
Chaos may enhance information transmission in the
inferior olive
Nicolas Schweighofer*†, Kenji Doya*‡, Hidekazu Fukai§, Jean Vianney Chiron¶, Tetsuya Furukawa�, and Mitsuo Kawato‡

*Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, and ‡ATR, Computational Neuroscience
Laboratories, 2-2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; §Department of Information Science, Gifu University, Gifu 501-1193, Japan;
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Despite unique well characterized neuronal properties, such as
extensive electrical coupling and low firing rates, the role of the
inferior olive (IO), which is the source of the climbing fiber inputs
to cerebellar Purkinje cells, is still controversial. We propose that
the IO stochastically recodes the high-frequency information car-
ried by its synaptic inputs into stochastic, low-rate spikes in its
climbing fiber output. Computer simulations of realistic IO net-
works showed that moderate electrical coupling produced chaotic
firing, which maximized the input–output mutual information.
This ‘‘chaotic resonance’’ may allow rich error signals to reach
individual Purkinje cells, even at low firing rates, allowing efficient
cerebellar learning.

Over a century of cerebellar research has provided us with
comprehensive understandings of cerebellar anatomy and

physiology. It is well known, for instance, that the output neurons
of the cerebellar cortex, the Purkinje cells, receive two major
types of synaptic inputs: �100,000 parallel fibers and a single
climbing fiber, an axon from an inferior olive (IO) neuron;
whereas summation of parallel fiber inputs generate ‘‘simple
spikes,’’ a single IO spike generates a ‘‘complex spike’’ through
the powerful climbing fiber input. Furthermore, the major
anatomical and electrophysiological properties of the IO neu-
rons are well characterized (1). First, these neurons generate
dendritic and somatic spikes at low firing rates in vivo (three
spikes per sec at most) (2). Second, they are electrotonically
coupled by gap junctions (3), more extensively than any other
cells of the mammalian brain (4). Third, they exhibit subthresh-
old oscillations in vitro (5, 6). However, despite this detailed
knowledge, we still lack a clear understanding of the function of
the cerebellum, and two seemingly contradictory major hypoth-
eses have been proposed, each based on a dramatically different
view of the IO (7, 8).

According to the cerebellar learning hypothesis (9–13), when
conjointly activated with parallel fibers, IO spikes modify cere-
bellar input–output transformations, in agreement with the
known long-term depression (LTD) at the parallel fiber–
Purkinje cell synapse (14). Recent cerebellar motor learning
theories (12, 15–19) make two further postulates relevant to this
hypothesis. First, the IO neurons must fire at a low firing rate so
that complex spikes encoding error signals do not interfere with
simple spikes carrying motor control commands (12, 15). Sec-
ond, the IO must transmit error signals (15, 20) with high-
temporal resolution for cerebellar learning for efficient motor
control.

Alternatively, the cerebellar timing hypothesis states that the
IO exerts its influence on motor control in real time via
synchronous and rhythmic discharges (21). This hypothesis is in
agreement with the facts that IO neurons are extensively elec-
trically coupled via gap junctions (8) and that IO neurons fire
with some degree of rhythmicity and pair-wise synchrony both in
vitro (22) and in vivo (21). It is further supported by the general
view that electrical junctions synchronize firings of coupled
neural oscillators (6, 23). Note, however, that this hypothesis
makes no mention of the widely accepted cerebellar plasticity,

such as LTD. Conversely, the cerebellar learning theories have
yet to accommodate studies showing that the IO neurons are
extensively electrically coupled, and fire with some degree of
rhythmicity and pair-wise synchrony.

