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Synchronization of mitochondrial function is an important deter-
minant of cell physiology and survival, yet little is known about the
mechanism of interorganellar communication. We have recently
observed that coordinated cell-wide oscillations in the mitochon-
drial energy state of heart cells can be induced by a highly localized
perturbation of a few elements of the mitochondrial network,
indicating that mitochondria represent a complex, self-organized
system. Here, we apply percolation theory to explain the mecha-
nism of intermitochondrial signal propagation in response to
oxidative stress. A global phase transition (mitochondrial depolar-
ization) is shown to occur when a critical density of mitochondria
accumulate reactive oxygen species above a threshold to form an
extended spanning cluster. The scaling and fractal properties of the
mitochondrial network at the edge of instability agree remarkably
well with the idea that mitochondria are organized as a percolation
matrix, with reactive oxygen species as a key messenger.

reactive oxygen species � ion channels � oscillation � oxidative stress �
cardiomyocyte

Spatial and temporal coordination of information in both
physical and biological systems is crucial for mounting an

effective response to sudden environmental changes. Such sys-
tems often evolve to operate close to the edge of dynamic
instability (1–5). The heart is a prime example; when subjected
to stress (e.g., ischemia and reperfusion), the normally well
coordinated oscillations of electrical and contractile activity
become unstable (6–8), giving rise to arrhythmias involving
interactions among many cells in the syncytium. At the subcel-
lular level, adapting energy production to meet a variable
metabolic demand depends on the coordinated action of thou-
sands of mitochondria in the cardiac myocyte, which are distrib-
uted between myofilaments in a lattice-like network of nonlinear
elements. This arrangement is conducive to spatiotemporal
patterns of self-organization, for instance, oscillations and�or
propagating waves (9, 10). However, it is not known how
individual mitochondria interact with their neighbors or how
metabolic signals are communicated over cellular distances.
Elucidating this mechanism is vitally important, because the
rapid and irreversible loss of mitochondrial inner membrane
potential (��m) is a decisive factor in necrotic or apoptotic cell
death.

We have recently described synchronized whole-cell oscilla-
tions of ��m, NADH, and reactive oxygen species (ROS)
production induced by controlled depolarization of mitochon-
dria in a small volume of the cardiomyocyte (10). The accumu-
lation of mitochondrial ROS up to a critical threshold level was
a key determinant of propagation and synchronization of the
response throughout the mitochondrial network, thus resem-
bling a system at the critical state [i.e., characterized by an
extreme susceptibility to external factors (11)]. We proposed that
the cell-wide propagation of the local perturbation (10) was
mediated by ROS liberated from a mitochondrion triggering a
mechanism of regenerative ROS-induced ROS release (a term
coined by Zorov et al. (12)]. An open question was how the local
production of ROS by a mitochondrion (size �1–2 �m) could
trigger a synchronized depolarization across the length of a cell
(�100 �m), especially given the short half-life and buffering
capacity of the cell for the central messenger, superoxide (O2

•�).

Here, we apply percolation theory, which describes how
neighbor–neighbor interactions determine the macroscopic spa-
tiotemporal properties of an excitable matrix, to demonstrate
that a spanning cluster of oxidatively stressed mitochondria
forms in the mitochondrial network just before the first cell-wide
depolarization of ��m. Specific predictions regarding the fractal
geometry and scaling properties of a percolation matrix (13, 14)
were verified experimentally, providing support for the hypoth-
esis that local interactions among mitochondria can lead to
criticality and global synchronization of ��m by percolation.

Methods
All experiments were carried out at 37°C on freshly isolated adult
guinea pig ventricular myocytes prepared and handled for
experimental recordings as described (7). We monitored
NAD(P)H autofluorescence, mitochondrial membrane poten-
tial (��m) with the cationic potentiometric f luorescent dye
tetramethylrhodamine ethyl ester (TMRE), and ROS produc-
tion with the ROS-sensitive f luorescent probe 5-
(�6)-chloromethyl-2�,7�-dichlorodihydrofluorescein diacetate,
as described (10). Images were recorded by using a two-photon
laser-scanning microscope (Bio-Rad MRC-1024MP) with exci-
tation at 740 nm (Tsunami Ti:Sa laser, Spectra-Physics). Owing
to the overlap in the cross sections for two-photon excitation of
the three fluorophores of interest [NADH, TMRE, and CM-
DCF (5-(�6)-chloromethyl-2�,7�-dichlorof luorescein)], this
wavelength permitted recording of redox potential, ROS pro-
duction, and ��m simultaneously (10).

