsq.0.95; Fig. S7). Thus, this instantaneous growth-rate

determines a ‘‘local’’ variable, which in the population context

varies on longer time-scales. Colonies that were measured not to

be growing exponentially were analyzed separately, and are

discussed below.

Figure 3 shows the histograms of the instantaneous growth-rates

from one such experiment as a function of time in glucose

(repeated experiments are shown in Fig. S8). The growth-rate

distributions are quite broad (s/m,0.3) throughout the entire

measurement period, which lasts .60 generations, with significant

dynamics also manifested in the standard deviation (Fig. 4b).

Remarkably, the population experiences long periods with almost

static growth-rate distributions, followed by periods of decreasing

and increasing growth-rate without exponential takeover of the

fastest growing cells. Thus, there is no indication of a sub-

population of fast growers dominating the population dynamics.

This unusual dynamics is also manifested in the mean growth-rate

extracted from these distributions (Fig. 4a). Note the non-

monotonic dependence of the growth-rate and the emerging

plateaus lasting for up to 25 generations. Repeated experiments

show similar dynamic fluctuations (Fig. S9). Monte Carlo

simulations of the expected evolution of a population exhibiting

a distribution of growth-rates, assuming only simple selection and

inheritance of growth-rate in lineages, verify our assertion that the

Figure 1. Chemostat population dynamics. The blue trace shows
the typical population density (measured by the OD at 600 nm) as a
function of time for our rewired cells grown in a chemostat, upon
switch from galactose medium to glucose medium lacking histidine
(glu-his) at t = 0. Note the logarithmic scale. The four phases of the
dynamics are marked I-IV. The red trace shows the number of cells that
are able to grow a visible colony within 3 days after plating on glu-his
agar plates (‘‘fraction adapted’’) relative to the number of colonies
grown on rich medium plates (and thus can be larger than 1). Inset: a
subset of the blue and red curves, focusing on the time between 150–
450 hrs after switch to glucose. Bar: 20 chemostat generations.
doi:10.1371/journal.pone.0081671.g001
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fastest growers should be expected to take over monotonically

within several generations (Fig. 5). Simulations that include

inheritance of growth-rates cannot reproduce the non-monotonic

changes in the population-average growth-rate for large popula-

tions, in particular plateaus on time scales of ,25 generations and

periods of decrease as observed in our experiments (Fig. 4a and

Fig. S9a). In contrast, our measurements reveal the co-existence of

fast and slow growers over extended durations of almost 100

generations.

More dramatically even is the coexistence of non-growing cells

during this period. The same microscopy samples were used to

measure the fraction of exponentially growing cells in the

population as a function of propagation time (Fig. 4c; repeated

experiments, Fig. S10). Although the fraction of cells able to grow

exponentially is generally increasing and eventually converges to

100% after extended durations, since the populations were serially

diluted, the persistence of non-growing cells for such long

durations is remarkable. It shows that although the population

as a dynamic entity had adapted, the ability of cells to grow

exponentially is not stably inherited. This is in contrast to wild-

type cells, which have a constant 99% fraction of exponentially

growing cells, showing a narrow growth-rate distribution (s/

m,0.1 compared with s/m,0.3 for rewired cells in phase IV-

Fig. 3) with an average that barely changes with time (Fig. S11).

These results prove again that the fastest growing cells do not take

over our adapting population; in fact, subpopulations of non-

growers, slow growers and fast growers coexist, forming a

dynamic, continuous spectrum of growth phenotypes within a

proliferating population.

Discussion

The genetically rewired cells in our experiments are faced with a

severe, unforeseen challenge upon medium switch from galactose

to glucose. Although after an adaptation period, the population as

a whole can sustain a high cell-density with exponential growth at

rates similar to wild-type cells, the individuals composing the

population are actually in metastable phenotypic states. Such

Figure 2. HIS3-GFP dynamics in a chemostat population. (a) The average HIS3-GFP fluorescence of the chemostat population (green) as a
function of time for the same experiment as in Fig. 1. The population-average fluorescence was extracted from statistics over single-cell
measurements utilizing our home-made cytometer online with the chemostat. The protein content fluctuates by up to a factor of two, hundreds of
hours into phase IV. The optical density is shown in blue for reference. (b) Distributions of the single-cell HIS3-GFP for several time-points during
phase-IV. (c) All the distributions from (b) collapse to a single curve when subtracting the mean and dividing by standard deviation of each
distribution.
doi:10.1371/journal.pone.0081671.g002
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meta-stability is the hallmark of epigenetic processes [16,37]. It

