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Abstract
Background—Adolescent marijuana use is associated with increased risk for schizophrenia. We
previously reported that marijuana misuse in conjunction with specific cannabinoid receptor 1
(CNR1) genetic variants (rs12720071-Gallele carriers) contributed to white-matter (WM) brain
volume deficits in schizophrenia patients. In this study, we assessed the influence of another
cannabinoid-related gene, mitogen-activated protein kinase 14 (MAPK14), and potential
MAPK14–CNR1 gene–gene interactions in conferring brain volume abnormalities among
schizophrenia patients with marijuana abuse/dependence. MAPK14 encodes a member of the
MAPK family involved in diverse cellular processes, including CNR1-induced apoptosis.

Method—We genotyped 235 schizophrenia patients on nine MAPK14 tag single nucleotide
polymorphisms (tSNPs). Approximately one quarter of the sample had marijuana abuse or
dependence. Differential effects of MAPK14 tSNPs on brain volumes across patients with versus
without marijuana abuse/dependence were examined using ANCOVA.

Results—Of the MAPK14 tSNPs, only rs12199654 had significant genotype effects and
genotype × marijuana misuse interaction effects on WM volumes. rs12199654-A homozygotes
with marijuana abuse/dependence had significantly smaller total cerebral and lobar WM volumes.
The effects of MAPK14 rs12199654 on WM volume deficits remained significant even after
controlling for the CNR1 rs12720071 genotype. There were significant main effects of the
MAPK14 CNR1 diplotype and diplotype × marijuana interaction on WM brain volumes, with both
genetic variants having additive contributions to WM volume deficits only in patients with
marijuana misuse.

Conclusions—Given that CNR1-induced apoptosis is preceded by increased MAPK
phosphorylation, our study suggests that potential MAPK14–CNR1 gene–gene interactions may
mediate brain morphometric features in schizophrenia patients with heavy marijuana use.
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Introduction
Marijuana is the most commonly abused illicit drug in many countries including the USA
(WHO, 1997; NSDUH, 2005). It is often the first illicit drug to be used, with the majority of
users starting during adolescence (Pacula et al. 2000; Gfroerer et al. 2002). Adolescent
marijuana use is associated with a twofold increased risk for schizophrenia (Andreasson et
al. 1987; Zammit et al. 2002; Henquet & van Os, 2008). Although this link between
marijuana misuse and schizophrenia has already been well replicated in large prospective
epidemiologic studies (van Os et al. 2002; Stefanis et al. 2004; Henquet et al. 2005),
whether adolescent marijuana use is causally related to subsequent schizophrenia remains
uncertain (Degenhardt et al. 2003; Kumra, 2007; Murray et al. 2007; DeLisi, 2008; Henquet
& van Os, 2008; D’Souza et al. 2009; Hickman et al. 2009; Sewell et al. 2009).

Animal studies suggest that adolescence is a sensitive time period during which the effects
of marijuana on the developing brain may be most deleterious (Schneider & Koch, 2003;
Murray et al. 2007). Tetrahydrocannabinol (THC), the psychoactive component in
marijuana, activates brain cannabinoid receptors (cannabinoid receptor type 1, CB1 or
CNR1) (Wilson & Nicoll, 2002). Chronic THC administration in adolescent rats, but not
adult or pre-pubescent THC exposure, leads to enduring cognitive deficits in adulthood,
including learning and memory deficits and prepulse inhibition abnormalities commonly
observed in schizophrenia patients (O’Shea et al. 2004, 2006; Schneider & Koch, 2007).
THC-related cognitive deficits are associated with changes in Fos protein expression within
brain regions rich in CNR1, including the hippocampus, cerebellum and basal ganglia
(Wegener & Koch, 2009). CNR1 activation by THC and other cannabinoids has also been
shown to induce apoptosis through a complex cascade of kinases and caspases (Chan et al.
1998; Downer et al. 2003). CNR1-induced apoptosis is preceded by phosphorylation of p38
(Derkinderen et al. 2001; Powles et al. 2005), a member of the mitogen-activated protein
kinases (MAPKs).