Images were analyzed offline by using IMAGEJ software
(Wayne Rasband, National Institutes of Health, http:��
rsb.info.nih.gov�ij). For visualization of the spatiotemporal re-
sponses of NADH, TMRE, and CM-DCF a 2- to 3-pixel-wide
line was drawn along the length of the myocyte (as shown in Fig.
1A), and the average fluorescence profile along the line was
determined for the entire time series of 2D images for a given
experiment (time-line image) (as shown in Fig. 1B).

To quantitatively determine the fraction of polarized mito-
chondria and their levels of ROS as a percentage of the total
mitochondrial population from 2D TMRE and CM-DCF im-
ages, we applied grid analysis. In brief, a binary mask of the cell
TMRE or CM-DCF fluorescence was made, and the cell area,
excluding nuclei, was divided into small squares approximately
the size of individual mitochondria (�2 � 2 �m; see Fig. 2B).
The average fluorescence within each grid object was measured,
and the fraction of polarized mitochondria with respect to the
total number of objects at time 0 was calculated for the image
series. A cutoff value halfway between the two peaks in the
histograms of the distribution of mitochondria fluorescence was
used to determine whether a given grid object was classified as
‘‘polarized’’ or ‘‘depolarized.’’

Results
According to the method we described recently, two-photon
laser excitation was used to produce a local perturbation in the
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mitochondrial network of a myocyte to trigger a response in
the remainder of the cell. The laser f lash induced ��m
depolarization (Fig. 1A, box in upper left of the TMRE image)
and ROS generation (Fig. 1 A, square in the lower left of the
CM-DCF image) in a small volume of a cardiac myocyte in the
presence of glucose (10). After a significant delay (43 � 9 s;
n 	 13; five experiments), this ‘‘f lash’’ induced synchronized
and cell-wide oscillations in ��m (Fig. 1B), NADH, and ROS
involving up to �70% of the mitochondrial population (Fig.
1 A Right).

The onset of the first cell-wide mitochondrial depolarization
was preceded by the build-up of ROS in a cluster of mitochondria
spanning almost the whole cell (Fig. 1 A Right). The attainment
of a critical level of ROS, �20% above baseline (10), was
synchronous with the first global depolarization of the mito-
chondrial network (Fig. 2A).

Whole-Cell Mitochondrial Spanning Cluster Formation. To apply
percolation theory, the two-photon imaging method (�1 �m
focal depth) allowed us to treat the data as a 2D single
mitochondrial layer. Because the mitochondrial network in
cardiomyocytes is arranged in a quasi-square lattice, we treated
it as a grid, with each element of the grid being occupied by
roughly one to two mitochondria (Fig. 2B). We created a binary

mask over the myocyte area, excluding the cell’s nuclei and
tracked the time-dependent response of ��m and ROS produc-
tion in individual mitochondrial elements.

Just before the first global ��m depolarization, the forma-
tion of a large cluster of mitochondria with ROS levels above
threshold was observed (Fig. 2C). This ‘‘spanning cluster’’
involved 56 � 7% of the mitochondrial lattice (Fig. 2D; n 	 8,
six independent experiments). This value was consistent with
a critical density of mitochondria at the percolation threshold
(pc), which, for a square lattice in percolation theory is equal
to �0.593 or 59% (13, 15). The value of pc obtained should be
considered an approximation because we have assumed a
‘‘quasi-square’’ geometry and have not taken into account the
natural structural variations of the cell (e.g., the presence of
nuclei). As expected, at pc, the probability for a single mito-
chondrion to belong to the largest cluster increases dramati-
cally (see Appendix). A few mitochondria (which had ROS
levels below threshold) were excluded from the spanning
cluster (Fig. 1 A) and remained polarized throughout the
depolarization.