shows that from the single-cell perspective, the adaptation process

is not completed even when the population-average dynamics

seem relatively stable. An increasing body of research indicates

that the phenotypic state of a cell, its metabolism, morphology and

growth-rate, are determined by dynamical processes resulting from

the complex interplay of numerous genes through protein-DNA

and protein-protein interactions. Growth rate is an integrated

outcome of metabolism and gene expression that is particularly

significant in determining the fitness of the cell to the environ-

mental conditions and its competition with other individuals. It is

the intracellular processes of gene expression and metabolism that

transform genotypes into phenotypes. This transformation is a

dynamical process sensitive to the interaction of the cell with its

environment and involving a wide range of time-scales. The

complexity of intracellular processes ensures that the connection

between genotypes and phenotypes is far from being a simple one-

to-one mapping. The results presented in this paper show that, at

least under certain conditions, the direct mapping of a mutation to

fitness is not always an adequate basis for modeling population

dynamics. From the experimental view point, while the genetics

approach to population dynamics has been successful at describing

evolution on long time-scales, population dynamics involve a

wealth of processes beyond the fixation of beneficial mutations and

thus require measurement of the intermediate phenotypes

throughout the evolutionary process. Thus, the high temporal

resolution measurements of the population structure presented

above open a vista on evolutionary processes beyond the fixation

of mutations.

From a broader perspective, our results paint a picture of an

intracellular exploration process [28,29] rather than convergence

to a rare, fit variant. In other words, the physical process of gene

interactions lead to dynamics in a high-dimensional phase-space

spanned by the concentration of expressed proteins [38]. The

phenotypic state of a cell reflects the stabilization of these

dynamics. Outside of cases in which the phenotypic state is

determined by rigid ‘‘hard-wired’’ interactions (e.g. when cells

encounter a familiar stress or a change in environment), the

stabilization of a state in this complex phase-space is determined

by an exploratory process involving numerous metastable pheno-

typic states and very long convergence time-scales [29]. The

significance of the effect of such complex processes on the

population dynamics should not be underestimated. Indeed, our

results presented above show the coexistence of a wide spectrum of

growth-rate phenotypes, lasting very long durations for an

exponentially proliferating population in a constant environment.

Phenotypic variability, including epigenetic inheritance, also

plays an important role in the framework of bet-hedging in which

variable populations show increased fitness compared with

homogeneous populations in fluctuating environments [39,40].

However, unlike the concept of bet-hedging, in which population

variability maintained in a benign environment serves to rescue

the population upon a switch to harsh conditions [36,41,42], our

phenotypic variations represent exploration toward stabilizing a

relaxed, adapted state all within a constant environment. Note that

in the framework of bet-hedging, the emerging spectrum of

phenotypes remains neutral as long as the environment is stable.

In particular, large variability in growth-rates cannot be main-

tained in a constant environment due to selection. By contrast,

exploratory dynamics as observed in our experiments support a

wide variability in growth rates over extended durations. The

dynamics determining this spectrum of observed phenotypes are

the result of overlapping time-scales between the intracellular

processes determining the phenotypes of individuals and the

frequency distribution of different states determined by population

selection forces. This mixing of processes between two levels of

organization—individuals and the population—calls for significant

extensions of existing frameworks of population dynamics in

evolution and other biological contexts such as cancer [43,44].

Figure 3. Single-cell, instantaneous growth-rate distributions. Histograms of the growth-rates plotted as a function of time. The
instantaneous growth-rates were estimated from time-lapse microscopy measurements (Methods). The mean division time of the first distribution is
8.4 hours.
doi:10.1371/journal.pone.0081671.g003
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Materials and Methods

Strains
Experiments were carried out using three different strains of S.

cerevisiae, all with HIS3 under exclusive regulation of pGAL1.