Despite clear evidence from animal studies that THC induces neural cell death, human
studies have been less certain regarding the harmful effect of marijuana on brain structure
(Quickfall & Crockford, 2006; Lorenzetti et al. 2010; Martin-Santos et al. 2010) or on
cognitive function (Fried et al. 2005; Jockers-Scherubl et al. 2007; Rodriguez-Sanchez et al.
2010; Fernández-Serrano et al. 2011; Rabin et al. 2011; Yücel et al. 2012). The first
published literature review of in vivo neuroimaging studies concluded that ‘ (structural
brain) abnormalities generally have not been identified with chronic (marijuana) use’
(Quickfall & Crockford, 2006). However, two subsequent reviews of additional studies
indicate that marijuana use is associated with medial temporal lobe volume decrement
(Lorenzetti et al. 2010; Martin-Santos et al. 2010). Studies published after 2008 provide
strong support that marijuana use is associated with brain volume deficits (Ashtari et al.
2009, 2011; Medina et al. 2009, 2010; Mata et al. 2010; Lopez-Larson et al. 2011;
McQueeny et al. 2011; Solowij et al. 2011). For example, marijuana users have reduced
frontal and lingual cortical thickness (Lopez-Larson et al. 2011), smaller hippocampal
volumes (Ashtari et al. 2011), and cerebellar vermis abnormalities correlate with poor
cognitive function (Medina et al. 2010). In schizophrenia patients, some (Szeszko et al.
2007; Bangalore et al. 2008; Rais et al. 2008, 2010; Peters et al. 2009; Dekker et al. 2010;
Ho et al. 2011b; James et al. 2011) but not all studies (Wobrock et al. 2009; Cohen et al.
2011) find that, compared to patients who are non-users, patients with co-morbid marijuana
use have greater frontotemporal and cerebellar deficits. Szeszko et al. (2007) reported that
schizophrenia patients with marijuana misuse had smaller anterior cingulate gray matter
(GM) volumes. Schizophrenia patients who continued to use marijuana have greater GM
volume loss than non-users (Rais et al. 2010). In a recent study, our group reported that
schizophrenia patients with marijuana misuse had smaller frontotemporal white-matter
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(WM) volumes than patients without heavy marijuana use (Ho et al. 2011b). We also found
that heavy marijuana use in conjunction with specific CNR1 gene variants (rs12720071-G-
allele carriers) contributed to greater WM brain volume deficits and cognitive impairment
among schizophrenia patients (Ho et al. 2011b).

In the current study, we evaluated the effects of another cannabinoid-related gene, MAPK14,
on magnetic resonance imaging (MRI) brain morphometry in schizophrenia patients.
Schizophrenia has been linked to a pathophysiological failure to mount an effective response
to an apoptotic insult (Jarskog 2006). There is also supporting evidence that apoptosis is
down-regulated in schizophrenia (Benes 2006). Because CNR1-induced apoptosis is
preceded by p38 MAPK phosphorylation (Derkinderen et al. 2001; Powles et al. 2005), we
wanted to see how genetic variations within genes encoding both mediators of CNR1-
induced apoptosis may influence brain morphology in the presence of marijuana misuse
among schizophrenia patients. Our hypothesis was that patients with specific MAPK14
genotypes are more vulnerable to the effects of heavy marijuana misuse and would show
greater brain volume deficits than patients without marijuana misuse.

Method
Subject selection

The study sample consists of 235 patients with schizophrenia-spectrum disorders who were
recruited through the University of Iowa Mental Health Clinical Research Center
(MHCRC). Our subjects participated in various MHCRC research studies approved by the
University of Iowa human subjects research review board. All the subjects gave written
informed consent to undergo research assessments, which included a morphometric MR
brain scan and blood sampling for DNA analyses. These subjects have been included in a
previous report (Ho et al. 2011b).