Another signature feature of percolation processes at pc is
that they are organized as fractals. This property implies that
local processes can scale to produce macroscopic behavior. At
pc, the mass of the spanning cluster increases with the size of

Fig. 1. Cell-wide synchronized mitochondrial oscillations after local generation of ROS. (A) Cardiomyocyte loaded at 37°C with TMRE (��m indicator, upper
images) and 5-(�6)-chloromethyl-2�,7�-dichlorohydrofluorescein diacetate (ROS-sensitive, lower images). By using two-photon laser excitation, and after 10–20
control images were collected, a small region of a cardiac myocyte (20 � 20 pixels, 8.7 � 8.7 �m square, �81 �m3 volume, and 
1 �m focal depth) was excited
in a single flash resulting in rapid loss of ��m (A, white square in upper left) and local generation of ROS (A, white square in lower left). Thereafter, ��m remained
depolarized in the flashed area throughout the experiment (see B). The right images in A show the first whole-cell ��m depolarization (B, asterisk) after a delay
time (see text for further explanation). (B) Time-line image of TMRE created by analyzing a line drawn along the longitudinal axis of the cell (shown in A, upper
left; see Methods). The arrow points out the timing of the flash and the brackets point out the flash region (Upper) and the nucleus (Lower). The synchronous
��m mitochondrial oscillations are evident as vertical blue bands. The mitochondria that do not belong to the spanning cluster remained visibly polarized.
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the lattice, L, as a power law, LDf, with Df as the fractal
dimension (13, 14, 16). Fractal box counting (14, 15) analysis
of our data yielded a fractal dimension of Df 	 1.82, close to
that exhibited by percolation clusters and cytoskeletal lattices
at pc (Df 	 1.90) (1, 14, 17, 18). A complex system like a
percolation matrix, when close to criticality, may undergo
phase transitions characterized by critical exponents (11, 13–
15). An estimation of these exponents for the mitochondrial
network is provided in Appendix.

Nearest Neighbor Interactions and Superoxide Diffusion. The critical
density of mitochondria at a pc of 0.56 suggests that each
mitochondrion in the spanning cluster is affecting its four
immediate neighbors (see Appendix). Therefore, we next in-
vestigated, in quantitative and qualitative terms, if diffusion of
O2

•� produced by a mitochondrion interacting with its neigh-
bors was mechanistically feasible. This model was based on the
proposal (10) that cell-wide propagation is mediated by re-
generative ROS-induced ROS release between neighboring
mitochondria.

At the percolation threshold, one possible mechanism is that

a mitochondrion in the spanning cluster produces a burst of O2
•�,

which then diffuses to its neighbor with a particular spatial
concentration profile that is a function of the rate of O2

•�

scavenging (Fig. 3). For the response to be regenerative, the
O2

•�-induced opening of a ROS-activated target channel on the
neighbor (which we believe to be an inner membrane anion
channel; ref. 10) will depend on two main conditions: (i) the
mitochondrial neighbor must belong to the spanning cluster (i.e.,
it possesses a near-threshold level of ROS in the mitochondrial
matrix), and (ii) a suprathreshold level of cytoplasmic O2

•� must
reach the target mitochondrion (Fig. 3). A global phase transi-
tion (through percolation) then occurs when a cluster forms with
the critical density of mitochondria exceeding the ROS threshold
(Fig. 2).

