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The structures of the bacterial RNA polymerase holoenzyme have
provided detailed information about the intersubunit interactions
within the holoenzyme. Functional analysis indicates that one of
these is critical in enabling the holoenzyme to recognize the major
class of bacterial promoters. It has been suggested that this
interaction, involving the flap domain of the � subunit and con-
served region 4 of the � subunit, is a potential target for regula-
tion. Here we provide genetic and biochemical evidence that the �

region 4��-flap interaction is targeted by the transcription factor
AsiA. Specifically, we show that AsiA competes directly with the
�-flap for binding to � region 4, thereby inhibiting transcription
initiation by disrupting the � region 4��-flap interaction.

The bacterial RNA polymerase (RNAP) holoenzyme consists
of a catalytically proficient core enzyme (subunit structure

�2����) and a � subunit that confers on the holoenzyme the
ability to recognize specific promoter sequences (1). The pri-
mary � factor in Escherichia coli is �70, and the �70-containing
holoenzyme (E�70) typically recognizes promoters defined by
two conserved sequence elements (the �10 and �35 hexamers)
positioned roughly 10 and 35 bp upstream of the transcription
start point (1). Most � factors share four conserved regions (2),
and of these, regions 2 and 4 interact with the �10 and �35
elements, respectively (1). Nevertheless, intact �70 recognizes
specific promoter sequences only in the context of the holoen-
zyme because of critical conformational changes in �70 that take
place when it associates with the core enzyme (3). These include
an increase in the interdomain distance between regions 2 and
4 that is caused by an interaction between � region 4 and the
�-f lap domain (4). The � region 4��-f lap interaction is essential
for the recognition of �10��35 promoters because it positions
regions 2 and 4 of �70 for simultaneous interaction with the
promoter �10 and �35 elements (4). This role of the � region
4��-f lap interaction suggested that there may exist regulatory
factors that inhibit transcription from �10��35 promoters by
disrupting the � region 4��-f lap interaction (4, 5).

Here we examine the mechanism of action of the bacterio-
phage T4-encoded anti-� factor AsiA. AsiA is known to bind
tightly to region 4 of �70 and inhibit transcription from �10��35
promoters when complexed with the holoenzyme (6–10). The
finding that AsiA binds to region 4 of �70 and inhibits transcrip-
tion specifically from �10��35 promoters raises the possibility
that AsiA works by disrupting the �70 region 4��-f lap interac-
tion, a model that is consistent with recent NMR analysis (11).
We provide genetic evidence that AsiA and the �-f lap interact
with overlapping determinants on �70 region 4. We then present
complementary biochemical and biophysical evidence that AsiA
works by a competitive binding mechanism, inhibiting transcrip-
tion from �10��35 promoters by disrupting the � region
4��-f lap interaction in the context of the holoenzyme.

Materials and Methods
Mutant Screen. Mutagenic PCR was used to introduce random
mutations into the appropriate fragment of plasmid pBR�-�70

D581G as described (12). A pool of mutant �-�70 D581G
chimeras was transformed into strain F�93�62 (13) bearing the
test promoter (plac2�op) and a linked lacZ reporter gene on an
F� episome and containing pAC��35�cI–AsiA K20A (a deriv-
ative of pAC��35�cI–AsiA; ref. 13). The resulting transfor-
mants were plated on indicator medium containing 5-bromo-4-
chloro-3-indolyl �-D-galactoside (X-Gal) (40 �g�ml) and the
�-galactosidase inhibitor tPEG (250 �M), permitting the iden-
tification of colonies containing �-�70 D581G mutants that
caused a reduction in �cI–AsiA-stimulated transcription from
the test promoter. Plasmid DNA from these colonies was
isolated, and the mutant �-�70 D581G chimeras were assayed for
their abilities to stimulate transcription from placCons�35C.1
(identical in sequence to placCons�35C from the transcription
start point to position �62; see ref. 12) in strain BG18. Mutants
were sought that stimulated transcription from placCons�35C.1
as well or nearly as well as the parent chimera.

