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Selecting the Right Similarity-Scoring Matrix
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Abstract

Protein sequence similarity searching programs like BLASTP, SSEARCH (UNIT 3.10), and
FASTA use scoring matrices that are designed to identify distant evolutionary relationships
(BLOSUMBG62 for BLAST, BLOSUMS50 for SEARCH and FASTA). Different similarity scoring
matrices are most effective at different evolutionary distances. “Deep” scoring matrices like
BLOSUM®62 and BLOSUMBGO0 target alignments with 20 — 30% identity, while “shallow” scoring
matrices (e.g. VTML10 - VTMLS8O0), target alignments that share 90 — 50% identity, reflecting
much less evolutionary change. While “deep” matrices provide very sensitive similarity searches,
they also require longer sequence alignments and can sometimes produce alignment overextension
into non-homologous regions. Shallower scoring matrices are more effective when searching for
short protein domains, or when the goal is to limit the scope of the search to sequences that are
likely to be orthologous between recently diverged organisms. Likewise, in DNA searches, the
match and mismatch parameters set evolutionary look-back times and domain boundaries. In this
unit, we will discuss the theoretical foundations that drive practical choices of protein and DNA
similarity scoring matrices and gap penalties. Deep scoring matrices (BLOSUM62 and
BLOSUMS50) should be used for sensitive searches with full-length protein sequences, but short
domains or restricted evolutionary look-back require shallower scoring matrices.
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SIMILARITY SEARCHING, HOMOLOGY, AND STATISTICAL SIGNIFICANCE

Protein similarity scoring matrices dramatically improve evolutionary look-back time,
because they capture amino-acid substitution preferences that have emerged over
evolutionary time. Amino-acid changes can range from biochemically conservative, e.g.,
leucine to valine or arginine to lysine, to dramatically different, e.g., tryptophan to glycine.
Amino-acid scoring matrices capture this evolutionary information; conservative changes
receive positive scores, while non-conservative changes will receive the largest negative
scores. As a result, statistical expectation values (evalues) based on amino-acid similarity
scores are far more sensitive than percent identity for finding homologs (UNIT 3.1).

In this Unit, we provide a brief overview of the history of scoring matrices, the algebra used
to calculate scoring matrices, and the important concepts of matrix information content and
matrix target evolutionary distance. Because finding distantly related protein sequences is
more challenging than finding closely related sequences, the BLOSUM®62 matrix used by
the BLAST programs and the BLOSUM50 matrix used by the FASTA programs are
designed to identify distant homologs using long (typically full-length) sequences.
Understanding the explicit or implicit evolutionary models used in similarity scoring
matrices makes it much easier to choose the right scoring matrix. Generally, searches for
short domains (or with shorter query sequences) require shallower scoring matrices.
Likewise, shallow scoring matrices can be more effective at highlighting common orthologs
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when comparing proteins that have diverged in the past 100 - 500 million years. While deep
scoring matrices are more effective in identifying distant relationships, deep scoring
matrices can also contribute to homologous overextension when two closely related domains
are embedded in non-homologous protein contexts. Using the appropriate scoring matrix can
improve both search sensitivity and alignment accuracy.

AMINO-ACID SUBSTITUTION MATRICES - HISTORY AND CLASSIFICATION

The earliest amino-acid scoring matrices were based on amino-acid properties or genetic
code differences, but modern amino-acid scoring matrices are based on empirical
measurements of amino-acid replacement frequencies from large sets of homologous
sequences (Schwartz and Dayhoff, 1978). Empirical replacement frequency scoring matrices
can be divided into two types: those with an explicit evolutionary model and the BLOSUM
scoring matrices. Model-based scoring matrices include Dayhoff’s original PAM series of
matrices (Schwartz and Dayhoff, 1978), which were updated by Jones, Taylor and Thornton
(Jones et al., 1992). More recently, Gonnet (Gonnet et al., 1992) and Vingron and Mueller
(VT and VTML; Mueller et al., 2002)) developed model-based parameters using alignments
between more distantly related proteins.