Demographic, clinical and genetic characteristics of the sample are summarized in Table 1.
Most of the subjects (94%, n = 221) met DSM-IV criteria for schizophrenia; 6.0% (n = 14)
had schizo-affective disorder. The subjects were of Caucasian ancestry and were
predominantly male (74.5%). They were relatively young, with a mean age of 27.9 years
(S.D. = 9.44), and had become psychiatrically ill recently at the time of study enrollment.
The mean age at illness onset was 24.9 years (S.D. = 8.4) and the mean duration of illness
was 3.2 years (S.D. = 5.7).

Substance use
Subjects were assessed for substance use (including alcohol and illicit drugs) using the semi-
structured interview instrument, the Comprehensive Assessment of Symptoms and History
(CASH; Andreasen et al. 1992). Information on substance use history from multiple sources
was available (including the subject, family members and medical records) and used to
determine lifetime substance abuse or dependence diagnoses meeting DSM-IV criteria (Ho
et al. 2004). The CASH evaluates eight drug categories : alcohol, barbiturates/hypnotics,
opioids, cocaine, amphetamines/stimulants, phencyclidine, hallucinogens and marijuana. For
a given drug category, the subjects are asked if they have ever used the drug, pattern of use,
period of heaviest use, and associated impairment relating to DSM abuse and dependence
diagnostic criteria. We have good inter-rater reliability in our CASH alcohol/illicit drug
ratings (mean intra-class r = 0.75, S.D. = 0.16).

We contrasted patients with marijuana abuse or dependence [MJ+, n = 52 (i.e. 33 patients
with marijuana abuse and 19 patients with marijuana dependence)] against 183 patients who
never met DSM criteria for marijuana abuse or dependence (MJ−). MJ+ patients were
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significantly younger, more likely to be male and to have co-morbid alcohol and/or non-
marijuana illicit substance misuse (Table 1, p≤0.001). Otherwise, the two groups were
comparable with respect to other sociodemographic measures, illness characteristics and
antipsychotic treatment (p≥0.30).

Selection of tag single nucleotide polymorphisms (tSNPs) and genotyping
In this study we investigated tSNPs so as to maximally represent common genetic variants
in the population. Nine MAPK14 tSNPs were selected using Haploview (Barrett et al. 2005)
(aggressive tagging 2-marker haplotype r2 ≥0.8) and the HapMap CEU population SNP
database (www.hapmap.org, Release 22/Phase II). These tSNPs (all of which are
synonymous) span approximately 81 kb at chromosome 6p21.3-p21.2. To genotype the
study participants, DNA was prepared by high-salt extraction from whole blood (Lahiri &
Nurnberger, 1991) and assayed using Infininium II assay BeadChips (Illumina, USA).
Genotype call rates were 100% for each of the nine MAPK14 tSNPs. Illumina makes use of
their proprietary software to ascertain genotyping quality. A 10% GenCall score (i.e. the
10th percentile rank for all GenCall scores of the study samples at a given locus) ≥0.7
constitutes high-quality genotype data. The mean 10% GenCall score for the nine MAPK14
tSNPs was 0.83 (S.D. = 0.15). We selected the CNR1 rs12720071 SNP because this variant
has been previously associated with reduced WM brain volumes and heavy marijuana use
(Ho et al. 2011b). The genotype call rate for CNR1 rs12720071 was also 100% (10%
GenCall score = 0.84).