�-Galactosidase Assays. Cells were grown in LB supplemented
with the appropriate antibiotics at the following concentrations:
carbenicillin (100 �g�ml), chloramphenicol (25 �g�ml), and
kanamycin (50 �g�ml). Isopropyl-�-D-thiogalactoside (IPTG)
was provided at the indicated concentrations. SDS�CHCl3-
permeabilized cells were assayed as described (13). Assays were
performed at least three times in duplicate on separate occa-
sions, with similar results. Values are the averages from one
experiment; duplicate measurements differed by �5%.

Proteins. N-terminally his-tagged versions of wild-type �70 and
the �70 mutants were purified as described after overproduction
from the corresponding derivative of vector pLHN12-His (14).
E. coli RNAP core enzyme was purchased from Epicentre, and
holoenzymes were assembled by incubation of RNAP core (62.5
nM) with a 5-fold molar excess of the appropriate �70 at 37°C for
10 min. C-terminally his-tagged AsiA was purified as described
(15) and AsiA-containing RNAP holoenzymes were assembled
by preincubating the appropriate �70 (in 5-fold molar excess over
RNAP core) with different concentrations of AsiA in � storage
buffer (14) at 4°C for 10 min. RNAP core (62.5 nM) was then
added, and the mixtures were incubated at 37°C for 10 min.

In Vitro Transcription Assays. Assays were performed by preincu-
bating template DNA (10 nM) in transcription buffer (10 mM

Abbreviations: RNAP, RNA polymerase; IPTG, isopropyl-�-D-thiogalactoside; FRET, fluores-
cence resonance energy transfer.
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MgCl2�90 mM KCl�40 mM Tris�HCl, pH 8.0�125 �g/ml BSA�5
mM DTT�10% vol/vol glycerol). RNAP holoenzyme (with or
without AsiA) was then added to a final concentration of 10 nM
and the reactions incubated for 10 min at 37°C to allow open
complex formation. Transcription was initiated by addition of
200 �M GTP (initiating nucleotide), 5 �M ATP, 5 �M CTP, 3
�M [�-32P]UTP at 2 mCi�ml, and 100 �g�ml heparin (1 Ci � 37
GBq). The total volume of each reaction was 25 �l. Reactions
were incubated for 15 min at 37°C and quenched by the addition
of 25 �l of stop solution (95% vol/vol formamide�20 mM
EDTA�0.05% wt/vol bromophenol blue�0.05% wt/vol xylene
cyanol). Samples were electrophoresed on 6% (wt�vol) poly-
acrylamide sequencing gels. Bands were visualized by Phospho-
rImager, and the data were analyzed by IMAGEQUANT.

Fluorescence Resonance Energy Transfer (FRET) Analysis. AsiA�RNAP
holoenzyme complexes. �70 labeled at residue 581 by cpm (Molec-
ular Probes) was prepared by using mutant �70 containing a
single reactive cysteine at position 581 as described (3). AsiA
labeled at position 86 with fluorescein (Molecular Probes) was
prepared by using mutant AsiA containing a single reactive
cysteine at position 86 as described (15). To assess the binding
of AsiA to RNAP holoenzyme containing wild-type or mutant
�70, equal amounts of labeled AsiA�holoenzyme complex and
unlabeled holoenzyme were mixed together as follows. Core
(12.5 pM) was combined with 11 pM �70-cpm and 10 pM
AsiA–FAM (fluorescein malemide) in 200 �l of buffer F con-
taining 50 mM Tris�HCl (pH 8), 100 mM NaCl, and 0.5 mg�ml
BSA in a quartz cuvette. The mixture was incubated for 20� at
37°C to ensure that labeled holoenzyme–AsiA complex reached
equilibrium. Under these conditions, at least 90% of labeled �70

is bound to the core (data not shown; see also ref. 4). Then, 5 �l
containing 12.5 pM core and 11 pM unlabeled wild-type or
mutant �70 were added to the labeled holoenzyme-AsiA com-
plex. The mixture was incubated at 37°C for 5 min before
measurements were taken. Fluorescence emission spectra with
the excitation at 380 nm (cpm excitation) were recorded from
400 to 600 nm. Fluorescence spectra were recorded by using an
Aminco Bowman Series 2 spectrofluorometer (Spectronic In-
struments, Rochester, NY). Spectra were acquired with the scan
rate of 2 nm�sec and with excitation and emission slits of 2 and
4 nm, correspondingly. The ratio of fluorescence intensity