Model-based scoring matrices are appealing because they can be calculated for alignments
at any evolutionary distance. Dayhoff’s original PAM250 matrix was calculated based on
1572 observed mutations in 71 families of proteins with alignments that were more than
85% identical. The frequency of mutations was normalized for 1% change (99% identity), or
PAML, and then extrapolated to much longer evolutionary distances simply by multiplying
the replacement frequency matrix. Thus, PAM10 corresponds to about 90% identity,
PAMB30 75% identity, PAM70 55% identity, PAM120 37% identity, and PAM250 about
20% identity. Table 1 presents a more comprehensive set of scoring matrices and target
percent identities. More recently, Vingron and Mueller described strategies for estimating
replacement frequencies that use measurements from a broader range of evolutionary
distances. However, evolutionary models assume that the model accurately describes
replacement frequencies over long evolutionary times (Mueller et al., 2002).

In 1992, Steve and Jorja Henikoff described a direct approach to counting replacement
frequencies at long evolutionary distances (Henikoff and Henikoff, 1992). The BLOSUM
scoring matrices avoided the problem of extrapolating from PAM1 replacement frequencies
by counting replacement frequencies directly, with the BLOSUM series of matrices. Rather
than relying on alignments of relatively closely related proteins, they identified conserved
BLOCKS, or ungapped patches of conserved sequences, in sets of proteins that were
potentially very distantly related. They then counted the amino-acid replacements within
these blocks, using a percent identity threshold to exclude closely and more moderately
related sequences. In their description of the BLOSUM matrices, they showed that
BLOSUMS62 performed much more effectively than either the PAM120 (BLOSUMG62
equivalent information content) or the PAM250 matrix (BLOSUM45 equivalent) for
identifying distant homologs. BLOSUM®62 was then incorporated as the default for the
BLASTP (UNIT 3.4) program, while FASTA (UNIT 3.9) and SSEARCH (UNIT 3.10)
switched to the BLOSUMS50 matrix, which is more sensitive than BLOSUMG62, but requires
longer alignments.

THE ALGEBRA OF SIMILARITY SCORING (LOG-ODDS) MATRICES

Scoring matrices as odds ratios

Similarity scoring matrices for local sequence alignments, which are rigorously calculated
by the Smith-Waterman algorithm (Smith and Waterman, 1981), and heuristically by
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BLASTP (Altschul et al., 1990; Altschul et al., 1997) or FASTA (Pearson and Lipman,
1988), require scoring matrices that produce negative values on average between random
sequences. If the average or expected matrix score is positive, the alignment will extend to
the ends of the sequences, and be global, rather than local.) Dayhoff’s initial PAM matrices
were calculated as log odds-ratios; the logarithm of the ratio of the alignment frequency
observed after a given evolutionary distance divided by the alignment frequency expected

frequency in homologs
by chance: log ( frequency by chance /- The Henikoffs used the same odds-ratio algebra
when developing the BLOSUM matrices, but calculated their transition frequencies by
counting the number of weighted changes in different blocks.

In 1991, Altschul published a seminal paper (Altschul, 1991) that showed that any scoring
matrix appropriate for local alignments (one with a negative expected score) could be treated
as a “log-odds” matrix of the form: As j=log(q; j/pip;), where s ; is the score given to the i j
alignment, g ; is the replacement frequency for amino-acid i to j, and the pjp; term gives the
expected frequency of two amino-acids aligning by chance. The A term is used to scale the
matrix so that individual scores can be accurately represented with integers. Widely used
scoring matrix values typically range from —-10 to +20, reflecting A scale factors of In(2)/2 -
half-bit units used by BLOSUM®62 and PAM120 - or In(2)/3 — third-bit units used by
BLOSUMS50 and PAM250. For example, the BLOSUMG62 score for aligning aspartic acid
(‘D’) with itself is +6 and BLOSUMBG62 is scaled in 1/2-bit units, so a D:D alignment in
related proteins is 6=2.0*1g,(0p p/Popp) Of 23=8 times more likely to occur because of
homology than by chance. Likewise, the BLOSUM®62 matrix assigns a D:L alignment a
score of —4, which means it is 22=4 times more likely to occur by chance than in the
homologous blocks aligned for BLOSUMG62.