Here, we propose a theory of the role of the IO that is not only
coherent with all of the IO data reviewed above, but also explains
the facts that although the IO neurons themselves have low firing
rates, their inputs have high firing rates (24). We postulate that
the major role of the IO is to reduce the firing rate carrying the
error signal for cerebellar learning while maintaining its infor-
mation content. Although the observed low firing rates may
appear to contradict the assumption that the IO output carries
high-resolution error signals, recent data show that peristimulus
histograms (PSTH) of complex spikes do contain high frequency
components (Fig. 1 a and b) (15). This means that IO spikes are
generated at different timings in each trial, so that the accurate
error signal is available for individual Purkinje cells after re-
peated trials. Although the error signal waveform is not explicitly
reconstructed, the cumulative effects of LTD, known to have
time constants up to several hours (14), virtually average the
climbing fiber inputs (12, 15, 16) (see Discussion). LTD can thus
restore high-frequency information content of the error signal
for individual Purkinje cells. If the IO discharges were rhythmic
and synchronized, the PSTH would have a very sharp peak at the
onset of a volley of synaptic inputs, and the IO would not
transmit information-rich signals (Fig. 1c). In contrast, if the IO
discharges were irregular and desynchronized, after summation,
the PSTH would be similar to the input waveform (Fig. 1d). That
is, if the spike timing is varied on each learning episode, each
individual Purkinje cell can restore IO input content by temporal
averaging through LTD.

How then could irregular and desynchronized firing arise in
coupled IO neurons? Although strong electrical coupling syn-
chronizes neurons, moderate electrical coupling can theoreti-
cally desynchronize neurons (25–28) and can make the dis-
charges of individual cells irregular (25). This possibility is
consistent with the apparently random IO firing in vivo (15, 29)
(see Fig. 1a for an example) and the chaotic subthreshold IO
oscillations in vitro (30). To test this hypothesis, we simulate
small networks of realistic IO cell models and study the effect of
electrical coupling on both spiking behavior and input–output
information transmission.

Methods
Cell Model. The single IO cell model (see Fig. 2) consisted of a
somatic and a dendritic compartment to represent the known
location of the ionic currents, gap junctions, and synaptic inputs
(25). The somatic compartment included a low-threshold cal-
cium current (ICal), an anomalous inward rectifier current (Ih),
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a Hodgkin–Huxley type sodium current (INa), and a delayed
rectifier potassium current (IKdr). The somatic low-threshold
calcium current had a window of conductance around the resting
potential, which caused excitation in response to hyperpolarizing
current pulses. The dendritic compartment contained a high-
threshold calcium current (ICah), a calcium-activated potassium
current (IKCa), and an electrical junction current (Ic) (25). The
dendritic high-threshold calcium current was noninactivating,
which generated prolonged plateau potentials in response to
depolarizing inputs. Dendritic calcium influx activated the cal-
cium-dependent potassium current, which abruptly terminated
the plateau potentials after 20–30 msec. Because the inactivation
of this current had a long time constant, dendritic spikes were
followed by a prolonged hyperpolarization during which the cell
was less responsive to its inputs.

Our cell model was previously developed to account for in vitro
experiments. To replicate the low firing rate of IO cells and
increased excitability in vivo, as well as to incorporate new data
on electrical coupling (31), we slightly modified the model as

follows. To decrease the firing rate, we increased the pump-out
time constant of the dendritic calcium concentration

d�Ca2�]
dt

� �1.01Cah � 0.02[Ca2�]. [1]

To increase the excitability, we used the following maximal
current conductances: gNa � 110 mS/cm2, gCal � 2 mS/cm2, gh �
0.15 mS/cm2; the forward rate constant of the sodium current
was changed to �m � (V � 48)�1 � e(�(V�48)/3) to reduce the
number of sodium spikes during the plateau potential. As the
nonlinearity of the gap junctions seems to be more pronounced
than we previously modeled (31), we weighted the maximal
coupling conductance gc by f(V) � 0.8e(�(V 2/102)) � 0.2, where V was
the membrane potentials difference between two coupled den-
drites. This model adequately reproduces the coupling nonlin-
earity observed when one cell is strongly depolarized compared
to its neighbor (possibly because of Ca2�-dependent inactivation
of coupling).

Synaptic Inputs. To show that irregular firing can lead to high
information transfer of error signals to individual Purkinje cells
at low firing rates, we added, to each cell, synaptic inputs carrying
realistic error signal in an eye-movement task. Neurons in the
pretectal nucleus of the optic tract innervate the IO, and exhibit
high firing rates up to 400 spikes per sec during ocular following
response (OFR) (24). Furthermore, their PSTH is similar in
shape to the PSTH of complex spikes (15, 24). Thus, for
simplicity, we assumed the IO synaptic input to be the complex-
spike PSTH rescaled between 10 and 200 spikes per sec. OFR
error inputs, each lasting 252 msec, were presented every 1–2 sec
(uniform distribution, mean 1.5 sec). This waveform was then
used as an input to 20 Poisson process spike generator: 10 were
common to all cells and 10 were prepared separately for each
cell. These spike trains arrived at 20 excitatory synapses on each
cell.