Fig. 1. Bacterial two-hybrid assay used to screen for mutations in region 4 of
�70 that disrupt the interaction with AsiA. (A) The diagram depicts test
promoter plac2�op (previously called placCOP-93�OL2–62, ref. 13), which
bears a consensus � operator sequence centered 93 bp upstream and the �

operator OL2 centered 62 bp upstream from the initiation point of the lac core
promoter. In strain F�93�62 this test promoter is linked to lacZ on an F�
episome. Replacement of the RNAP �-CTD by a fragment of � that harbors
region 4 permits interaction with the AsiA moiety of either of two DNA-bound
�cI–AsiA fusion proteins. The graph shows the effect of the �cI–AsiA fusion
protein (with or without the K20A substitution) on transcription in vivo from
plac2�op in the presence of the �-�70 chimera (�cI–AsiA and �cI–AsiA K20A) or
the �-�70 D581G chimera (�cI–AsiA K20A only). F�93�62 cells harboring com-
patible plasmids directing the synthesis of the indicated proteins were grown
in the presence of 50 �M IPTG and assayed for �-galactosidase activity.
Plasmids pAC��35�cI–AsiA (13) and derivative pAC��35�cI–AsiA K20A di-
rected the synthesis of the �cI–AsiA and �cI–AsiA K20A fusion proteins, and
plasmids pBR�-�70 (28), pBR� (28), and pBR�-�70 D581G (12) directed the
synthesis of the �-�70 chimera, full-length �, and the �-�70 D581G chimera. (B)
Effect of F563Y substitution in � moiety of �-�70 D581G chimera on

transcription in vivo from plac2�op in presence of the �cI–AsiA K20A fusion
protein. F�93�62 cells harboring compatible plasmids directing the synthesis
of the indicated proteins were grown in the presence of 50 �M IPTG and
assayed for �-galactosidase activity. Plasmid pAC��35�cI–AsiA K20A directed
the synthesis of the �cI–AsiA K20A fusion protein and plasmids pBR�-�70

D581G, pBR�-�70 D581G�F563Y, and pBR� directed the synthesis of the �-�70

D581G chimera, the �-�70 D581G�F563Y chimera, and full-length �. (C) Sub-
stitution F563Y in � moiety of �-�70 D581G chimera does not affect the ability
of the tethered �70 region 4 moiety to bind DNA. The diagram depicts test
promoter placCons�35C.1 (see Materials and Methods), which contains a
consensus �35 element centered 55 bp upstream from the transcription start
site. In strain BG18, this test promoter is linked to lacZ on an F� episome.
Replacement of the RNAP �-CTD by a fragment of � that harbors region 4
containing the D581G substitution permits interaction with the �35 element
centered at position �55. The graph shows the effect of the F563Y substitu-
tion in the � moiety of the �-�70 D581G chimera on transcription in vivo from
placCons�35C.1. BG18 cells harboring compatible plasmids directing the
synthesis of the indicated proteins were grown in the presence of 50 �M IPTG
and assayed for �-galactosidase activity. Plasmids pBR�-�70 D581G, pBR�-�70

D581G�F563Y, and pBR� directed the synthesis of the �-�70 D581G chimera,
the �-�70 D581G�F563Y chimera, and full-length �. (D) E�70 F563Y is resistant
to inhibitory effect of AsiA on transcription from a �10��35 promoter. Shown
are results of single round in vitro transcription assays performed on �10��35
promoter T7A2 in the absence or presence of increasing concentrations of
AsiA (50 or 100 nM) by using wild-type E�70 or mutant E�70 bearing the F563Y
substitution in �70.
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integrated between 500 and 600 nm (acceptor emission) to the
intensity integrated between 400 and 500 nm (donor emission)
was used as an apparent parameter describing the extent of
FRET between the donor and acceptor. The value of this
parameter is directly proportional to the amount of E�70-cpm–
AsiA–FAM complex in solution. For these experiments, wild-
type RNAP core enzyme was prepared by in vitro reconstitution
as described (16), and unlabeled wild-type and mutant �70