This ratio of homologous replacement frequency to chance alignment frequency explains
why modern scoring matrices can give very different scores to identical residues. In the
denominator, amino acids are not uniformly abundant (common amino acids like ‘L’, ‘A’,
*S’, and ‘G’ are found more than 4-times more frequently than rare amino acids like *“W’,
‘C’, *H’, and ‘M), so common amino acids often have lower identity scores than rare ones.
Likewise, amino acids are not uniformly mutable; ‘A’, *S’, and ‘T’ change frequently over
evolutionary time, while ‘W’ and ‘C’ change rarely. Thus, the highest identity score in the
BLOSUM®62 matrix (Fig. 1) is 11, corresponding to a W:W alignment, while ‘A’, ‘I’, ‘L,
‘S’, and ‘V’ get identity alignment scores of 4. Differences in identity scores, together with
positive scores for non-identity alignments between conserved amino acids, explain why
sequence similarity scores are dramatically more sensitive than percent identity for inferring
homology (see UNIT 3.1).

Matrix information content, target identity, and alignment length

In addition to generalizing scoring matrices as log-odds matrices, Altschul (1991) also
showed that log-odds scoring matrices have an associated information content (relative
entropy), or score per aligned position (“bits-per-position”). “Bits-per-position” can be used
to estimate the number of aligned residues required to produce a statistically significant
score. Shallow scoring matrices (e.g., PAM/VTML 10, PAM/VTML 20, or PAM/VTML
40) have higher information content than deep matrices (BLOSUM®62, PAM25), which
means that a shorter alignment (10 - 50 residues) can produce a more statistically significant
score. At the same time, shallower matrices tend to produce higher identity alignments,
because they give higher positive scores to identities and more negative scores to
replacements (Table 1, Fig. 2). For example, if an alignment needs a 50-bit score to be
significant in a database search (Unit 3.1), and the average bit score for BLOSUMG62 is
about 0.4 bits per aligned position (Table 1), then about 50/0.4=125 residues must be
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included in the alignment. In contrast, the VT20 matrix provides about 3.3 bits per aligned
position, so even a 15 residue alignment can be significant. Thus, in a large-scale similarity
search that needs a 50 bit score for statistical significance, domains shorter than 125 amino
acids, or DNA exons shorter than 375 residues, often would not produce statistically
significant scores with BLOSUM®62, the default matrix used by BLAST, while exons shorter
than 50 residues can easily be detected with VT20.

“Shallow” scoring matrices have more information content because they give more positive
scores to identities and more negative scores to non-identical replacements by varying the
gjj term in the log-odds matrices (the pjp; values do not depend on evolutionary distance).
From the evolutionary perspective, sequences that have diverged for less time, e.g., 10 —
20% change, will have more identical residues and fewer replacements simply because there
has been less time for the sequences to change. Alternatively, sequences that have less than
25% identity because of a large amount of change will have many fewer identities and many
more conservative replacements (PAM200 sequences will be less than 25% identical, on
average). The numerical basis for this difference can be seen in Fig. 2, which compares parts
of a “shallow” (VTML 20) and “deep” (BLOSUM®62) matrix. Thus, in addition to differing
in information content, scoring matrices have range of target percent identities and
alignment lengths (Table 1). Shallower scoring matrices produce shorter, more identical
alignments, because they give more negative scores to non-identical aligned residues.
“Deeper” scoring matrices produce longer alignments with lower percent identities because
the penalty for a mismatch is much lower and more conservative non-identities get positive
scores.

In practice, the relationship between scoring matrix evolutionary distance, information
content, percent identity, and alignment length suggests two reasons for changing from the
BLOSUM®62 and BLOSUM50 matrices used by BLASTP and SSEARCH/FASTA. First,
one should change to a shallower matrix when looking for short alignments. We need a
shallower scoring matrix for short domains, short exons, or short DNA reads because deep
scoring matrices like BLOSUM®62 do not have enough information content to produce
significant scores. Short alignments require shallow scoring matrices.