To study the effect of noise on information transmission, each
cell received additional 20 excitatory and 20 inhibitory Poisson

Fig. 1. Data showing that PSTH of complex spikes contain high-frequency
components. (a) Complex spikes recorded in a Purkinje cell during OFR in a
monkey. The raster plot shows the large variability in the timing of complex
spikes from trial to trial during 40 presentations of visual stimulus motion. (b)
Temporal average of 487 trials from the individual Purkinje cell shows that the
PSTH (2-msec time bins) carries high-frequency information (thin black line).
The thick red line shows that a generalized linear model can accurately
reproduce IO neuron firing rate; data are from ref. 15 with permission. (c and
d) Diagrams illustrating the advantage of irregular and desynchronized firing
of IO neurons. (c) A cluster of IO cells receive a common synaptic inputs of high
firing rates (Top), and they fire regularly and synchronously by electrical
coupling (Middle). Because all of the IO cells in a cluster fire synchronously at
the synaptic input onset, they do not respond to the remaining part of the
input; moreover, repetitive presentation of the same input induces very
similar responses. Thus, the PSTH of each cell, or a cluster of IO cells, exhibits
a sharp peak at the onset (Bottom). (d) On the other hand, if in response to the
input (Top), IO firing is irregular and desynchronized (Middle), the same input
induces different responses for each neuron over trials. Thus, the PSTH is more
similar to the input waveforms (Bottom): the temporal resolution of the
transmitted information is high after temporal averaging. [b is reproduced
with permission from ref. 15 (Copyright 1998, Am. Physiol. Soc., Bethesda).]

Fig. 2. Two-compartment biophysical model of an IO cell. The somatic ionic
currents include a low-threshold calcium inward current (ICal), an anomalous
inward rectifier current (Ih), the Hodgkin–Huxley type inward sodium (INa) and
outward delayed rectifier potassium (IKdr) currents, and a leakage current (Ils).
The dendritic currents include a high-threshold inward calcium current (ICah),
an outward calcium-dependent potassium current (IKCa), and a leakage cur-
rent (Ild). Because the dendritic potassium current IKCa is calcium-dependent,
Ca2� concentration dynamics is included in the model. gint is the coupling
conductance between the two compartments. The electrotonic coupling be-
tween this cell and multiple other cells is not shown.
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synaptic inputs (adding only excitatory inputs would quickly
silent the cells by increasing the average membrane potential),
each carrying noisy inputs of mean firing rate 10 spikes per sec.

We modeled the excitatory synapses with

Isyn�t� � �
k

gsyn�t � tk���Vd � Esyn�
[2]

gsyn�t� � �0 �t � 0�,
gsynm�t�e�t/tpeak

�t � 0�

where gsynm is the maximal synaptic conductance, tk is the time
of kth spike arrival, tpeak � 2.5 msec is the time to peak, and Vd
is the dendritic membrane potential. The synaptic current re-
versal potential was Esyn � �10 mV is for the excitatory synapses
and �75 mV for the inhibitory synapses. We used this synaptic
model both for the OFR inputs (with gsynm � 0.03 mS/cm2) and
for the excitatory and inhibitory noise inputs, see below (with
varying maximal synaptic conductance).

Network Structure. To account for the variability in cellular
properties observed in real neurons, we then built small networks
of heterogeneous neurons with heterogeneous coupling. In our
simulations we used two types of networks: (i) chain networks of
9 � 1 cells, in which each cell is coupled to its two nearest
neighbors (except for the two cells at the extremities); and (ii)
grid networks of 2 � 2, 3 � 3, and 9 � 3 cells, where the cells
are connected to their two, three, or four neighbors depending
on their positions in the grid. To account for the variability in
cellular properties, the maximal conductance gCal of the low
threshold calcium current were drawn from uniform distribu-
tions, with maximum deviations set at 	20% of the mean (larger
deviations led to some cells not firing at all). Furthermore, the
coupling strengths gc were also taken from uniform distribution,
with maximum deviation set at 20% of the mean for all networks.
A hyperpolarizing current of Ihyp � �0.1 �A/cm2 was injected in
both the soma and the dendritic compartments.