subunits were purified as described (14).
AsiA��70 complexes. Complexes between labeled �70 and labeled
AsiA were formed by mixing the proteins in 200 �l of buffer F
in a quartz cuvette at a ratio of 1:1.5 (50 nM �70-cpm and 75 nM
AsiA–FAM). Relative binding affinities of �70 mutants were
assessed by adding various amounts of unlabeled protein to the
mixture of labeled �70 and AsiA. Addition of unlabeled �70 (wild
type or mutant) led to a substitution of labeled �70 in the
�70-cpm–AsiA–FAM complex by the unlabeled competitor pro-
tein, resulting in diminished intensity of the FRET signal.

Results
Design of Genetic Screen. To probe the mechanism of transcription
inhibition by AsiA, we took a genetic approach. Previous work
suggested that the interaction of AsiA with �70 region 4 is
required for AsiA-mediated transcription inhibition (8–10).
Therefore, we sought to identify amino acid residues in region 4
of �70 that participate directly in the interaction with AsiA
through the use of a bacterial two-hybrid assay (17, 18). In this
assay, contact between a protein domain fused to a component
of RNAP and an interacting protein (or protein domain) fused
to a DNA-bound protein (here, the cI protein of bacteriophage
�) activates transcription of a lacZ reporter gene (see Fig. 1A).
In particular, we made use of a �cI–AsiA fusion protein and an
�-�70 chimera in which the C-terminal domain of � (the �-CTD)
has been replaced by a fragment of �70 (residues 528–613)
encompassing region 4 (Fig. 1 A). The �cI–AsiA fusion protein
activated transcription from test promoter plac2�op �3-fold
specifically in cells containing the �-�70 chimera (Fig. 1 A; see
also ref. 13).

To increase the sensitivity of our genetic screen, we sought to
identify a �cI–AsiA variant that would activate transcription
more strongly in our two-hybrid assay. Because AsiA forms
stable homodimers that must first dissociate for AsiA to bind to
�70 region 4 (11, 19, 20), we hypothesized that the ability of the
fused AsiA moiety to activate transcription might be limited by
its tendency to dimerize in the context of the dimeric �cI–AsiA
fusion protein (13). To test this hypothesis, we introduced into
the AsiA moiety an amino acid substitution (K20A) that spe-
cifically disrupts the formation of AsiA homodimers without
inhibiting the ability of AsiA to interact with �70 region 4
(R.J.B.U. and J.U., unpublished data). The resulting �cI–AsiA
K20A variant stimulated transcription from promoter plac2�op
�36-fold in the presence of the �-�70 chimera (Fig. 1 A),
providing strong support for the hypothesis that the interaction
of the fused AsiA moieties of the �cI–AsiA dimer competes with
the interaction of the AsiA and �70 region 4 moieties in the
two-hybrid assay.

To identify amino acid substitutions in �70 region 4 that
specifically affected its interaction with AsiA and eliminate from
consideration those that disrupted the structural integrity of the
�70 moiety, we took advantage of a related genetic assay that
reports on the ability of the tethered �70 region 4 moiety to bind
to a �35 element (12). In this assay, the interaction of the region
4 moiety with an ectopic �35 element positioned upstream of the
core promoter elements activates transcription from the test
promoter depicted in Fig. 1C (promoter placCons-35C.1). We
showed previously that although the wild-type �70 moiety does
not bind detectably to the ectopic �35 element of
placCons�35C, a variant bearing amino acid substitution

D581G does (12). Thus, we used the D581G variant of the �-�70

chimera in our genetic screen, having first verified that the
D581G substitution did not compromise the ability of the AsiA
moiety of the �cI–AsiA fusion protein to interact with �70 region
4 in our two-hybrid assay (Fig. 1 A).