One should also use a shallower scoring matrix when looking for orthologs — sequences that
differ because of speciation events and are likely to share similar functions — between
“relatively” closely related organisms (100 — 500 My). Protein sequence comparison
algorithms are very sensitive; BLASTP and SSEARCH routinely find significant alignments
between human and yeast (1.2 million year divergence) or human and E. coli (>2.4 million
years). Because of this sensitivity, a mouse-human comparison often reports not only the
orthologs (sequences that diverged at the primate/rodent split 80 million years ago) but also
dozens of more distantly related paralogs that may have diverged 200 — 2,000 million years
ago. Mouse and human orthologs share about 83% amino-acid identity, thus for mammals,
the VTML 20 matrix is expected to find all orthologs and paralogs that have diverged over
the past 200 Million years, but the matrix is much less likely to identify paralogs that share
less than 40% sequence identity (divergence time > 1,000 Million years).

SCORING MATRICES AND GAP PENALTIES

While there is an intuitive mathematical explanation of pairwise similarity scores from the
log-odds perspective, sensitive sequence alignments require both aligned residues and
insertion or deletion gaps. Unfortunately, we do not have an analytical model for gap
penalties and evolutionary distances. The default gap-penalties provided for BLASTP,
SSEARCH, and FASTA were determined empirically (e.g. Pearson, 1991) with a focus on
identifying distant homologs. In general, default gap penalties for BLASTP and SSEARCH/

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2014 October 15.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Pearson

Page 5

FASTA are set as low as possible; lower gap penalties would convert alignments from local
to global, which would invalidate the statistical estimates. Thus, when considering whether
to change gap penalties to improve search selectivity for a particular protein family, gap
penalties should be increased (made more stringent), not decreased. Just as “shallower”
scoring matrices target less divergence by giving higher scores to identities and more
negative scores to non-identities, gap penalties should increase with shallower scoring
matrices (Reese and Pearson, 2002). Simulations to maximize the significance of short
alignments suggest that for 1/2-bit scoring matrices, gap open penalties of 16.7-0.067*pam-
distance, e.g. 16.7-0.067*20=15 for VTML 20, and gap extend penalties of 2, are most
effective (Reese and Pearson, 2002).

Low gap-penalties can dramatically reduce the information content and average percent
identity associated with a scoring matrix, and can dramatically increase the lengths of
alignments produced by the matrix. The target percent identity, information content, and
alignment lengths presented in Table 1 reflect the observed median values of the highest
scoring alignment produced by random queries against real protein sequences with the
specified matrix and gap penalties. If gaps are not allowed, the average percent identity and
information content increase and alignment length gets shorter. For example, if gaps are not
allowed with BLOSUMG62, the median percent identity increases from 28.9 (Table 1) to 33,
information content almost doubles from 0.40 to 0.74, and median random alignment length
drops from 86 to 45 residues. A similar effect is seen with VTML 80, where information
content increases and alignment lengths decrease almost 2-fold when gaps are not allowed.
Gap effects are less dramatic with shallower matrices like VTML 20 — from 86 to 89%
identity, 3.3 to 3.5 bits per position, and from 11 to 10 residue median alignment lengths —
because short evolutionary distances should allow many fewer insertions and deletions.

BLASTP gap penalties with shallow scoring matrices

While the BLAST programs offer a set of scoring matrices with different evolutionary
horizons (BLOSUMS50 and BLOSUM®62 are “deep”, PAM30 is relatively “shallow”), the
modest gap penalties provided with their shallow matrices dramatically modify their
effective evolutionary distance (Table I). The “shallowest” combination of scoring matrix
(PAM30) and gap penalties (9/1) requires an average of 56 aligned amino acids, or more
than 160 nucleotides, to produce a 50 bit alignment score. Because these gap penalties are
too low (Reese and Pearson, 2002), the BLAST protein matrices are less effective for short
alignments or short evolutionary distances than they would be with higher penalties.