MRI acquisition and image processing
High-resolution morphometric brain MR data were collected using one of two imaging
protocols. For subjects enrolled into the study before the year 2000, MRI brain scans were
acquired on a 1.5-T GE (General Electric Medical Systems, USA) Signa MR scanner. In this
imaging protocol (termed ‘MR5’), three-dimensional (3D) T1-weighted images were
obtained in the coronal plane using a spoiled Gradient Recalled Acquisition in the Steady
State (GRASS) sequence (SPGR) [parameters: echo time (TE) = 5 ms, repetition time (TR)
= 24 ms, numbers of excitations (NEX) = 2, nutation angle = 45°, field of view (FOV) =
26×24×18.8 cm, matrix = 256×192×124]. Two-dimensional (2D) proton density (PD) and
T2 sequences were acquired as follows: 3.0-or 4.0-mm-thick coronal slices, TR = 3000 ms,
TE = 36 or 96 ms (PD/T2), NEX = 1, FOV = 26×26 cm, matrix = 256×192. For subjects
recruited in 2000 or later, we used a 1.5-T Siemens Avanto scanner (Siemens AG,
Germany). In this more recent imaging protocol (termed ‘MR6’), the T1 sequence was
obtained in the coronal plane as a 3D volume using SPGR (parameters: TE = 6 ms, TR = 20
ms, flip angle = 30°, FOV = 16×16×19 cm, matrix = 256× 256×124, NEX = 2). The MR6
T2-weighted images were acquired in the coronal plane using a 2D fast spin–echo sequence
(parameters: TE = 85 ms, TR = 4800 ms, slice thickness/gap = 1.8/0.0 mm, FOV = 16×16
cm, matrix = 256×256, NEX = 3, number of echoes = 8, 124 slices).

MR images were processed using our locally developed BRAINS2 (Brain Research:
Analysis of Images, Networks, and Systems, version 2) software package (Magnotta et al.
2002). Detailed descriptions of the image analysis methods have been provided elsewhere
(Andreasen et al. 1993, 1994, 1996; Harris et al. 1999). In brief, the T1-weighted images
were spatially normalized and resampled so that the anterior–posterior axis of the brain was
realigned parallel to the anterior–posterior commissure line, and the interhemispheric fissure
was aligned on the other two axes. The T2-weighted images were aligned to the spatially
normalized T1-weighted image using an automated image registration program (Woods et
al. 1992). These images were then subjected to a linear transformation into standardized
stereotaxic Talairach atlas space (Talairach & Tournoux, 1988) to generate automated
measurements of frontal, temporal, parietal and occipital lobes (Andreasen et al. 1996). To
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further classify tissue volumes into GM, WM and cerebrospinal fluid (CSF), we used a
discriminant analysis method of tissue segmentation based on automated training class
selection that used data from the T1 and T2 sequences (Harris et al. 1999). In this study, we
examined total and lobar (Talairach atlas-based frontal, temporal and parietal subdivisions)
GM and WM brain volumes and lateral ventricles.

To enhance MR5 and MR6 data compatibility, MR6 scans were resampled into the same
resolution and image size as the MR5 scans so as to simulate similar amounts of partial
volume effects in voxels that bordered two tissue types. To verify our ability to combine
data from the two MR protocols, we have acquired both MR5 and MR6 scans on 60 patients
(Ho et al. 2011a). Brain volume differences between the two imaging sequences were small
(median difference = 0.19%). Intra-class correlations (ICCs) were high across the regions of
interest (median ICC = 0.97). Hence, MR5 and MR6 data are compatible for combined
statistical analyses.

Statistical analyses
Analyses were performed using Haploview (Barrett et al. 2005) and SAS version 9.2 (SAS
Institute, USA). Inter-correlations between the nine MAPK14 tSNPs were analyzed with
pair-wise linkage disequilibrium (LD) statistics within Haploview. Because only a minority
of the sample had heavy marijuana misuse, we grouped patients with marijuana abuse and
patients with marijuana dependence together (n = 52) for statistical analyses. Furthermore,
as there were no significant group differences in sociodemographics, illness characteristics,
MRI brain volumes or MAPK14 tSNP allele frequencies between patients without prior
marijuana exposure (n = 106) and patients whose marijuana use had not met DSM criteria
for marijuana abuse or dependence (n = 77) (data not shown but available upon request),
these patients were grouped together (n = 183) for comparison with patients with marijuana
abuse or dependence. Group differences on categorical variables were tested using the χ2

test and continuous variables the independent group t test or ANCOVA.