Identification and Characterization of a �70 Mutant That Is Specifically
Defective in the Interaction with AsiA. We introduced random
mutations into the gene fragment encoding the �70 moiety of an
�-�70 D581G chimera. After screening the mutagenized library
of �-�70 D581G chimeras, we identified an amino acid substi-
tution, F563Y, that reduced �cI–AsiA K20A-stimulated tran-
scription from test promoter plac2�op, but had only a slight
effect on the ability of the tethered �70 moiety to activate

Fig. 2. Effects of substitutions at position 563 of �70 on the interactions with
AsiA K20A and the �-flap moiety of RNAP. (A) The effects of two different
substitutions at position 563 of �70 on the �70 region 4��-flap interaction. The
diagram depicts test promoter plac2�op. The graph shows the effects of the
�cI-�-flap fusion protein on transcription in vivo from plac2�op in the pres-
ence of �-�70 chimeras bearing different amino acids at position 563 of the
tethered �70 region 4 moiety. F�93�62 cells harboring compatible plasmids
directing the synthesis of the indicated proteins were grown in the presence
of different concentrations of IPTG and assayed for �-galactosidase activity.
Plasmid pAC�cI-�-flap (4) directed the synthesis of the of �cI-�-flap fusion
protein, and plasmids pBR�-�70 D581G (12), pBR�-�70 D581G�F563L, pBR�-�70

D581G�F563Y, and pBR� directed the synthesis of the �-�70 D581G chimera,
the �-�70 D581G�F563L chimera, the �-�70 D581G�F563Y chimera, and full-
length �. (B) The effect of two different substitutions at position 563 of �70 on
the �70 region 4�AsiA K20A interaction. The graph shows the effects of the
�cI–AsiA K20A fusion protein on transcription in vivo from plac2�op in the
presence of �-�70 chimeras bearing different amino acids at position 563 of the
tethered �70 region 4 moiety. F�93�62 cells harboring compatible plasmids
directing the synthesis of the indicated proteins were grown in the presence
of different concentrations of IPTG and assayed for �-galactosidase activity.
Plasmid pAC��35�cI–AsiA K20A directed the synthesis of the �cI–AsiA K20A
fusion protein, and plasmids pBR�-�70 D581G, pBR�-�70 D581G�F563L, pBR�-
�70 D581G�F563Y, and pBR� directed the synthesis of the �-�70 D581G chi-
mera, the �-�70 D581G�F563L chimera, the �-�70 D581G�F563Y chimera, and
full-length �.
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transcription from test promoter placCons-35C.1 (Fig. 1 B and
C). We conclude that substitution F563Y specifically weakens
(but does not abolish) the interaction of �70 region 4 with AsiA.

We then wished to determine whether or not introduction of
the F563Y substitution into full-length �70 would affect the
ability of AsiA to inhibit transcription from a �10��35 pro-
moter (T7A2) in vitro. Reconstituted holoenzymes E�70 and
E�70 F563Y were equally proficient in initiating transcription
from this promoter in the absence of AsiA (Fig. 1D). As
expected, AsiA inhibited transcription by the wild-type holoen-
zyme (Fig. 1D, lanes 1–3). In contrast, the mutant holoenzyme
containing �70 F563Y was almost completely refractory to the
inhibitory effect of AsiA (Fig. 1D, compare lanes 4–6 with lanes
1–3). Thus, amino acid substitution F563Y in �70 both weakened
the �70 region 4�AsiA interaction in the two-hybrid assay and
disrupted AsiA-mediated transcription inhibition in vitro, indi-
cating that the �70 region 4�AsiA interaction detected in the
two-hybrid assay is required for AsiA to function as an inhibitor
of transcription.

Substitutions of �70 Residue 563 Affect both the �70�AsiA and the
�70��-Flap Interactions. Two independent lines of evidence im-
plicate residue F563 of �70 in the interaction of �70 region 4 with
the �-f lap. First, the RNAP holoenzyme structures indicate that
the residue corresponding to F563 of �70 lies at the region
4��-f lap interface (21, 22). Second, we found that a substitution
(F278L) affecting the corresponding residue of �38 (the station-
ary phase-specific � factor in E. coli) specifically disrupted the
interaction of �38 region 4 with the �-f lap (B.E.N., unpublished
data). We therefore wished to compare the effects of the F563Y
and F563L substitutions in �70 on both the �70 region 4��-f lap
and the �70 region 4�AsiA interactions. Accordingly, we intro-
duced the F563L substitution into the �70 moiety of the �-�70