LONG ALIGNMENTS AND OVEREXTENSION

In addition to differing in information content (score or “bits” per aligned position) and
optimal evolutionary distances (percent identity), different scoring matrices have different
preferred alignment lengths (Table 1). Shallow scoring matrices have large negative values
for amino-acid replacements (Fig. 2), so alignments to non-homologous (random) sequences
will be short. Deep scoring matrices have less negative average replacement scores
(VTML20’s average non-identity score is —5.8 half-bits, while BLOSUM®62’s is —1.2 half-
bits), so their alignments tend to be longer. Table 1 (random aln. len.) summarizes the
median alignment length between random queries and real protein sequences. BLAST and
SSEARCH/FASTA statistics are very accurate (UNIT 3.1), so sequences that share
statistically significant scores will always share a homologous domain. But BLAST and
SSEARCH/FASTA calculate local sequence alignments — the alignments begin and end at
a position that maximizes the alignment score — so the boundaries of the alignment depend
both on the location of the homologous domain and the scoring matrix used to produce the
alignment. When a deep scoring matrix like BLOSUMBG62 is used to align more closely
related sequences, the alignment can extend (over-extend) into nonhomologous neighboring
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sequence. Gonzalez and Pearson (2010) termed this artifact “homologous over-extension,”
and showed that it is a major source of errors in PSI-BLAST searches.

Homologous over-extension often occurs from short repeated domains. For example, Fig.
3A shows a suaste alignment of vav uman (p15498) With scapz xentr (osevws), @ protein that
contains an SH3 domain that is homologous over 58 amino acids. However, the alignment is
198 residues long; the additional 140 residues in the alignment include a 100 residue
Pleckstrin domain in scar2 xente that is not homologous (vav_ suman contains an SH3 domain in
the region that aligns to the Pleckstrin domain in skarz xentz). The 58 residue homologous SH3
domain contributes 85% of the bit score with the additional 140 residues contributing less
than 15% of the score. Using the slightly more stringent (shallower) BLOSUMS80 matrix
does not change the alignment over extension.

The FASTA programs offer a new option for identifying homologous over-extension —
sub-domain scoring (Fig. 3B). By using the domain annotations available for one of the
sequences to sub-divide the alignment, it becomes apparent that the 58-residue SH3 domain
is responsible for almost all of the significant similarity found. It is often very difficult to
judge the quality of a distant alignment visually; sub-domain scoring provides a quantitative
strategy for identifying over-extension.

SCORING MATRICES FOR DNA

DNA scoring matrices, which are usually implemented as match/mismatch scores, can also
be treated as log-odds matrices with target evolutionary distances (States et al., 1991). For
example, the default match/mismatch penalties used by blastn in its most sensitive mode ( -
task blastn) uses a score of +2 for a match and —3 for a mismatch, which targets sequences
at PAM10, or 90% identity (States et al. 1991). By default, searches on the NCBI nucleotide
BLAST web site use mecasast ( -task megablast), with match/mismatch scores of +1/-3 that
target sequences that are 99% identical. By default, the FASTA program uses +5/-4 (also
available with blastn -task blastn), which corresponds to about PAM 40, or 70% identity.
Because DNA sequence comparison is much less sensitive than protein sequence
comparison, it is very difficult to detect statistically significant DNA:DNA sequence
similarity at distances greater than PAM 40 (PAM 40 is a short distance for protein
comparisons).

In practice, the effective target identity for heuristic methods like siar, eLastn, mesasLast and other
genome alignment programs that do use scoring matrices may be difficult to estimate from
the reported match/mismatch scores. Heuristic programs typically use a hierarchy of filters
to accelerate the similarity search, and each of those filters will affect the percentage identity
and evolutionary distance of the alignments that are displayed. As a result, it is possible that
the displayed alignments may have a lower percent identity than other possible alignments
that were excluded during the early stages of the filtering process.

Ideally, the match/mismatch penalties used in genome alignment would match the
evolutionary distances of the sequences being aligned; human DNA to itself is expected to
be more than 99.9% identical, but human-mouse alignments in protein coding regions will
be less than 80% identical (outside of protein coding regions, identity will typically be
undetectable at <50%). Likewise, match/mismatch parameters should reflect potential
alignment length; searches with short sequences will need higher match/mismatch ratios
with higher information content (States et al., 1991).