Although the transition in the mitochondrial spanning cluster
appears abrupt, the phase transition should be slow enough to be
resolved as waves of depolarization with faster image acquisition
and�or interventions that slow propagation, as described for
spontaneous metabolic oscillations (9). Indeed, at higher tem-
poral resolution, depolarization waves could be detected with a
speed of 22 �m�s�1 (Fig. 4A). The total time for global cell

Fig. 2. Threshold of ROS required for cell-wide mitochondrial oscillations. (A) Time course of average whole-cell fluorescence of TMRE and CM-DCF, the latter
normalized to initial intensity (F�F0). Oscillations in ��m were initiated only when the ROS signal increased by �20% (horizontal dashed line) over the duration
of the experiment. The relationship between TMRE and CM-DCF signals and the ROS threshold can be clearly appreciated from the vertical and horizontal
reference lines drawn, respectively. Arrow indicates the timing of the flash. (B) Grid analysis of TMRE or CM-DCF fluorescence as applied to a cardiomyocyte (see
Methods). (C) Development of the mitochondrial spanning cluster from the flash and up to the time of the first whole cell ��m depolarization (see Fig. 1B,
asterisk). At pc 	 0.56 (last image on right) a mitochondrial cluster with a critical density, comprising �60% of the mitochondrial population, spans the cell. At
pc the mitochondrial cluster has a Df 	 1.82 as calculated by the box counting method (17). (D) Analysis of the fraction of polarized mitochondria from 2D TMRE
and CM-DCF images as a percent of the total mitochondrial population was performed as described (ref. 10; see also Methods). The relationship between TMRE
and CM-DCF signals can be clearly appreciated from the vertical reference line drawn. Arrow indicates the timing of the flash.
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depolarization was 4.2 � 0.4 s (n 	 15, ten independent
experiments; Fig. 2 A), in agreement with the observed speed of
the depolarization wave (i.e., it takes �4 s for a 22 �m�s�1 wave
to travel the length of a 100-�m myocyte). In the presence of the
ROS scavenger N-acetyl-L-cysteine, we could resolve a depolar-
ization wave with a propagation velocity of 3.5 �m�s�1, even at
a slow acquisition rate, confirming the aforementioned depen-
dence of the local gradients on the cytoplasmic O2

•�-scavenging
capacity (Fig. 4B).

Discussion
Analysis of mitochondrial metabolic oscillations triggered by a
local perturbation of ROS reveals that the mitochondrial net-
work of the isolated cardiac cell is an excellent biological
example of a system operating near the critical state. Relatively
mild stressors, such as substrate deprivation (7), or, in the present
case, a highly localized increase in ROS, can induce a phase
transition in the entire cell. This first ��m depolarization can be
described by percolation theory as a universal phase transition,
which has the properties of similar structure at different scales,
a fractal organization (power law dependence), and a per-
colation threshold (13, 14). Similarly, many physical and biologi-

cal dynamic systems evolve to a state of self-organization, in
which the collective behavior of the system can be very sensitive
to local f luctuations (11). This state improves the response to
environmental changes but, in the present example, may foster
instability.

Our mechanistic hypothesis (10), supported by the available
experimental data, suggests that the local liberation of ROS
from the mitochondria, produced by leakage of electrons from
the electron transport chain, triggers propagating, regenera-
tive ROS-induced ROS release in the entire mitochondrial
network. ROS liberation from mitochondria is transported
through inner-membrane anion channels that exert the dual
role of both dissipating energy to depolarize ��m and trans-
porting O2

•� out of the matrix in a positive feedback loop.
Using a computational model of mitochondrial bioenergetics
(19)† that incorporates the main features of our hypothesis, we
have demonstrated that the behavior of individual mitochon-
dria can undergo bifurcations and display stable limit cycles,
which resemble the characteristics of the whole-cell oscilla-
tions. In this case, the transition from steady-state behavior to
oscillation occurs after a suprathreshold perturbation, or hard
excitation (20), and depends on the balance between ROS
production and cytoplasmic ROS scavenging. The present
analysis indicates that the depolarization involves almost the

†Cortassa, S., Aon, M. A., Winslow, R. L., Marbán, E. & O’Rourke, B. (2004) Biophys. J. 86, 1a
(abstr.).