Statistical analyses were conducted in stages to reduce Type I errors, which may arise from
multiple comparisons. To assess brain volume–MAPK14 relationships, we first tested the
effects of each MAPK14 genotype (minor allele carriers versus major allele homozygotes)
on total cerebral GM or WM volumes using the adaptive false discovery rate (FDR)
procedure (Benjamini & Hochberg, 2000). For each general linear model, total cerebral
brain volume was entered as the dependent measure and genotype as the independent
variable. On MAPK14 genotypes in which the total cerebral brain volume test was
statistically significant (FDR-adjusted p≤0.05), follow-up analyses were carried out to
further assess brain volume–MAPK14 relationships between patients with versus patients
without marijuana abuse/dependence. In each follow-up ANCOVA, the dependent variable
was frontal, temporal or parietal lobar brain volume. Genotype, marijuana misuse (presence
versus absence of lifetime marijuana abuse or dependence) and genotype × marijuana
misuse interaction terms were the independent measures. Covariates included in all
ANCOVAs were intracranial volume, age, gender, imaging protocol, antipsychotic
treatment (lifetime antipsychotic exposure) and alcohol/non-cannabis illicit substance abuse/
dependence. Intracranial volume adjusts for cranial size differences among subjects. Age,
gender, antipsychotic exposure and alcohol/other illicit substance use (presence versus
absence of lifetime alcohol abuse/dependence or non-marijuana illicit substance abuse/
dependence) have previously been shown to affect brain volumes, and may potentially
confound brain volume–MAPK14 relationships. We included imaging protocol (i.e. MR5
versus MR6 scanning protocol) as a covariate in the statistical models even though we have
previously shown that these two scanning sequences provide comparable neuroimaging data
(Ho et al. 2011a).
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Results
Genotype distributions of the nine MAPK14 tSNPs were in Hardy–Weinberg equilibrium
(p≥0.08). These MAPK14 tSNPs were not in LD with one another (Fig. 1; pair-wise r2

≤0.46). Allele frequency distributions for MAPK14 tSNPs did not differ significantly
between MJ+ and MJ− subjects (see Table 1).

Relationships between MAPK14 tSNPs, brain volumes and marijuana misuse
Table 2 summarizes the effects of MAPK14 tSNPs and total cerebral brain volumes. After
accounting for multiple testing, only rs12199654 was significantly associated with total
cerebral WM volumes (F = 9.41, FDR-adjusted p = 0.02). The effects of rs12199654 on
total cerebral GM volume were not statistically significant (F = 5.17, FDR-adjusted p =
0.22, uncorrected p = 0.02). None of the remaining eight MAPK14 tSNPs were significantly
associated with total cerebral GM volumes (F≤2.60, FDR-adjusted p≥0.11) or with total
cerebral WM volumes (F≤3.18, FDR-adjusted p≥0.34).

Next, we examined the effect of rs12199654 on total cerebral and lobarWMvolumes in
patients with versus without marijuana misuse (Table 3). There were significant main effects
for the rs12119654 genotype and genotype×MJ interaction on total cerebral, frontal,
temporal and parietal WM volumes. Among patients with marijuana misuse, rs12199654-A
homozygotes had significantly smaller WM volumes than G-allele carriers (F≥4.91, df =
1,51, p≤0.03). By contrast, WM volumes did not differ significantly among MJ− patients
across the rs12199654 genotype groupings (F≤0.22, df = 1,182, p≥0.64).