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2014 October 15.
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SUMMARY

The BLAST and FASTA/SSEARCH protein alignment programs use “deep” similarity
scoring matrices like BLOSUM®62 or BLOSUMSO0 to identify homologs that share less than
25% sequence identity. Deep scoring matrices require long sequence alignments to achieve
statistically significant similarity scores and are more likely to extend alignments outside the
homologous region. Shallower scoring matrices are more effective when searching for short
homologous domains, short (< 150 nt) exons, or over shorter evolutionary distances. Scoring
matrices that are matched to the evolutionary distance of the homologous sequences are also
less likely to produce homologous overextension.

The match/mismatch ratios used in DNA similarity searches also have target evolutionary
distances. The stringent match/mismatch ratios used by MEGABLAST are most effective at
matching sequences that are essentially 100% identical, e.g. mMRNA sequences to genomic
exons. Deeper, more sensitive DNA scoring parameters are more effective for longer DNA
evolutionary distances, e.g. mouse-human.

While scoring matrices and gap penalties can dramatically affect search sensitivity and
alignment regions, modern sequence comparison programs provide accurate similarity
statistics, so it is unlikely that the “wrong” scoring matrix will produce a significant match
to a nonhomologous protein. But the “wrong” matrix can prevent short homologous regions
from being found, or allow an over-extension into a non-homologous region from a
homologous domain. The rapidly increasing volume of protein sequence means that close
homologs will often be available, and shallower scoring matrices can produce more reliable,
functionally informative alignments when closer homologs (>50% identical) are found.
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Figurel. The BLOSUM 62 matrix

The BLOSUMG62 matrix used by BLASTP, BLASTX, and TBLASTN is actually 23 x 23 —
20 amino acids plus X’ (any amino acid), ‘B’ (‘D’ or ‘E”) and ‘Z’ (‘N’ or ‘Q’). Only the
lower half of the symmetric matrix is shown to highlight the identity scores on the diagonal.
The most positive value is 11 ( “W:W’ alignment); the most negative is —4 (found for many
hydrophobic/hydrophilic and small/large replacements). The BLOSUMG62 matrix is scaled
in 1/2-bit units, so the W:W alignment of 11 is 25°=45 times more common in homologous
proteins than by chance. Weighted by amino acid abundance, the average similarity score is
about -1 half-bits.
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VTML 20 BLOSUM62
A R N D C Q E A R N D c Q E
A 7 A 4
R -7 8 R -1 5
N -6 -5 8 N -2 0 6
D -6 -12 -1 8 D -2 =2 1 6
c -3 -7 -8 -14 12 C 0 -3 -3 -3 9
Q -5 -2 -4 -4 -13 9 Qo -1 1 0 0 -3 5
E -5-10 -5 -1 -14 -1 7 E -1 0 0 2 -4 2 5

Figure 2. Comparison of a“shallow” (VTML 20) and “deep” (BLOSUM 62) scoring matrix

Both matrices are scaled in 1/2-bits. For the small part of the matrices shown here, the
VTML20 matrix produces an average 2.80 half-bit identity score, and an average —0.59 non-
identical score (weighted by amino-acid abundance). In contrast, BLOSUM®62 produces 1.86
for identities but only —0.06 for non-identities. Thus, VTML20 targets shorter, higher-
identity alignments, because it penalizes non-identities much more strongly.
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W oC Y +G  +D ++ RA L +D F 4+ K +FA
Sbjct 128 WCVCTNSMFYYYGSDKDKQOKGAFSLDGYRAKMNDTLRKDAKKDCCFEIFAPDKRVYQFA 187

1
Query 707 ISIKYNVEVKHIKIMTAEGLYRITEKKAFRGLTELVEFYQQONSLKDCFKSLDTTLOFPFK 766

s E IM + G +++ + 4+ + V+  + 4D ++ L + P
Sbjct 188 ASSPKEAEEWVNIIMNSRGNIPTEDEELYDDVNQEVDASHE---EDIYEELPEESEKPVT 244
Pleckstrin ]
r SH2
Query 767 EPEKRTISRPAVGSTK-———=~ YFGTAKARYDFCARDRSELSLKEGDIIKILNKK-GQQG 819
EE + V +T Y + 4D ELS K GD I IL+K+ G