D581G chimera. Whereas the F563L substitution in �70 region
4 nearly abolished the stimulatory effect of the �cI–�-f lap fusion
protein from test promoter plac2�op (Fig. 2A), it had no effect
on the ability of the �cI–AsiA K20A fusion protein to stimulate
transcription from the same promoter (Fig. 2B). Conversely, we
found that amino acid substitution F563Y in �70 region 4, which
reduced the stimulatory effect of the �cI–AsiA K20A fusion
protein, had no effect on the ability of the �cI-�-f lap fusion
protein to stimulate transcription (Fig. 2 A and B). We conclude,

therefore, that the F563L substitution specifically affects the
interaction of �70 region 4 with the �-f lap, whereas the F563Y
substitution specifically affects its interaction with AsiA, sug-
gesting that the molecular details of the two interactions differ.

Evidence That AsiA Competes with the �-Flap for Binding to �70

Region 4. The identification of an amino acid residue (F563) that
apparently participates in both the �70 region 4��-f lap and the
�70 region 4�AsiA interactions suggested that AsiA and the
�-f lap interact with overlapping determinants of �70 region 4.
Therefore, AsiA and the �-f lap would be expected to compete
for binding to �70 region 4 in the context of the RNAP
holoenzyme. This competitive binding model for AsiA-mediated
transcription inhibition implies that the relative affinities of AsiA
and the �-f lap for �70 region 4 should dictate whether AsiA can
effectively inhibit transcription from �10��35 promoters. To
test this competitive binding model, we asked whether weaken-
ing the interaction of �70 F563Y with the �-f lap could restore the
susceptibility of E�70 F563Y to AsiA. To do this, we took
advantage of two amino acid substitutions in �70 (R541C and
L607P) that specifically disrupt the interaction between �70

region 4 and the �-f lap (B.E.N., unpublished data). We first used
the two-hybrid assay to test whether these substitutions had any
effect on the interaction of �70 region 4 and AsiA. When
introduced into �70 region 4 either singly or in combination,
neither the R541C substitution nor the L607P substitution
significantly affected the �70 region 4�AsiA K20A interaction
(data not shown).

We then introduced substitutions R541C and L607P, singly
and in combination, into full-length �70 already containing the
F563Y substitution. We used these mutant �70 proteins as well
as �70 R541C, �70 L607P, �70 R541C�L607P, �70 F563Y, and �70

WT to reconstitute a set of holoenzymes and examined the
abilities of these holoenzymes to initiate transcription from the
T7A2 promoter in the absence or presence of AsiA (Fig. 3; see
also Table 1). As in the experiment of Fig. 1D, we found that
AsiA efficiently inhibited transcription by E�70 WT (Fig. 3, lanes
1–3) but was unable to inhibit transcription by E�70 F563Y (Fig.
3, lanes 4–6). Furthermore, AsiA inhibited transcription by E�70

R541C, E�70 L607P, and E�70 R541C�L607P even more effi-
ciently than it inhibited transcription by E�70 WT (Fig. 3,
compare lanes 7–9, 10–12, and 13–15, with lanes 1–3). Finally, we

Fig. 3. Mutations that weaken the �70 region 4��-flap interaction restore sensitivity of E�70 F563Y to AsiA. Shown are the results of single round in vitro
transcription assays performed on T7A2 promoter in the absence or presence of increasing concentrations of AsiA (50 or 100 nM) by using wild-type or mutant
RNAP holoenzymes. For each RNAP, the transcripts were quantified (by IMAGEQUANT) to determine the magnitude of the inhibitory effect of AsiA. Thus, the amount
of transcript produced in the absence of AsiA was set at 100% for each holoenzyme. Note that all of the mutant holoenzymes except those containing �70 with
both the R541C and L607P substitutions initiated transcription from T7A2 approximately as well as E�70 WT (compare lanes 4, 7, 10, 16, and 19 with lane 1). E�70

