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Abstract
This review focuses on research findings in the area of 
diagnosis and pathogenesis of hepatitis C virus (HCV) 
infection over the last few decades. The information 
based on published literature provides an update on 
these two aspects of HCV. HCV infection, previously 
called blood transmitted non-A, non-B infection, is 
prevalent globally and poses a serious public health 
problem worldwide. The diagnosis of HCV infection has 
evolved from serodetection of non-specific and low 
avidity anti-HCV antibodies to detection of viral nucleic 
acid in serum using the polymerase chain reaction (PCR) 
technique. Current PCR assays detect viral nucleic acid 
with high accuracy and the exact copy number of viral 
particles. Moreover, multiplex assays using real-time 
PCR are available for identification of HCV-genotypes 
and their isotypes. In contrast to previous methods, 
the newly developed assays are not only fast and eco-

nomic, but also resolve the problem of the window pe-
riod as well as differentiate present from past infection. 
HCV is a non-cytopathic virus, thus, its pathogenesis 
is regulated by host immunity and metabolic changes 
including oxidative stress, insulin resistance and hepatic 
steatosis. Both innate and adaptive immunity play an 
important role in HCV pathogenesis. Cytotoxic lympho-
cytes demonstrate crucial activity during viral eradica-
tion or viral persistence and are influenced by viral pro-
teins, HCV-quasispecies and several metabolic factors 
regulating liver metabolism. HCV pathogenesis is a very 
complex phenomenon and requires further study to de-
termine the other factors involved. 
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Core tip: This article focuses on the diagnosis and 
pathogenesis of hepatitis C virus infection. Both of 
these aspects are important in order to eradicate this 
endemic virus and to prevent serious liver diseases.
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INTRODUCTION
Hepatitis C virus (HCV) was first characterized by Choo 
et al[1] and Kuo et al[2] in 1989. It was soon identified as 
the main causative agent of  the disease previously known 
as post transfusion non-A, non-B hepatitis virus infec-
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tion. HCV has been found to be an important cause of  
liver disease and remains a major public health problem 
worldwide. According to the World Health Organization, 
nearly 3% of  the world population has been infected 
with HCV. Therefore, more than 170 million people are 
chronic carriers of  HCV and at high risk of  developing 
liver cirrhosis and/or hepatocellular carcinoma (HCC). 
Three to 4% of  chronically infected individuals develop 
fatal HCC. Currently, HCC caused by HCV infection is 
considered an indication for liver transplantation[3-5].

HCV was the leading  cause of  post-transfusion 
and community-acquired non-A, non-B hepatitis until 
characterization of  the virus in 1989 and the introduc-
tion of  blood screening in 1990. The initiation of  blood 
screening for HCV has markedly reduced its incidence. 
However, it still remains a significant problem in intrave-
nous drug abusers. HCV infection is the most common 
cause of  liver transplantation in adults. HCV and HIV-1 
frequently co-infect humans and it has been estimated 
that as many as 18% of  HIV-infected persons are also 
infected with HCV[4].

 HCV is an enveloped RNA virus and belongs to 
the genus Hepacivirus of  the family Flaviviridae. The 
HCV genome consists of  9.6-kb single-stranded RNA 
of  positive polarity and a single open reading frame of  
9033-9099 nucleotides flanked by a conserved 5’ and 3’ 
noncoding region (NCR) at the ends. Its genome codes 
for a long polyprotein of  approximately 3000 amino 
acids[6] which is processed co-translationally and post-
translationally to yield structural proteins (core, envelope 
E1, and E2) and non-structural (ns) proteins (NS1/p7, 
NS2, NS3, NS4A, NS4B, NS5A and NS5B)[7]. The enve-
lope proteins (E1 and E2) are the outer surface proteins 
of  the viral particles and play important roles in virus 
entry into the host cell. NS5B is a variable region of  the 
HCV genome and codes for an RNA-dependent RNA 
polymerase (RdRp). 

RNA polymerase lacks proof  reading activity and this 
may alter the detection, sensitivity to interferon anti-viral 
activity and pathogenicity of  the virus (Figure 1)[8]. 