Lyapunov Exponents. To verify whether the irregular firing was
chaotic, we computed the Lyapunov exponents (32) for different
network structures and different coupling strengths. To compute
the Lyapunov exponents, we simulated 10 different 2 � 2, 1 �
9, and 3 � 3 networks (computation of the Lyapunov exponents
was impracticable for 9 � 3 networks); each network had
different gCal and gc drawn from uniform distributions. We
started the computation of the exponents at 50 sec after an initial
perturbation and recorded the exponent values at 100 sec, when
the values converged. We linearized the 40 or 90 dimension (10
variables for each cell) system by deriving the analytical form of
Jacobian at time t, Jt, calculated the evolution of an orthonormal
set of vectors Vt and computed the exponents in terms of the
length of the principal axes.

Coupling Coefficients and Input Conductance. To examine whether
the coupling strength leading to chaos and high information
transfer in our models were biologically realistic, we computed
the coupling coefficients (CCs), which are defined as the ratio of
change in steady state membrane potentials of a prejunctional
cell to that of the postjunctional cell. To compute the CCs, we
first hyperpolarized all cells to �67 mV by injection of Ihyp � �1
�A/cm2. To determine the CCs, we injected a tonic depolarizing
current of 0.2 �A/cm2 in the soma of a ‘‘master’’ cell, and
recorded the steady state voltage change in both this master cell
and a neighboring cell. To best reproduce experimental condi-
tions, we used two cells coupled to four other cells in the 3 � 9
networks. We estimated the input resistance from the voltage
response to a �0.2 �A/cm2 current injection. The input con-
ductance is the inverse of the input resistance.

Mutual Information. We quantified the influence of electrical
coupling on the low firing code of IO output by computing how
much information about the input could be extracted from the
IO output spike trains, i.e., the mutual information. To measure
the mutual information robustly, we constructed 10 different
samples of 2 � 2, 3 � 3, and 3 � 9 networks; each network had
different gCal and gc drawn from uniform distributions. Then, for
each network, we ran 10 simulations (each with a different
random seed for Poisson spike generators); responses to the first
two OFR inputs were considered as transients and discarded. To
keep the number of spikes roughly constant, we used for analysis
the responses to 135 OFR inputs for the 2 � 2 networks, the
responses to 60 inputs for the 3 � 3 networks, and the responses
to 20 OFR inputs for the 9 � 3 networks. We detected the
presence of spikes by differentiating the membrane potential and
applying a threshold.

The mutual information was given from the formula

MI�x, y� � H�x� � H�y� � H�x, y� � C, [3]

where x is the OFR histogram made from Poisson spikes, y is the
IO output, H(x), H(y), and H(x, y) are marginal and joint
entropies of inputs and outputs, and C is a correction term
necessary to compensate for the small number of spikes (33). We
made PSTH of both the OFR inputs and the corresponding IO
output spikes with 0.5 msec time bins, filtered them with a
Gaussian filter(standard deviation: 5 msec), and computed the
entropies from the histograms (10 equally distant bins) of x, y,
and (x, y).

Results
Properties of Single Cells and Homogenous Coupled Networks. We
previously showed that two identical coupled IO neurons could
generate desynchronized antiphase firing (25). We show here
that moderate coupling in a small 3 � 3 network of identical IO
cells, each connected to its nearest neighbors, can generate
desynchronized and irregular firing (Fig. 3). For a physiologically
plausible coupling strength, if all of the initial conditions were
identical, firing was synchronized and rhythmic (Fig. 3a). If the
middle cell was initially delayed only by 1 msec compared to all
of the other cells, the current flowing into this cell via the gap
junctions generated a dendritic spike (first red spike in Fig. 3b),
then the cells’ spikes became desynchronized. Because of the
activation of calcium-dependent potassium current the middle
cell failed to fire a somatic spike when the other cells did, and
then fired (a somatic spike) earlier than others did in the next
cycle (Fig. 3b). This shows that a coupled IO network has the two
basic mechanisms for providing chaos: (i) sensitivity to initial
conditions and (ii) ‘‘expansion and folding,’’ that is, expansion of
small delay in spike timing and its reversal into early spiking. For
stronger coupling, a 1-msec delay in the middle cell did not
induce desynchronization but resulted in regular and periodic
firing (Fig. 3c).