Cloning was done by standard methods and was confirmed by

fragments analysis and/or by direct sequencing. Transformation

was done with the lithium acetate method:

N haploid yeast strain YPH499 (Mata, ura3–52, lys2–801, ade2–

101,trp1-D63, his3D200, leu2D1) carrying the plasmid pESC-

LEU (Stratagene) containing the pGAL1-pGAL10 divergent

promoter with HIS3 under pGAL1 as described in [24].

(Figs. 3,4, S9, S10 black and red)

N YPH499 with the pGAL1- GFP-HIS3 cassette (N terminal)

integrated into the Leu2 locus. (Figs. 1, 2, S9, S10, blue and

green)

N YPH499 with GFP/RFP integrated under ADH1 promoter at

the Ura3 locus [36] carrying the plasmid pESC-LEU. (Figs.

S9, S10, orange)

Chemostat
Cells were grown in a home-made chemostat with a 135-ml

working volume and temperature controlled at 30uC, as described

in [24] with a dilution rate of 0.18-hr21 (controlled by a digital

peristaltic pump; Ismatec). To verify that the dilution rate was

constant throughout the experiment, the pump rate was measured

offline using the same apparatus at the beginning and end of the

experiment to within 1-mL/hr. Additionally, the media consump-

tion was constantly monitored. The chemostat was inoculated with

cells from a single colony from an agar plate, grown to exponential

phase in synthetic dropout medium lacking histidine and leucine

with standard amino acid supplement and 2% of either high grade

pure galactose or pure glucose as a sole carbon source. Growth in

the chemostat was limited by the concentration of the amino acid

supplement (verified by increase in steady-state OD of the

chemostat culture with increase in amino acid concentration).

Throughout the experiments, the sugar (either galactose or

glucose) is always in excess (maximal consumption of the cells is

25% of the sugar supplied). Medium was: 1.7-g/liter yeast

nitrogen base without amino acids and ammonium sulfate, 5-g/

liter ammonium sulfate, 1.4-g/liter amino acid dropout powder

(without tryptophan, histidine, leucine, and uracil; Sigma, St.

Louis), 0.006-g/liter L-tryptophan, and 0.003-g/liter uracil.

Temperature was maintained at 30uC and the culture was

continuously mixed while air was pumped into the growth

chamber. The OD at 600 nm was measured by a dedicated

spectrophotometer (Ocean Optics, Dunedin, FL) coupled optically

to a flow channel at the chemostat outlet (light source: tungsten

lamp).The chemostat population at OD = 1 contains about 109–

1010 cells and the generation time is the chemostat dilution time

times ln(2), which was about 5 h.

Flow cytometer online with the chemostat
A home-made flow cytometer allowing real-time single-cell

multi-color fluorescent measurements, online with the chemostat

was constructed. The device injects cells from the running

chemostat directly into a flow chamber which in turn hydrody-

namically focuses the injected cells into a single-file toward the

detection zone. An optical setup collects the laser (Sapphire 488-

30, Coherent) light scattered from single cells and the measured

signals are acquired by a data acquisition board connected to a

computer (PD2-MF-16-3M/12H, United Electronic Industries).

Home-made software controls sample injection into the flow

chambers, washing and extracting pulse information (height, area

and width) for fully automated measurements over extended

periods of the experiment. We measure simultaneously forward

scattering (FL488-10, Thorlabs), side scattering (FL488-10,

Thorlabs. H9656 Hamamatsu photonics) and fluorescent signals

Figure 4. Mean and std of growth-rate and viability. (a) Mean
growth-rate extracted from the histograms in Fig. 3. Note the plateaus
in the mean growth rate that persist for many generations, followed by
decreases and sharp increases. Error bars are the standard error of the
mean. (b) The standard deviation of growth-rates computed from the
same distributions leading to the mean values presented in (a). (c)
Fraction of the population that was measured to be growing
exponentially in the same time points as (a). Although the population
culture was diluted every 12 hours, the fraction of cells that grew
exponentially did not approach 1 for hundreds of hours.
doi:10.1371/journal.pone.0081671.g004
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(ET520/40, Chroma. H9656-01, Hamamatsu). As part of the

quality control of the home-made setup, aliquots from the

chemostat were measured in parallel using a commercial flow

cytometer and compared to the measurements from the home-

made flow cytometer. Figure S2 shows the accuracy and stability

of the cytometer. Figures S2 a,b show the comparison of our

cytometer data with a commercial flow cytometer (BD LSR-II

Analyzer), with agreement between the data sets of .95%.