Like several other viruses, the RNA virus has a high 
degree of  heterogeneity[5] that varies 30%-35% among 
different genotypes. Based on previous studies, six major 
genotypes and more than 120 subtypes of  HCV have 
been characterized to date[9]. These HCV genotypes have 
distinct geographic distributions, with genotype 1 and 2 
frequently found worldwide[10]. In India, genotype 3 is 
reported to be the most prevalent, followed by genotype 
1[11,12]. Different HCV genotypes have important epi-
demiological implications. Despite nucleotide sequence 
divergence between genotypes, they remain quite similar 
in their transmission pattern, persistence and disease de-
velopment[13]. Although genetic variation is attributed to 
several factors, two major theories i.e., the Darwinian and 
Neutral evolution theories are thought to be the promi-
nent theories in causing genetic diversity in HCV[13]. The 
nucleotide sequence variability is distributed throughout 
the viral genome. Regions encoding envelope proteins 

(E1, E2) and NS-1 are the most variable, whereas the 5’ 
NCR is the most conserved region. 

HCV patients show a poor response to antiviral ther-
apy based on the combination of  pegylated interferon 
(IFN)-α and ribavirin. Only 40%-50% of  patients infect-
ed with HCV genotype-1 and 80% of  those infected with 
genotype-2 or 3 achieve a sustained virological response 
(SVR) with this regimen[14]. The recent use of  direct act-
ing anti-viral (DAA) molecules, which are active on HCV 
during treatment, has led to a substantial improvement 
in SVR rates in HCV genotype-1 infected patients. How-
ever, this may lead to the selection of  resistant virus if  
DAA molecules are used alone[15]. Moreover, there is a 
high relapse rate of  HCV infection after discontinuation 
of  therapy. Recently, host genetic factors including hu-
man leukocyte antigen (HLA) and cytokine genes have 
been implicated in HCV infection or persistence[16]. Ge-
netic polymorphism of  cytokine genes including IFN-γ, 
tumor necrosis factor (TNF)-α, interleukin (IL)-10, IL-20 
and SNPs in the promoter region of  osteopontin gene, 
have been found to be crucial in determining the thera-
peutic outcome of  HCV infection[17]. Therefore, every 
effort is being made to understand the pathogenesis of  
HCV infection to create a therapeutic model for an ef-
fective treatment against HCV. Although recent reports 
describe the development of  in vitro replication systems 
leading to the production of  infectious viral particles[18,19], 
there is currently no cell culture model suitable for syn-
thesizing vaccines based on killed or attenuated virus. 
All efforts have been focused on sub-unit vaccines, com-
posed of  one or several antigens, either in the form of  
recombinant proteins, synthetic peptides or vectored vac-
cines. The earliest vaccine developed for HCV was that 
by the Chiron group[20]. However, very little progress was 
noted in this direction in subsequent years.

This article reviews the major aspects of  HCV infec-
tion including the diagnosis and pathogenesis of  HCV 
infection. Both of  these aspects have a strong association 
with therapy, thus, newer means of  accurate diagnosis 
and a better understanding of  HCV infection pathogen-
esis may allow the development of  a therapeutic model. 
This article attempts to update readers regarding the in-
formation available on these two aspects to date.