Sbjct 245 EIETPKATPVPVNNTSGKENTDYANFYRGLWDCTGDHPDELSFKHGDTIYILSKEYNTYG 304

[

]

Query 820 WWRGEIYGRVGWFPANYVEEDY 841
WH GE+ G +G P Y+ E Y

Sbjct 305 WWVGEMKGTIGLVPKAYIMEMY 326
]

B

sp|P15498.4|VAV_HUMAN Proto-oncogene vav
sp|Q5FVW6.2|SKAP2_XENTR Src kinase-associated phosphoprotein
sRegion: 626-725:103-206 : score=7; bits=8.7; 1Id=0.202; Q= 0

gRegion: 671-765:150-243 : score=7; bits=8.7; 1Id=0.175; Q= 0.

gRegion: 782-841:260-326 : score=83; bits=35.8; Id=0.343; Q=53.
sRegion: 783-841:266-326 : score=88; bits=37.6; Id=0.383; Q=58.
s-w opt: 116 bits: 47.6 E(454402): 0.0006

Figure 3. Overextension of an alignment of homologous SH2 domains

(328 aa)
Pleckstrin
SH2
SH3
SH3

(A) BLASTP alignment of vav_numan With skar2 xentr. The two proteins share a homologous
SH2 domain (highlighted in red) over about 58 amino acids that contributes more than 85%
of the similarity score. The remaining 140 amino acid alignment juxtaposes an SH3 domain
from vav_ruvan (brown) with a Pleckstrin domain from skar2 xentr (green). These two domains
are not homologous; they are classified as having different folds in SCOP. (B) Sub-
alignment scores produced by the SSEARCH36 program using the same scoring matrix as
BLASTP (BLOSUMGZ, 11/1) for the VAV_HUMAN / SKAP2_XENTR alignment. Boundaries for
annotated domains in the two proteins were taken from InterPro using the query vav 1uman
(gRegion) or the subject scar2 xentr (SRegion). Thus, 103-206 for the Pleckstrin domain comes
from InterPro annotations for scarz xentr, as does 671-765 for SH3 domain in vav_nuvan. The
raw, bit-score, and percent identity are shown for the sub-regions. The Q-score is —10log(p-
value) based on the bit score; thus Q=30 corresponds to a probability (uncorrected for

database size) of 0.001.
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TABLE 1

Scoring matrix target identity, information content, and alignment length.

1 % bits/ random  50-bit

Matrix pgnaglty ident. pos. aln.len. length
SSEARCH version 36.3.6
BLOSUMS502 10/2 253 021 160 238
BLOSUM62 11/1 28.9 0.40 86 125
VTML 16023 122 239 025 139 200
VTML 140 10/1 28.4 0.44 82 114
VTML 120 11/1 321 0.54 62 93
VTML 80 10/1 40.5 0.74 47 68
VTML 40 13/1 64.7 1.92 18 26
VTML 20 15/2 86.1 3.30 11 15
VTML 10 16/2 90.9 3.87 9 13
BLAST version 2.2.27+
BLOSUMS502 13/2 29.4 0.39 85 128
BLOSUM62 11/1 29.6 0.41 82 122
BLOSUMB80 10/1 320 048 69 104
PAM70 10/1 33.9 0.58 56 86
PAM30 9/1 45.9 0.90 34 56

1 . . . .
Gap open/extend penalty, where the total penalty is open+r*extend, where r is the number of residues in the gap. Thus, a 10/2 penalty produces a
penalty of 12 for a one residue gap, 14 for two residues, etc.

Scaled in 1/3-bit units; all other matrices are scaled in 1/2-bit units.

3As calculated according to Mueller et al. (2002).

Median percent identity, bits per aligned position, alignment length, and alignment length required for a 50-bit score based on searches of 140
random sequences against 240,000 real protein sequences using the specified scoring matrix and gap penalties.
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