Independent effects of MAPK14 rs12199654 and CNR1 rs12720071 on WM brain volumes in
association with marijuana misuse

When the CNR1 rs12720071 genotype was included in the ANCOVA general linear models,
the main effects of the MAPK14 rs12199654 genotype and genotype×marijuana misuse
interaction on WM volumes did not change substantially and remained statistically
significant (Table 3 and Fig. 2a ; F≥6.66, df = 1,234, p≤0.01). After controlling for the
effects of MAPK14 rs12199654, there were significant main effects of CNR1 rs12720071 on
total cerebral, frontal and temporal WM volumes (Table 3 and Fig. 2b; F≥6.76, df = 1,234,
p≤0.01). The effects of CNR1 rs12720071 on parietal WM volumes approached but did not
achieve statistical significance (p = 0.07). There were also significant CNR1 rs12720071
genotype×MJ interaction effects on total cerebral, frontal and parietal WM volumes
(F≥4.72, df = 1,234, p≤0.03), such that rs12720071-G-allele carriers with heavy marijuana
use had significantly smaller WM volumes than their A homozygote counterparts (Fig. 2b,
F≥4.74, df = 1,51, p≤0.03). However, among MJ− patients, WM volumes did not differ
significantly across CNR1 rs12720071 genotype groupings (F≤0.07, df = 1,182, p≥0.79).
There were no significant CNR1 rs12720071 genotype×marijuana misuse interactions on
temporal WM volumes.

To further illustrate the additive effects of these two genes known to mediate a common
biological pathway, we categorized subjects into three distinct diplotypes based on the
number of ‘ risk ’ alleles within MAPK14 rs12199654(A) and within CNR1 rs12720071(G)
associated with smaller WM volumes (Table 4). Patients with the MAPK14 rs12199654-AG
and CNR1 rs12720071-AA diplotype had one ‘ risk ’ allele. Patients with the MAPK14
rs12199654-AA and CNR1 rs12720071-AA diplotype or the MAPK14 rs12199654-AG and
CNR1 rs12720071-AG diplotype had two ‘ risk ’ alleles. Patients with the MAPK14
rs12199654-AA and CNR1 rs12720071-AG diplotype or the MAPK14 rs12199654-AA and
CNR1 rs12720071-GG diplotype had three or four ‘ risk ’ alleles. There were significant
main effects of diplotype grouping (p≤0.007) and diplotype×marijuana misuse interaction
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(p≤0.04) on WM brain volumes (Fig. 3). A greater number of MAPK14-CNR1 ‘ risk ’ alleles
was associated with a smaller WM volume only among subjects with marijuana misuse.

Discussion
In the present study, we investigated the relationships between MAPK14 and CNR1 genetic
variants and brain volumes of schizophrenia patients stratified by severity of marijuana
misuse. These two genes were examined because CNR1 and p38α MAPK have been
implicated in THC-induced apoptosis. We found that, in the case of heavy marijuana use,
specific allelic combinations of these two cannabinoid-related genes were associated with
smaller WM brain volumes. The MAPK14 rs12199654-A-allele and the CNR1 rs12720071-
G-allele each had independent effects on diffuse WM volume decrement among
schizophrenia patients with heavy marijuana use. Such marijuana misuse–MAPK14–CNR1
inter-relationships may mediate increased apoptosis, disrupt WM maturation, and heighten
disease vulnerability within subgroups of schizophrenia patients.

CNR1 is a member of the superfamily of G-protein-coupled receptors. CNR1 transduction
occurs through Gi/o proteins interacting with a wide variety of second messengers including
phosphorylation of MAPK, inhibition of adenylyl cyclase and regulation of ion (calcium and
potassium) channels (Howlett & Mukhopadhyay, 2000; Turu & Hunyady, 2010). CNR1
stimulation by THC and other CNR1 agonists is followed by p38 MAPK activation in
various neural cell types (Derkinderen et al. 2001). Of the four known p38 MAPKs in
mammals (α, β, γ and Δ), p38α (MAPK14) is the most well-characterized isoform (Mielke &
Herdegen, 2000). These p38 MAPK family members are approximately 60% identical in
their amino acid sequences, but are encoded by different genes and have different tissue
expression patterns. p38α is widely expressed at significant levels in multiple cell types,
including neural cells (Lee et al. 2000). MAPK14 is localized to chromosome 6p21.3-p21.2,
a schizophrenia susceptibility locus (Vawter et al. 2001). There are several alternatively
spliced variants of p38α itself. Each isoform has different but overlapping substrate
specificities and mechanisms of activation (Yagasaki et al. 2004; Casar et al. 2007;
Cuadrado & Nebreda, 2010). MAPKs have been implicated in numerous biological
processes (Cuadrado & Nebreda, 2010). Besides CNR1-associated activation, the p38
MAPK pathway is also triggered in response to stress and inflammation (Kyriakis &
Avruch, 2001). Furthermore, MAPKs play important roles in regulating developmental
processes such as cell proliferation, differentiation and survival (Cuenda & Rousseau, 2007).