Deviations at low fluorescence are due to differences in the

sensitivity and dynamical range between the machines. Figure S2c

shows the stability of the measurements by comparing the HIS3p-

GFP distributions of a chemostat population in galactose medium

over a period of 100 hours (,20 generations). The distributions

shown in Fig. 2 and Fig. S4 were measured on large samples,

containing 40,000–250,000 cells depending on the chemostat

population density.

Batch culture
Batch cultures were grown in medium similar to the chemostat

medium, comprised of 1.7-g/liter yeast nitrogen base, 5-g/liter

ammonium sulfate, 1.4-g/liter amino acid dropout powder. 1x

amino acid concentration medium contains 0.4-g/liter L-trypto-

phan, and 0.2-g/liter uracil. In our measurements, strain 1 used

0.25X L-tryptophan and uracil, strain 2 used 0.15X L-tryptophan

and uracil, and strain 3 used 0.15X L-tryptophan. These amino

acid concentrations were chosen to allow more direct comparison

between chemostat and batch measurements. Strain 2 was the

same yeast strain that was used in the chemostat.

The batch culture was diluted every 12 hours to maintain

OD,1.0 and ensure that the cells always experienced an excess of

nutrients. Previous measurements have shown that exponential

growth persists in this medium until OD.3.0. During all dilutions,

care was taken to transfer a large fraction of the population to

avoid population bottlenecks that would skew our results.

Specifically, depending on growth rate, batches were diluted by

Figure 5. Monte-Carlo simulations of an evolving population. (a) Growth-rate distributions as a function of propagation time, computed from
a Monte Carlo simulation of the evolution of a population with a stably inherited growth-rate in a lineage across generations. There are 1000 cells at
the initial time point serving as the seeds for the evolving lineages. In each lineage the growth-rate is extracted from a Gaussian distribution. (b) The
mean growth rate in the simulation increases lineally as a function of time. The mean growth rate changes by ,30% within ,5 generations. The
growth-rate is measured in units of the inverse simulation time.
doi:10.1371/journal.pone.0081671.g005
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a factor of between 1:10 and 1:50 every 12 hours, never

transferring fewer than 105 cells.

Populations adapted in serially-diluted batch cultures exhibit

variability in their adaptation times to glucose, similar to

chemostat populations as shown in the experiments in Fig. 2 of

ref [25]. Measurements plotted in Figs. S8, S9, S10 show a time

axis after transfer to glucose. The time of the first reported

measurement point is based on when the first cells started to grow

exponentially, hence the variability in the time-axes between the

different experiments.

Microscopy assays for growth-rate measurements
The microscopy assay was similar, including all controls, to that

described in [36]. Flat-bottomed 96-well plates (NUNC 167008,

well area 30 mm2) were filled with 200-mL of 200-mg/ml

Concanavalin A (Type IV, Sigma) for 2–6 h. Wells were washed

once with 400-ml of distilled water immediately flung out. Coated

96-well plates were used immediately, or wrapped and stored at

4uC for use within 24 hrs. Plates were warmed to 30uC before use.

Cell batch cultures were grown to OD,1.0, then diluted 1:10

into fresh medium. 100-mL of the diluted cell culture was pipetted

into 20-mL of filtered medium, and agitated with the vortex for 30

seconds to mix and break up groups of cells. 200-mL of that batch

was then pipetted into each of the prepared wells. An adhesive

plate sealer (Edge Bio Systems #48461) was used to seal the plate,

and the plate is spun at 360-g for 2-minutes at 30uC. Bright-field

images were captured on a Zeiss Axio-Observer inverted

microscope fitted with an incubator maintaining stage temperature

at 30uC, and a fully automated ASI stage, and imaged using a 106
air objective with a 9 mm working distance. An image was

captured per well (near the center, but optimized for cell spacing

and lack of debris) every one hour for 12–24 hours, depending on

the measured growth rate in the last plate (very slow growth

required longer imaging sessions to estimate the growth rate).