Fig. 3. Model of O2
• � diffusion between neighboring mitochondria in the

spanning cluster. The concentration profiles of O2
• � were calculated from the

solution of a diffusion model (31):

�c
�t

� D
�2c
�x2 , [1]

where c, x, and t are messenger concentration, distance, and time, respec-
tively. When the solution of Eq. 1 is supposed to depend on a spatial param-
eter, z 	 x � vt, we obtain:

dc�z�

dz
� ��D���

d2c�z�

dz2 , [2]

whose solution is:

c�z� � C1 � C2 exp���z�D�. [3]

The concentration gradients of O2
• � between mitochondria as a function of its

rate of scavenging, v, were calculated according to Eq. 3 and the following
boundary conditions: c(0) 	 Cmax, and c() 	 0. The higher the rate of
scavenging, the steeper the gradient and the lower the O2

• � concentration
reaching the second mitochondrion. A maximal distance between two neigh-
boring mitochondria of 0.5 �m was determined. The ROS threshold of 20%
was obtained experimentally by image analysis (see Fig. 2A), and the two
mitochondria at the critical state are assumed to belong to the spanning
cluster, i.e., they possess a level of ROS very close to the threshold. For those
conditions in which ROS near Mito 2 exceeds the threshold, ROS-induced ROS
release is predicted. Considering the volume of an average mammalian cell of
the order of 4 � 10�12 liters (32) and of single mitochondria, 10�15 liters
(�500–1,000 mitochondria in a plane; e.g., see Fig. 2B), we estimate that the
levels of O2

• � released between neighboring mitochondria would have to be
at least in the micromolar range for propagation to occur in the presence of
superoxide dismutase (kcat � 1 nmol�s).

Fig. 4. Wave propagation during laser flash-induced whole cell mitochon-
drial ��m oscillations in cardiomyocytes. Cardiomyocytes labeled with TMRE
were subjected to a laser flash, and images were collected at a frame rate of
0.512 s. Under these conditions, waves traveling at speeds of 22 �m�s�1 could
be detected (A). In the presence of the ROS scavenger N-acetyl-L-cysteine (4
mM), and with slower image acquisition (3.5 s), waves traveling at 3.5 �m�s�1

were observed (B).
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entire cell because the mitochondria belong to a spanning
cluster; i.e., most mitochondria are at or near the threshold
concentration of ROS (Figs. 1 and 2). This finding explains
why a delay occurs between the initial perturbation and the
first global ��m depolarization, the latter occurring simulta-
neously with the formation of the spanning cluster (Fig. 2).

The 4-s time for global cell depolarization to take place is
faster than it would take for pure diffusion to propagate the ROS
signal throughout the cell. Effectively, if the Einstein relation for
a diffusion process [(�x)2 	 2Dt] is applied, a total of 14 s would
have been required for the ROS signal to travel the length of a
myocyte in the absence of scavenging (assuming a diffusion
coefficient, D 	 700 �m2�s�1, and �x 	 100 �m). If scavenging
is also taken into account, the time required for diffusion will
certainly be much longer. Our description is also biochemically
consistent with the fact that the short half-life and limited
diffusion rate of O2

•� would restrict its influence to the short
intramitochondrial distances, i.e., 0.5–1 �m. Indeed, the kcat of
Cu,Zn superoxide dismutase is �106 mM�1�s�1 (21, 22), which
would predict dismutation turnover rates of 1 s for nanomolar
levels of O2

•� (Fig. 3).
The observation that some mitochondria resisted depolariza-

tion in the face of cell-wide synchronization (Fig. 1 A Right)
argues against a simple regenerative wave based on ROS-
induced ROS release. The mitochondria were also required to be
near threshold and belong to the percolation cluster.

The biological importance of the results described in the
present work cannot be overstated. The existence of phase
transitions in mitochondrial energetics can be seen as a crisis
in oxidatively stressed cells close to the point where their
behavior may become unstable and abruptly change, i.e.,
criticality. This instability is likely to occur in the postischemic
myocardium and will determine the course of necrotic and
apoptotic cell death. A common feature of crises in disparate
systems is that they emerge from collective processes leading
to bifurcations between stable and novel regimes (1, 11).
Nonlinear analysis has been applied to the study of abnormal
cardiac electrical conduction and arrhythmias (23–28) and the
behavior of neural networks (4); however, the present phe-
nomenon appears to be the premier example of these concepts
in an intraorganellar network. The mitochondrial transitions
are closely linked to changes in cellular electrical excitability
(7, 8, 10) and, presumably, to dispersion of action potential
repolarization in the whole heart, suggesting that criticality at
the microscopic level may be translated into the death of the
organism.