R541C�L607P and E�70 F563Y�R541C�L607P initiated transcription from T7A2 only �50% as efficiently as E�70 WT. Disruption of the interaction of �70 with the
�-flap is expected to cause defects in the recognition of �10��35 promoters, and analysis of the effects of the R541C and L607P substitutions indicated that it
was necessary to introduce both of these substitutions into �70 to detect a significant defect in the recognition of strong �10��35 promoters in vitro (B.E.N.,
unpublished data). No defects in the recognition of a control extended �10 promoter were detected with �70 mutants bearing substitutions R541C and L607P
either singly or in combination (B.E.N., unpublished data).
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found that introduction of substitutions R541C and�or L607P
into �70 F563Y enabled AsiA to inhibit transcription by the
corresponding doubly and triply substituted holoenzymes (Fig. 3,
lanes 16–18, 19–21, and 22–24). Moreover, the efficiency with
which AsiA inhibited transcription by each of these holoenzymes
correlated with the severity of the �-f lap-binding defect of the
corresponding mutant �70. That is, �70 substitutions R541C,
L607P, and R541C�L607P resulted in increasingly severe �-f lap-
binding defects (B.E.N., unpublished data), and correspond-
ingly, E�70 F563Y�R541C, E�70 F563Y�L607P, and E�70

F563Y�R541C�L607P were increasingly susceptible to inhibi-
tion by AsiA (Fig. 3, lanes 16–24). These findings demonstrate
that the effect of weakening the �70 region 4�AsiA interaction
can be suppressed by weakening a competing interaction be-
tween �70 region 4 and the �-f lap.

To assay directly the binding of AsiA to the wild-type and
mutant holoenzymes in solution, we used a FRET-based binding
assay. FRET donor and acceptor probes were incorporated into
AsiA and �70 by using single-cysteine mutants of the proteins.
The labeled polypeptides were mixed with RNAP core to form
the AsiA-containing holoenzyme. Association of acceptor-
labeled AsiA with donor-labeled holoenzyme produced a FRET
signal. The labeled holoenzyme–AsiA complex was then mixed
with an equal amount of unlabeled holoenzyme (containing
either wild-type or mutant �70), and the decrease in FRET was

quantified. The decrease in FRET reflects the ability of the
unlabeled holoenzyme species to compete with the labeled
wild-type holoenzyme for the binding of labeled AsiA. Com-
pared to the wild-type holoenzyme, the holoenzyme containing
the �70 F563Y mutant competed poorly for the binding of AsiA,
as expected (Fig. 4A). Furthermore, this defect in the ability of
the �70 F563Y-containing holoenzyme to bind AsiA was sup-
pressed by the introduction into �70 F563Y of substitutions
R541C and�or L607P, which weaken the �70 region 4��-f lap
interaction (Fig. 4A). The results of the FRET analysis thus
paralleled the results of the in vitro transcription assays (Fig. 3),
indicating that the ability of AsiA to inhibit transcription cor-
relates with its ability to bind the holoenzyme.

We performed a control FRET experiment to confirm that
the introduction of substitutions R541C and L607P into the �70

F563Y mutant did not affect the affinity of AsiA for free �70. In
this experiment, donor�acceptor complexes were formed with
labeled AsiA and labeled �70. Increasing concentrations of
unlabeled wild-type or mutant �70 were then added, and the
decrease in FRET was quantified. The decrease in FRET signal
reflects the ability of each added �70 to compete with the labeled
�70 for the binding of labeled AsiA (Fig. 4B). The results
confirmed that the binding of AsiA to free �70 was weakened
significantly by the F563Y substitution and that this binding
defect was not reversed by either the R541C or the L607P
substitution (or the combination of the two) (Fig. 4B).

Discussion
Our findings provide strong support for the idea that AsiA
targets the �70��-f lap interaction, inhibiting transcription from
�10��35 promoters by displacing �70 region 4 from the �-f lap
in the context of the holoenzyme. We note that this competitive
binding model for AsiA-mediated transcription inhibition may
provide an explanation for the previous demonstration that AsiA
binds more readily to free �70 than to the �70-containing
holoenzyme (23). Our data are consistent with the results of a
recent analysis of the �70 region 4�AsiA interaction by NMR
(11). This analysis identified amino acid side chains in �70 region
4 that are contacted by AsiA in the complex that forms when
AsiA is combined with a pair of �70 peptides comprising
subregions 4.1 and 4.2. The identified side chains (which include
F563) are distinct from those that participate in contacts with the

Table 1. Sensitivity of mutant RNAP holoenzymes to AsiA

�70 mutant
Sensitivity of �70-containing
holoenzyme to AsiA in vitro

Wild type � � � �

F563Y* �

R541C† � � � � �

L607P � � � � �

R541C�L607P � � � � �

F563Y�R541C � �

F563Y�L607P � � � � �

F563Y�R541C�L607P � � � � �

*Boldface indicates that the F563Y substitution disrupts the interaction of �70

region 4 with AsiA (but not with the �-flap).
†Italics indicate that the designated substitutions disrupt the interaction of �70

region 4 with the �-flap (but not with AsiA).