Moderate Coupling Leads to Chaotic Spiking in Heterogeneous Net-
works. Fig. 4 shows the spiking behavior of the nine (3 � 3)
middle cells of a 9 � 3 network, which received constant current
input. Without electrical coupling (Fig. 4a), each cell generated
periodic somatic spikes. The average firing rate was 3.1 spikes per
sec; however, because of cellular heterogeneity, the difference in
firing rates between the slowest and fastest cells was 0.7 spikes
per sec. With intermediate coupling strength (mean gc � 0.06
mS/cm2, Fig. 4b), the firing pattern of individual cell appeared
chaotic, often with one or several dendritic spikes generated
between somatic spikes, because of the long after-hyperpolar-
ization following dendritic spikes, the average firing rate was
reduced to 1.8 spikes per sec. With strong coupling (mean gc �
0.5 mS/cm2; Fig. 4c), spiking became almost synchronous, and,
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as in the uncoupled case, the cells generated only regular somatic
spikes (firing rate: 3.5 spikes per sec). This increase in synchrony,
rhythmicity, and firing rate is consistent with biological data
under conditions of increased coupling strengths (22).

To quantify the synchrony between cells, we computed the
mean pair-wise correlation coefficients (21) (at zero delay using
a 10-msec time bin) between the center cells and its four
immediate neighboring cells, in 3 � 3 networks. The mean
pair-wise correlation coefficients increased monotonically with
coupling: 0.012 	 0.017 for gc � 0.06 mS/cm2, 0.11 	 0.08 for gc
� 0.1 mS/cm2, and 0.66 	 0.053 for gc � 0.5 mS/cm2.

As seen above, moderate electrical coupling can also have the
less intuitive property of making firing chaotic. For both weak (gc

0.06 mS/cm2) and strong (gc �0.5 mS/cm2) coupling strengths,
the largest Lyapunov exponent (�1) was close to zero for all
networks, an indication of near-rhythmic firing. For intermedi-
ate coupling strengths however the largest Lyapunov exponent
was largely positive, an indication of strong chaotic behavior
(Fig. 5).

Our results offer an explanation to the seemingly contradic-
tory reports on rhythmic (21, 22) or arhythmic (29) IO neuron
firing. It is known that the coupling strength is under control of
	-aminobutyric acid (GABA)ergic innervation that originates
from the cerebellar nuclei (22). When the GABAergic input is
present in vivo (corresponding to intermediate coupling in the
model), the cells discharge with little rhythmicity and synchrony.
When the GABAergic input is blocked in vitro (corresponding to
strong coupling in the model), however, the discharges are

rhythmic and synchronous. Furthermore, our results show that
although moderate electrical coupling leads to some degree of
synchrony between cell pairs, it makes the cells arhythmic when
the whole network becomes desynchronized. This puzzling result
may be interpreted as chaotic itinerancy (34): clustering of
subgroups of synchronized elements can vary over time in
coupled systems of chaotic elements. This is consistent with
multicellular recording data showing coherence in small sub-
groups of cells that varied over time (35).

Moderate Coupling Increases Information Transfer. When synaptic
inputs carrying realistic error signal in an eye-movement task
were added, the overall change in firing behavior with coupling
was similar to that without inputs; without coupling, these cells
generated predominantly somatic spikes. Moderate coupling (gc
� 0.06 mS/cm2) yielded both somatic and dendritic spikes, and
IO discharges were irregular and desynchronized overall. With
strong coupling, the cells only generated almost synchronized
somatic spikes.

The mutual information per spike for a single cell at the center
of the 3 � 3 networks was 48% greater for gc � 0.06 mS/cm2 than
that with no coupling. Furthermore, the mutual information
carried by whole networks increased by 37% in average com-
pared to no coupling, and, because of the reduction in firing rate,
the mutual information per spike increased by 102% on average
(Fig. 6). Note that the coupling strength that produced the
largest Lyapunov exponent (Fig. 5), gc � 0.1 mS/cm2, also yielded
a large information transfer. To test the generality of our results,

Fig. 3. Demonstration of the sensitivity to initial conditions for medium coupling strength for a network of identical cells. Shown are the membrane potentials
for two coupled cells in a 3 � 3 network of identical cells. Blue line, middle cell; red line, left neighbor. (a) Intermediate coupling strength (gc � 0.04 mS/cm2)
and same initial conditions for all neurons: the two cells fire somatic spikes in synchrony. (b) Same coupling strength (gc � 0.04 mS/cm2), but the middle cell is
initially delayed by only 1 msec compared to all of the other cells. The middle cell (red) generates a dendritic spike as shown by the shoulder after the sodium
spike. (c) Same initial conditions as in b, but with strong coupling (gc � 0.5 mS/cm2): firing is regular (somatic spikes).