Previous studies suggest that MAPK14 may be associated with schizophrenia (Vawter et al.
2004; Olsen et al. 2008; Xu et al. 2010). There is reduced MAPK14 gene expression in the
dorsolateral prefrontal cortex of subjects with schizophrenia (Vawter et al. 2004). Xu et al.
(2010) reported the combined effects of two microRNA transcripts (i.e. mir-30e and mir-24)
and their respective target gene sites (including mir-24-MAPK14 rs3804452 gene–gene
interaction) were nominally associated with schizophrenia risk. In the current study we did
not find any significant associations between the rs3804452 SNP on brain volumes,
marijuana misuse or interaction effects. Olsen et al. (2008) reported that three MAPK14
SNPs (i.e. rs9470207, rs6908372 and rs9462156) were weakly associated with
schizophrenia.

Given that CNR1 and p38α are both vital components within the cascade pathways
mediating THC-induced apoptosis, our findings suggest that genetic variants within CNR1
and MAPK14 may contribute to WM brain volume deficits through the deleterious effects of
heavy marijuana use. Among schizophrenia patients without heavy marijuana misuse, we
observed no significant differences in brain volumes across CNR1 and MAPK14 genotype or
diplotype groupings. The MAPK family of proteins plays an important role in the regulation
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of oligodendrocyte differentiation and Schwann cell myelination (Fragoso et al. 2007;
Haines et al. 2008). CNR1 has been found in oligodendrocytes (Moldrich & Wenger, 2000;
Rodriguez et al. 2001) and in subventricular oligodendrocyte progenitor cells. Cannabinoid-
mediated cellular signaling has been shown to control post-natal subventricular zone
oligodendrogenesis (Arevalo-Martin et al. 2007), and enhance oligodendrocyte lineage cell
survival during neurodevelopment (Molina-Holgado et al. 2002). Thus, our findings of
associations between MAPK14 and CNR1 genetic variations and WM brain volumes are
consistent with the roles of MAPK and CNR1 in maintaining neural integrity. Alternatively,
the effects of MAPK14 rs12199654 on WM brain volume deficits may be unrelated to THC-
induced apoptosis. p38 MAPKs serve diverse functions, including determination of cell
survival during neurodevelopment and in mediating stress and immune responses. Aberrant
neurodevelopment (Murray & Lewis, 1987; Weinberger, 1987) and abnormalities in
immunoreactivity (Meyer et al. 2009) have been implicated in the neurobiology of
schizophrenia. Other limitations of the current study include our small sample size of
patients with marijuana misuse, lobar brain volume measures, absence of healthy
comparison groups and potential confounding effects from co-morbid substance misuse. Our
findings should therefore be considered preliminary and require further replication. Future
studies will also need to examine healthy controls and subjects without concurrent alcohol
and non-marijuana substance use to establish the specificity of the effects of these genetic
polymorphisms on brain structure.