Fig. 4. Effects of substitutions in �70 on AsiA binding in the context of RNAP holoenzyme (A) and free �70 (B). (A) The indicated RNAP holoenzymes were added
to a ternary complex containing RNAP core and fluorescently labeled �70 and AsiA. The decrease in FRET signal was determined and converted to competition
efficiency (assumed to be 100% for wild-type RNAP holoenzyme). (B) A complex between fluorescently labeled �70 and AsiA was formed and the effect of the
addition of increasing concentrations of unlabeled wild-type or mutant �70 subunits on the FRET signal was determined (plus signs, wild-type �70; circles, �70

F563Y; triangles, �70 F563Y�R541C; diamonds, �70 F563Y�L607P; squares, �70 F563Y�R541C�L607P). The decrease in FRET signal reflects the ability of each added
�70 to compete for labeled AsiA.
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�35 element as seen in the crystal structure of a � region
4–DNAcomplex (24), but map instead to a hydrophobic pocket
that binds the �-f lap in the context of the holoenzyme (21, 22).
Additional evidence indicated that the binding of AsiA to the
�70-containing holoenzyme resulted in a decrease in the inter-
domain distance between regions 2 and 4 of �70, consistent with
the expected disruption of the �70 region 4��-f lap interac-
tion (11).

We found that the ability of AsiA to inhibit transcription by the
�70-containing holoenzyme depends on the relative affinities of
AsiA and the �-f lap for �70 region 4, supporting a competitive
binding mechanism for AsiA-mediated transcription inhibition.
Specifically, we showed that, when the interaction between �70

region 4 and AsiA is weakened by substitution F563Y in �70,
AsiA fails to inhibit transcription unless the interaction between
�70 region 4 and the �-f lap is also weakened by the introduction
of one or more additional substitutions into �70 (see Table 1). A
prediction of the competitive binding model for AsiA action is
that AsiA’s ability to inhibit transcription would be compromised
not only by amino acid substitutions that weaken the interaction
of AsiA with �70 region 4, but also by those that strengthen the
interaction of �70 region 4 with the �-f lap. We have recently
identified amino acid substitutions in �70 region 4 that strengthen
its interaction with the �-f lap in the two-hybrid assay (ref. 4 and
S.J.G., unpublished data). As predicted by the competitive
binding model, we found that these substitutions, which did
notweaken the interaction of �70 region 4 with AsiA, blocked the

ability of AsiA to inhibit transcription (B.D.G., unpublished
data).

In addition to its role as an inhibitor of �70-dependent
transcription from �10��35 promoters, AsiA functions as a
coactivator of T4 middle gene transcription (25, 26). T4 middle
promoters (which are recognized by the �70-containing holoen-
zyme) bear a binding site for the phage-encoded regulator MotA
that is located at approximately the position of the �35 element
of a standard �10��35 promoter (25). Activation of these
promoters depends on a protein–protein interaction between
DNA-bound MotA and residues near the C terminus of �70 (27).
Because this portion of �70 has also been implicated in the �-f lap
interaction (21, 22), we speculate that, by disrupting the �70

region 4��-f lap interaction, AsiA may facilitate the MotA��70

region 4 interaction.
The demonstration that AsiA works by disrupting the � region

4��-f lap interaction suggests that it will be worthwhile to search
for other regulators that target this interaction in the context of
the �70-containing holoenzyme as well as other holoenzyme
species. Moreover, because evidence indicates that the strength
of the � region 4��-f lap interaction varies with different �
factors (4), different holoenzyme species are likely to be differ-
entially susceptible to such regulators.
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