Fig. 4. Spiking behavior of coupled IO cells without synaptic inputs for a network of nonidentical cells. The nine cells shown are the middle 3 � 3 cells of a 9 �
3 network. Raster plots for respective coupling strengths gc � 0.0, 0.06, and 0.5 mS/cm2 are shown. Open circles, dendritic spikes; asterisks, somatic spikes.
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we further computed the mutual information for whole 2 � 2,
1 � 9, and 9 � 3 networks: in all cases, moderate electrical
coupling produced a large increase in mutual information per
spike (see Fig. 6).

The coupling strength leading to chaos and high information
transfer in our models were biologically realistic, as shown by the
coupling coefficients. We found CC � 0.045 for gc � 0.06
mS/cm2. These values were compatible with experimentally
observed CCs (between 0.002 and 0.17, with most CCs between
0.01 and 0.05) (31).

Physiological Noise Inputs Do Not Lead to Similar Increase in Infor-
mation Transfer. The above results show that chaotic behavior of
coupled neurons without synaptic inputs appeared to underlie
increased input–output information transmission. This is remi-
niscent of ‘‘stochastic resonance,’’ a phenomenon wherein the
response of a nonlinear system to a weak input signal is opti-
mized by the presence of a particular, nonzero level of noise (36).
For example, in threshold units such as sensory neurons, mod-
erate noise levels improve their responses by bringing them

above threshold (37). Stochastic resonance has been observed in
sensory systems (37), but not in the central nervous system.

Our results in 3 � 3 uncoupled networks showed that,
although the average mutual information per spike did not
increase for a maximal noise input conductance of 0.05 mS/cm2,
it increased on average 33% for 0.5 mS/cm2, and 97% for 2
mS/cm2. To examine whether 2 mS/cm2 was biologically plausi-
ble, we compared the total synaptic conductance 3,200 nS with
the cell input conductance 12.4 nS. The total synaptic conduc-
tance, consisting of 20 synapses of 2 mS/cm2, was computed from
the surface area of the model dendritic compartment (25) as
20 � 2 mS/cm2 � 8,000 �m2. Given a reversal potential for
excitatory synapse Esyn � �10 mV, activation of only 0.1% of the
total synaptic conductance would produce 11.7 mV depolariza-
tion. Because this is clearly too large, we conclude that physio-
logical ranges of synaptic conductance for noisy inputs cannot
produce large increase in mutual information.

Discussion
Our results suggest that electrical coupling in IO cells may induce
chaos, which allow information-rich but low firing-rate error
signals to reach individual Purkinje cells, thereby providing the
cerebellar cortex with essential information for efficient learning
without disturbing on-going motor control.

The chaotic firing leads to the generation of IO spikes at
different timings at each trial. Because of the IO low firing, the
accurate error signal can only be available for individual Purkinje
cells after repeated trials; the cumulative effects of LTD allows
the Purkinje cells to reconstruct the error signal. To illustrate
how this can be the case, let us look at the OFR system, which
has been thoroughly studied both experimentally (15) and in
simulations (16, 38). An OFR movement is elicited by the sudden
motion of a large-field visual stimulus. This visual stimulus yields
a wide variety of responses in medial superior temporal (MST)
neurons (38), which are relayed to the Purkinje cells via the
granule cells. Although it is impossible to record from granule
cells in vivo because of their tiny sizes, simulations showed that
they provide Purkinje cells with a variety of temporal basis
functions (such as Gaussian radial basis functions with different
time delays), with the origin of time taken at the onset of
movement. Conjoint activity in parallel fibers and climbing fiber
induce LTD. Thus, if, for instance, one IO spike reaches a
Purkinje cell 150 msec after the stimulus motion onset, all
parallel fiber synapses activated �150 msec after the stimulus
motion onset will be depressed. Using the same OFR error signal
we use in the present paper, we demonstrated that the simple
spike firing temporal waveform of a Purkinje cell reconstruct,
after learning, was an approximate (but not exact, see ref. 12)
mirror image of the complex spike PSTH (16, 38).