In conclusion, the current study indicates that, in the case of heavy marijuana use, specific
MAPK14 and CNR1 genotypic combinations may mediate brain morphometric differences
in schizophrenia patients.
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Fig. 1.
Pair-wise linkage disequilibrium (R2) between nine mitogen-activated protein kinase 14
(MAPK14) tag single nucleotide polymorphisms (tSNPs) and their relative genomic
positions to the p38α MAPK14 gene (dotted line box).
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Fig. 2.
Mean (error bars show standard deviation) white-matter (WM) brain volumes of patient
subgroups and ANCOVAs showing independent effects of genotype [(a) mitogen-activated
protein kinase 14 (MAPK14) rs12199654 or (b) cannabinoid receptor 1 (CNR1) rs12720071]
and genotype×marijuana misuse interaction (genotype×MJ) on WM brain volumes.
Subgroup samples subdivided based on genotype and presence/absence of lifetime
marijuana abuse or dependence (MJ Abuse/Dep).
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Fig. 3.
Mean (error bars show standard deviation) white-matter (WM) brain volumes of mitogen-
activated protein kinase 14 (MAPK14) rs12199654 and cannabinoid receptor 1 (CNR1)
rs12720071 diplotype groupings (see Table 4 footnote) subdivided by patients with or
without marijuana abuse/dependence and independent effects of diplotype and
diplotype×marijuana misuse interaction (diplotype×MJ) on WM brain volumes.
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Table 1

Demographic, clinical and genetic characteristics of the study population by marijuana status

Marijuana abuse/dependence (MJ+) No marijuana abuse/dependence (MJ−) t or χ2 (p)

n 52 183

Age (years), mean (S.D.) 24.0 (6.5) 29.0 (9.9) 4.29 (<0.001)

Male gender, n (%) 48 (92.3) 127 (69.4) 11.2 (0.001)

Mean illness duration (years) 2.5 (4.5) 3.3 (6.0) 1.04 (0.30)

Other substance usea, n (%) 31 (59.6) 32 (17.5) 36.60 (<0.001)

Antipsychotic naïve, n (%) 8 (15.4) 25 (13.7) 0.10 (0.75)

Ever needed clozapine, n (%) 4 (7.7) 20 (10.9) 0.46 (0.50)

Minor allele frequency (%) MJ+ subjects versus MJ− subjects

 rs3804454 (C) 26.9 20.5 2.34 (0.31)

 rs2237094 (G) 10.6 5.5 5.93 (0.052)

 rs12199654 (G) 4.8 6.8 0.55 (0.46)

 rs851007 (T) 42.3 49.2 2.11 (0.35)

 rs851006 (A) 29.8 27.3 0.79 (0.67)

 rs3804452 (T) 12.5 12.0 0.01 (0.90)

 rs8510 (T) 13.5 11.8 0.22 (0.64)

 rs7757672 (G) 26.9 29.0 0.16 (0.92)

 rs916346 (A) 18.3 18.6 0.01 (0.94)

a
Lifetime alcohol and/or non-marijuana illicit drug abuse/dependence.
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Table 2

Relationshipsa between nine MAPK14 tSNPs and total cerebral brain volumes

Genotype

Total cerebral GM (p) Total cerebral WM (p)

Uncorrected FDR adjusted Uncorrected FDR adjusted

rs3804454 0.11 0.33 0.99 0.99

rs2237094 0.11 0.33 0.85 0.95

rs12199654 0.02 0.22 0.002 0.02

rs851007 0.62 0.90 0.28 0.63

rs851006 0.88 0.90 0.52 0.87

rs3804452 0.90 0.90 0.62 0.87

rs8510 0.20 0.45 0.13 0.39

rs7757672 0.69 0.90 0.08 0.34

rs916346 0.72 0.90 0.68 0.87

MAPK, Mitogen-activated protein kinase; tSNP, tag single nucleotide polymorphism; GM, gray matter; WM, white matter; FDR, false discovery
rate.

a
ANCOVA (uncorrected and FDR-adjusted p values) assessing the main effects of the MAPK14 genotype on total cerebral GM or WM volumes

(covariates : intracranial volume, age, sex, imaging protocol, antipsychotic treatment and alcohol/non-cannabis drug abuse/dependence).
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