Appendix: Determination of Critical Exponents
The tools used for studying phase transitions have also been
applied to percolation (13, 15), and the critical exponents of a
phase transition have been determined. Critical phase transitions
are characterized by an order parameter, Z, which describes, for
example, the magnetic transition of a magnet, the population
inversion threshold of a laser, or flow-through of a porous
material (11, 29). Three critical exponents, �, �, and �, describe
how the order parameter, the correlation length, and the char-
acteristic time parameters scale with the percolation probability,
	, near pc (	 

 1) (11, 13, 14, 29).

For 2D percolation, the values of the critical exponents are
well known; the correlation length exponent, �, equals 4�3
exactly (13), � equals 5�36 � 0.139 (13, 14), and the character-
istic time exponent � equals 1.533 (15, 30). We calculated the
ratio of the critical exponents corresponding to the first global
depolarization of ��m (e.g., see asterisk on Fig. 1B). The slope
of the double log plot of the number of depolarized mitochondria
versus time equals (15) the ratio of the critical exponents [(� �
�)��]. By substitution, the theoretical value for (� � �)��
is 0.779. The experimentally determined value we obtained

was 0.777 � 0.069 (Fig. 5C; n 	 8, six independent experiments).
This numerical value should be taken only as approximate
because of the very narrow span of the power law behavior shown
in Fig. 5B, whereas the critical exponents have previously been
obtained from simulations of enormous lattices (to avoid finite-
size effects) far bigger than the mitochondrial one.

The critical exponents depend only on the dimensionality of
the embedding space (e.g., two dimensions for a square lattice)
and the ‘‘degrees of freedom’’ of the variable considered, and are
independent of the type of lattice being studied (this feature of
percolation is referred to as universality). Although the critical
exponents �, �, and � are independent of the size of the
interacting neighborhood, that is, their values are indistinguish-
able for 4, 8, and 24 nearest neighbors on the square lattice, the
critical densities at pc differ, being 0.593, 0.407, and 0.168, for the
coordination numbers 4, 8, and 24, respectively (15). We found
a critical density of mitochondria at a pc value of 0.56, indicating
that each mitochondrion in the spanning cluster is affecting its
four immediate neighbors.

Fig. 5. Quantitative analysis of the mitochondrial network. (A) The proba-
bility of a mitochondrion belonging to the spanning cluster increases dramat-
ically at percolation threshold, pc (see also Fig. 2D). This was calculated from
frequency histograms of ‘‘grid objects’’ (mitochondria) with CM-DCF fluores-
cence intensity above baseline. The baseline was obtained averaging the
maximal fluorescence value from the frequency distribution of the initial
10–20 images before the flash. The probability was calculated as total number
of mitochondria with values above baseline over the total number of objects
in the grid. (B) The quantitative relationship between the critical exponents at
the first global ��m depolarization can be calculated from double-log plots of
the number of depolarized mitochondria versus time near pc (within approx-
imately �3–5% of pc) for the first global depolarization (15). The straight line
conforms to a power law and the total number of depolarized mitochondria
scales as t(� � �)��, with t being time. Thus, the slope gives � � ��� (	 0.760; r2 	
0.920, for the example presented).

Aon et al. PNAS � March 30, 2004 � vol. 101 � no. 13 � 4451

BI
O

PH
YS

IC
S



1. Aon, M. A. & Cortassa, S. (1997) Dynamic Biological Organization: Funda-
mentals as Applied to Cellular Systems (Chapman & Hall, London).

2. Nicolis, G. & Prigogine, I. (1977) Self-Organization in Nonequilibrium
Systems: From Dissipative Structures to Order Through Fluctuations (Wiley,
New York).