Although we took the OFR control as an illustrative example,
our view of the IO applies to all types of movement control; in
all cases, the IO must transmit error signal with high-temporal
resolution for cerebellar learning for efficient motor control. In
particular, when the movements are rapid and need accuracy like
the saccadic or fast arm movements, a feed-forward motor
command must be accurately learned (for example, see refs. 17
and 39). The proposed chaotic firing can achieve this learning
without compromising the on-line motor command. Further-
more, our proposal also extends to the role of the cerebellum in
classical conditioning. Indeed, it has been recently proposed (40,
41) that cerebellar-dependent classical conditioning, such as eye
blink conditioning (in which the animal learns how to close its
eyelid at the time of an air puff), followed the same principles as
motor control for eye movements (VOR and saccade): feed-
forward use of sensory information via temporally specific
learning. Furthermore, the learning rules that models LTD in
both classical conditioning and motor control are variations of
functionally similar error correcting rules; compare, for instance,

Fig. 5. Largest Lyapunov exponent as a function of coupling strength gc for
different networks of nonidentical cells. When the largest exponent was
large, the network exhibited marked chaotic behavior. When the largest
exponent was close to 0, firing was almost rhythmic.

Fig. 6. Network mutual information per spike as a function of coupling
strength gc for different networks of nonidentical cells.
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the learning rules for classical conditioning in ref. 42 and motor
control in ref. 12. Because the classical conditioning response
(the closure of the lid) is a fast and accurate motor response, the
IO that carry the teaching (or error) signal should have the same
role we proposed here. Indeed, the motor command to control
the eyelid has a temporal waveform in the 200-msec range (see
figure 4.5 in ref. 40). This need for a motor command with an
extended duration could, a priori, seem to run against the need
for a precise timing of the eye lid in response to the air puff;
however, simulations in ref. 40 showed that, even with an IO
input that was artificially smeared, the eye-blink occurs exactly
at the time of the air puff.

We showed here that electrical coupling could provide the
source of disorder that induced a ‘‘chaotic resonance’’ (43) in IO
networks. This resonance led to an increase in information
transmission in IO cells by distributing the high-frequency
components of the error inputs over the sporadic, irregular and
non-phase-locked spikes by the following electrophysiological
mechanisms. Isolated (noncoupled) IO cells tend to generate
mainly rhythmic somatic spikes for constant current inputs.
Because somatic spikes, unlike dendritic spikes, do not induce
long-lasting hyperpolarization, the firing rates are relatively high.
For very strong coupling, even inhomogeneous cells are almost
perfectly synchronized, and thus behave like a single cell.
Consequently, only somatic spikes of relatively high frequency
with rhythmicity are generated (see figure 3 in ref. 22). If phasic
synaptic inputs that contain motor error signals are fed to either

uncoupled or strongly coupled cells, the properties of the above
autonomous system (without chemical synaptic inputs) are main-
tained. That is, only somatic spikes are generated with relatively
high firing frequency, and those spikes tend to be phase locked
to the onset of error signals and synchronized between IO
neurons. Thus, for either no or strong coupling, information
transmission per spike is low.

In contrast to these two cases, medium electrical coupling
induces dendritic spikes, phase jitters between neighboring
neurons, and chaos. The balance between excitatory and inhib-
itory currents flowing through the gap junctions was essential for
chaos (see ref. 44). In the presence of even very small differences
in spike timing between coupled neurons, depolarizing currents
flowing through gap junctions can generate dendritic spikes.
Then, dendritic spikes and resulting after-hyperpolarizations
introduce complex phase shifts in neighboring neurons by exci-
tation/inhibition, and thus induce chaos. Because chaos makes
the spikes less time-locked to error signals, mutual information
increases. It is possible to experimentally test this model by
computing the Lyapunov exponents from recordings of spiking
IO neurons (or complex spikes) while experimentally varying the
electrical coupling strength.
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