DIAGNOSIS OF HCV INFECTION
During HCV infection, every attempt is made to diag-
nose and differentiate acute from chronic hepatitis C in-
fection. Acute HCV infection is typically mild. It is often 
not diagnosed, and the infection may be recognized only 
when it becomes chronic[21]. The diagnostic tests used, 
including the presence of  anti-HCV antibodies in serum, 
cannot differentiate between acute and chronic HCV in-
fection because anti-HCV IgM, used as marker of  acute 
infection, is variable in acute infectious disease and is also 
detected at high rates in patients with chronic HCV infec-
tion[22,23]. The diagnostic procedures for hepatitis C virus 
infection used in laboratories are based on the detection 
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of  anti-HCV antibodies against recombinant HCV pro-
teins using enzyme immunoassay (EIA) and chemilumi-
nescence immunoassay. Non-structural and recombinant 
antigens are used in these assays. Four different genera-
tions of  anti-HCV test kits have been developed to date. 
The first generation EIA detected antibodies against the 
nonstructural proteins (NS4) with recombinant antigen 
c100-3. Subsequently, the second generation assay was 
developed and this included antigens from the core re-
gion (c22-3), the NS3 region (c33c) and a part of  c100-3 
(5-1-1) from the NS4 region. The third-generation EIA 
included an additional antigen from the NS5 region and 
a reconfiguration of  the core and NS3 antigens. How-
ever, all these anti-HCV assays had the disadvantages of  
giving high false positive results and a lack of  sensitivity 
to detect antibodies during the window period. In addi-
tion, these antibody-based assays could not distinguish 
between acute, past and chronic infections. This was fol-
lowed by the development of  supplementary tests involv-
ing the recombinant immunoblot assay (RIBA) which 
was commercialized. This assay contained recombinant 
antigen (c33c, NS5) and synthetic peptides (5-1-1, c100 
and c22). Similarly, a few other commercial assays, known 
as third generation immunoassays incorporated HCV 
antigens from the core region, E2 hypervariable region, 
NS3 region, NS4A, NS4B and NS5A region. All these 
recombinant immunoblot assays were used as supple-
mentary tests to the anti-HCV assays. Similar to EIA, the 
RIBA had the disadvantages of  difficulty in performance 
and a high percentage of  indeterminate results. There-
fore, these are no longer used in diagnostic laboratories. 
Recently, fourth generation anti-HCV assays incorpo-
rating additional nonstructural proteins are being used 
as screening tests[24]. These kits for anti-HCV detection 
target different HCV antigens and detect more than five 
primary antibodies to ensure the specificity and sensitivity 

of  the detection kit.
Anti-C22c and anti-C33c may be the first HCV anti-

bodies to appear during the acute phase of  the disease, 
which is defined by elevated alanine aminotransferase 
(ALT) levels and/or clinical symptoms[25]. Anti-NS5 
appears somewhat later, while anti-C100-3 is the last 
antibody to be detected in acute self-limited HCV infec-
tion. The diagnosis and differentiation of  acute from 
chronic HCV infection poses another problem. Patients 
chronically infected with one HCV-genotype develop 
acute hepatitis on infection with another genotype. 
Multiple episodes of  acute hepatitis were observed in 
polytransfused thalassemic children reinfected with dif-
ferent HCV genotypes[26,27]. Therefore, discrimination 
between acute and chronic infection in the same patient 
is sometimes very difficult. HCV RNA in the serum or 
liver appears to be the earliest detectable marker of  acute 
HCV infection, preceding the appearance of  anti-HCV 
by several weeks[25]. HCV viremia may persist despite the 
normalization of  serum ALT levels. Thus, the use of  
ALT levels in the diagnosis of  HCV is not helpful. How-
ever, HCV RNA in serum usually lasts for fewer than 
4 mo in patients with acute self-limited HCV infection. 
The average time from transfusion to sero-conversion is 
approximately 11 to 12 wk with EIA-1 (Enzyme immu-
noassay-1) and 7 to 8 wk with EIA-2 (Enzyme immuno-
assay-2). Now attempts are being made to develop EIA 
assays to differentiate HCV sub-types[28]. Patients with 
post-transfusion chronic non-A, non-B hepatitis develop 
anti-HCV antibodies in the majority of  cases. Anti-HCV 
antibodies are not neutralizing, especially with HCV en-
velope proteins E1 and E2[29]. High levels of  anti-C100-3 
were correlated with high titers of  circulating HCV in 
chimpanzees[30]. Therefore, the development and persis-
tence of  diagnostic antibodies to HCV seem to reflect 
concomitant virus replication and consequently a high 
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Figure 1  Proteins encoded by the hepatitis C virus genome. Genome organization of hepatitis C virus showing the structure of the viral genome, including the 
long open reading frame encoding structural and nonstructural proteins, and 5’ and 3’ non-coding regions (NCRs). [Source: Monica A et al. Expert Rev Mol Med 2003; 5].  
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and undergoes replication simultaneously causing cell ne-
crosis by several mechanisms including immune-mediated 
cytolysis in addition to various other phenomena such as 
hepatic steatosis, oxidative stress and insulin resistance. 
The proteins/peptides encoded by different sub-genomic 
regions of  the HCV genome and their quasispecies influ-
ence the above mechanism, and thus, have a significant 
role in HCV pathogenesis and disease causation. A brief  
description of  HCV pathogenesis in the light of  these 
factors is given in the following section (Figure 2).