3. Haken, H. (1991) Synergetics: Can It Help Physiology? (Springer, Berlin).
4. Kauffman, S. A. (1993) Origins of Order: Self-Organization and Selection in

Evolution (Oxford Univ. Press, New York).
5. Bak, P. (1996) How Nature Works: The Science of Self-Organized Criticality

(Copernicus, New York).
6. Garfinkel, A., Chen, P. S., Walter, D. O., Karagueuzian, H. S., Kogan, B.,

Evans, S. J., Karpoukhin, M., Hwang, C., Uchida, T., Gotoh, M., et al. (1997)
J. Clin. Invest. 99, 305–314.

7. O’Rourke, B., Ramza, B. M. & Marbán, E. (1994) Science 265, 962–966.
8. O’Rourke, B. (2000) J. Physiol. 529, 23–36.
9. Romashko, D. N., Marbán, E. & O’Rourke, B. (1998) Proc. Natl. Acad. Sci.

USA 95, 1618–1623.
10. Aon, M. A., Cortassa, S., Marbán, E. & O’Rourke, B. (2003) J. Biol. Chem. 278,

44735–44744.
11. Sornette, D. (2000) Critical Phenomena in Natural Sciences. Chaos, Fractals,

Self-Organization and Disorder: Concepts and Tools (Springer, Berlin).
12. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L. & Sollott, S. J. (2000)

J. Exp. Med. 192, 1001–1014.
13. Stauffer, D. & Aharony, A. (1994) Introduction to Percolation Theory (Taylor

& Francis, London).
14. Feder, J. (1988) Fractals (Plenum, New York).

15. Schroeder, M. (1991) Fractals, Chaos, Power Laws: Minutes from an Infinite
Paradise (Freeman, New York).

16. Mandelbrot, B. B. (1982) The Fractal Geometry of Nature (Freeman, New York).
17. Aon, M. A., O’Rourke, B. & Cortassa, S. (2003) Mol. Cell. Biochem. 256�257,

169–184.
18. Aon, M. A. & Cortassa, S. (1994) FEBS Lett. 344, 1–4.
19. Cortassa, S., Aon, M. A., Marbán, E., Winslow, R. L. & O’Rourke, B. (2003)

Biophys. J. 84, 2734–2755.
20. Minorsky, N. (1962) Nonlinear Oscillations (Van Nostrand, Princeton, NJ).
21. Faulkner, K. M., Liochev, S. I. & Fridovich, I. (1994) J. Biol. Chem. 269,

23471–23476.
22. Chance, B., Sies, H. & Boveris, A. (1979) Physiol. Rev. 59, 527–605.
23. Chialvo, D. R. & Jalife, J. (1987) Nature 330, 749–752.
24. Chialvo, D. R., Gilmour, R. F., Jr., & Jalife, J. (1990) Nature 343, 653–657.
25. Kaplan, D. T., Smith, J. M., Saxberg, B. E. & Cohen, R. J. (1988) Math. Biosci.

90, 19–48.
26. Yulmetyev, R., Hanggi, P. & Gafarov, F. (2002) Phys. Rev. E Stat. Nonlin. Soft

Matter Phys. 65, 046107.
27. Goldberger, A. L., Amaral, L. A., Hausdorff, J. M., Ivanov, P., Peng, C. K. &

Stanley, H. E. (2002) Proc. Natl. Acad. Sci. USA 99, Suppl. 1, 2466–2472.
28. Glass, L. & Mackey, M. C. (1988) From Clocks to Chaos: The Rhythms of Life

(Princeton Univ. Press, Princeton, NJ).
29. Haken, H. (1983) Synergetics: An Introduction (Springer, Berlin).
30. Grassberger, P. (1985) J. Phys. A (Paris) 18, L215–L219.
31. Meyer, T. (1991) Cell 64, 675–678.
32. Luby-Phelps, K. (2000) Int. Rev. Cytol. 192, 189–221.

4452 � www.pnas.org�cgi�doi�10.1073�pnas.0307156101 Aon et al.