Image analysis
Bright-field images were analyzed using Matlab image process-

ing tools and specially written colony-tracking software. The area

of each colony in each frame of the movie was measured using

edge-finding algorithms performed on filtered raw images. Figure

S12a shows a typical microscope image with the black line

surrounding each colony marking the edge used to determine the

colony area. The colonies were tracked from one frame to the next

using centroid correlation. The area vector for each colony was

fitted to an exponential curve using an automated curve-fitting

routine. Fits with an Rsq.0.95 were automatically accepted to the

histogram. All others were assessed by hand to determine if there

are outliers that prevent a good fit despite exponential growth.

Microscopy images were all reviewed manually to verify image

quality and good fits to colony perimeters. Manual counts of cell

number were compared with colony areas to verify reasonable

growth rate estimates (Fig. S12b). The fits to a manual cell count

and the colony area from the image analysis gave the same growth

rate within the fitting error. Any colonies that were not growing

exponentially, were too close to the edge of the field of view, or

were growing too close to another colony were excluded from the

histograms in Fig. 3 and Fig. S8. All measurements containing

more than 100 colonies were included in the final histograms. To

verify the statistical significance of each data set, the mean was

calculated from a random set of chosen points from the

distribution. Increase in the number of random points led to

convergence of the mean to within the standard error, indicating

that our data contained sufficient points to represent the

distribution. Moreover, Fig. S13 shows representative histograms

from the same experiment as in Fig. 3, with error-bars confirming

the significance of the distributions. This was the smallest data set,

and therefore has the largest error of all presented data.

Plates Assay
Glucose agar plates were made with the same nominal medium

as the chemostat and batch media, plus 2% agar. Rich medium

agar plates were made with YPD medium plus 2% agar. For each

time point samples were taken from the chemostat or batch culture

and diluted to ,2000-cells/mL and 100 mL was dispersed onto

each of two YPD agar plates and three glucose agar plates. The

cells were distributed uniformly on the plates by shaking with

pretreated sterile glass beads. Plates were incubated at 30uC for

three days to allow colonies to form. Colonies were then counted

on all five plates and tabulated by plate-type. The ‘‘fraction of

adapted’’ cells (Fig. 1) is taken to be the average number of

colonies that grow per glucose plate divided by the total number of

colony-forming units, as measured by the average plate count from

the YPD plates plated at the same time.

Supporting Information

Figure S1 Chemostat population density fluctuations.
(a) The OD of the same chemostat population as in Fig. 1 of the

main text, in galactose before switching to glucose at t = 0. (b) Part

of phase IV from the same experiment for comparison, showing

the significance of the density fluctuations. (c) A population of wild

type cells switched from galactose to glucose in the same chemostat

apparatus. The s/m marked for each region separately, are of the

same order as in (a). It shows that the background fluctuations in

the chemostat are significantly smaller than the ones observed in

phase IV in (b).

(PDF)

Figure S2 Stability and accuracy of homemade cell
cytometer. (a) and (b) show the comparison of our home-made

cytometer data with a commercial flow cytometer (BD LSR-II

Analyzer), with agreement between the data sets of .95%. (c) The

stability of the home-made cytometer measurements is shown by

comparing the HIS3p-GFP distributions of a chemostat popula-

tion in galactose medium over a period of 100 hours (,20

generations).

(PDF)

Figure S3 Mean HIS3-GFP dynamics in a chemostat
population. (a) A repeated experiment to the one shown in

Fig. 2a. The blue trace is the chemostat optical density as a

function of time after switch from galactose medium to glucose

medium lacking histidine at t = 0. Note the logarithmic scale. The

green trace is the mean fluorescence measurement of HIS3-GFP.

The population-average fluorescence was extracted from statistics

over single-cell measurements utilizing our home-made cytometer

online with the chemostat. (b) The OD in phase IV of the

chemostat in (a) on a linear scale between 200 and 600 hours

showing significant fluctuations similar to the ones observed in

Fig. 1 of the main text.

(PDF)

Figure S4 Scaled HIS3-GFP distributions. Single-cell

fluorescence distributions measured from the same chemostat

population as in Fig. 1 during phase-IV. All distributions have

been scaled by subtracting the mean and dividing by the standard

deviation, causing them to collapse onto a similar shape. Note that

the mean fluorescence value from this same time period (Fig. 2a)

has dynamic fluctuations by more than a factor of three.

(PDF)
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Figure S5 Variance vs. Mean from HIS3-GFP distribu-
tions. Scatter plot of the variance fluorescence versus the mean

extracted from single-cell fluorescence distributions for the same

populations of cells as in Fig. 2, for the entire range in phase IV as

in Fig. S4. The variance is a quadratic function of the mean: red

curve, best fit y = 25.39+1478 x+0.48 x2.

(PDF)

Figure S6 Fraction of adapted cells in a batch culture.
The number of cells that are able to grow a visible colony within 3

days after plating on glu-his agar plates (‘‘fraction adapted’’)

relative to the number of colonies grown on rich medium plates

from serially-diluted batch culture in phase IV, after the switch

from galactose to glucose. Comparison with the red curve in Fig. 1

shows qualitatively similar fluctuations in the fraction of adapted

cells in a chemostat culture and in batch cultures throughout

phase-IV.

(PDF)

Figure S7 Exponential fits to colony-area growth from
the microscopy assay. Examples of typical microcolony-area

data extracted from microscopy images (blue points) fitted with a

two-parameter function (blue line) y = A*exp(B*x) to estimate the

instantaneous growth rates of single cells.

(PDF)

Figure S8 Single-cell growth-rate distributions from
repeated batch cultures. (a–d) Repeated experiments show

similar dynamics of the distributions of Fig. 3.

(PDF)

Figure S9 Mean and Standard deviation of growth rates
for repeated batch cultures. (a) Repeated experiments show

qualitatively similar fluctuations in the population-average growth-

rate as a function of time as in Fig. 4a. The black curve is the data

from Fig. 4a. All the measurements exhibit periods of decrease in

the mean growth rate on short timescales, suggesting that growth

rate is not stably inherited. The green, blue, red and orange traces

are the means of the distributions in Figs. S6a-d, respectively. Note

that the starting point of each measurement depends on the

adaptation dynamics of each batch which is highly variable (see

Methods). The population must be growing exponentially first to

allow a meaningful measurement of growth rate. (b) Large

fluctuations in the standard deviation are seen in all five repeated

experiments of (a). The black curve is the data from Fig. 4b. Colors

correspond to the same experiments as in (a).

(PDF)

Figure S10 Fraction of exponentially growing cells in
repeated experiments. Repeated experiments showing a

fluctuating fraction of exponentially growing cells in the

population similar to Fig. 4c. While the total fraction approaches

1, the rate of convergence is very slow considering the rate of

dilution of the batch. The black curve is the same experiment

shown in Fig. 4c, and the colors correspond to the same

experiments as in Fig. S9.

(PDF)

Figure S11 Wild-type growth rate distributions. (a)

Control measurements were made on wild-type (YPH499) cells

grown in minimal glucose medium with complete amino acids.

The time axis indicates hours after switch from galactose to

glucose in the batch culture, and was chosen to be in the range of

the other batch experiments. (b) The mean growth rate increases

by a factor of 1.1 in the course of the measurement, which lasts 50

generations (in comparison with the data from figure 4a, which

fluctuate by a factor of 2.4).

(PDF)

Figure S12 Analysis of microscopy images. (a) a typical

image with the black line surrounding each colony marking the

edge used to determine the colony area. Scale bar-50 microns (75

pixels). (b) The line shows the best fit (y = 1.59 exp(0.216*t) to

manual cell count (blue circles) and colony area from the

automated image analysis (red x). Both cell count and colony

area lead to similar estimate of the exponential growth. Colony

area is scaled by a single cell area of 45 pixels.

(PDF)

Figure S13 Error bars of growth-rate distributions.
Representative histograms from the same experiment as in Fig. 3

showing the error-bars on each bin and confirming the

significance of the distributions. These distributions contain the

smallest number of data points, and therefore show the largest

error of all the data sets.

(PDF)
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