Viral entry 
HCV is a blood-transmitted virus that reaches the liver via 
circulation. The entry of  HCV isolates requires at least 4 
host-derived factors including scavenger receptor class B 
type I, Occludin, Claudin-I (CLDNI) and CD81. In addi-
tion, CLDN6 and CLDN9 have been shown to substitute 
for CLDN1 as HCV entry factors in human non-liver 
cells[36]. The CD81 molecule on host cell surfaces acts as 
a viral receptor, which binds with the viral particle and 
facilitates its entry in the liver cell[37,38]. CD81 is expressed 
on the surface of  almost all nucleated cells and com-
plexes with a variety of  other cell-surface receptors such 
as CD19 and CD21 on B cells, and sends a costimulatory 
signal to the cells[39]. The viral envelop protein, E2, binds 
to the major extracellular loop of  CD8[40]. HCV shows 
multi-site binding and can also bind to several other mol-
ecules such as the receptor for low-density lipoprotein, 
the dendritic cell (DC)-specific intercellular adhesion mol-
ecule 3-grabbing non-integrin (DC-SIGN), and its liver 
counterpart[41,42]. E2 is the most variable viral protein, and 
therefore, its interactions with CD81 have been reported 
to be strain-specific[43]. It has two hyper variable regions, 
HVR-1 and HVR-2 which undergo frequent mutations, 
possibly due to virus-neutralizing antibodies and HCV-
specific cytolytic T lymphocytes (CTLs). HCV also has a 
high mutation rate due to the lack of  proofreading abil-
ity of  its RNA-dependent RNA polymerase. Therefore, 
HCV exists in several distinct, but closely related virus 
species within an infected individual. These species are 
called HCV quasispecies. 

HOST IMMUNITY
Innate immunity 
Innate immunity presents a first line defense for the con-
trol of  HCV infection as it does for several other viral 
infections. During HCV infection, cells produce Type 1 
IFN which prepares and induces the cells to resist infec-
tion, check viral replication, promote adaptive immunity 
and activate natural killer (NK) cells, DCs and Kupffer 
cells etc. Once inside the cell, the innate immunity vs HCV 
is triggered through host recognition of  viral macromo-
lecular motifs, known as pathogen-associated molecu-
lar patterns (PAMPs), as non-self  by cellular pathogen 
recognition receptors. These receptors includes toll-
like receptors (TLRs) and retinoic acid-inducible gene-I 
(RIG-I) like receptors (RLRs)[44]. RIG-I binds PAMP on 

potential for infectivity. 
HCV RNA is frequently detected in patients with 

chronic hepatitis C and in patients carrying anti-HCV 
antibodies. A study carried out in Hong Kong demon-
strated that 83% of  anti-HCV positive patients were 
viremic when HCV RNA was determined using poly-
merase chain reaction (PCR) with two different sets of  
primers for noncoding regions[27]. Similarly, in another 
study, 98 of  100 patients with chronic non-A, non-B liver 
disease were positive for antibodies by EIA-2, but all 100 
patients were positive for HCV RNA by PCR. With the 
currently available EIA systems, chronic HCV infection 
can readily be identified in most patients. Measurement 
of  HCV RNA by PCR does not substantially increase the 
numbers of  patients found to have chronic HCV infec-
tion[31]. Following the introduction and wider use of  real-
time PCR, it is now easier to diagnose and monitor the 
progress of  HCV viremia in a very short time period[32]. 

In addition, the use of  multiplex PCR by real time is an-
other advancement in the detection of  possible hepatitis 
viral co-infections in single attempt analysis[33]. 

Based on published information regarding various as-
pects of  HCV infection including the currently available 
diagnostic assays and therapeutic regimens, the American 
Association for the Study of  Liver Diseases and Centers 
for Disease Control and Prevention, United States have 
approved a document as “practice guidelines” for use in 
the diagnosis and treatment of  HCV infection. This is an 
important document and describes details of  the guide-
lines to be followed for laboratory diagnosis of  acute/
chronic HCV infection[34]. 

PATHOGENESIS OF HCV INFECTION
HCV is a non-cytopathic virus[35] that enters the liver cell 
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Figure 2  Regulation of hepatitis C virus pathogenesis by host immunity 
and metabolic factors. HCV: hepatitis C virus. 
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HCV-RNA and activates interferon regulatory factor-3 
(IRF-3) for expression of  IFN-α/β and anti-viral/inter-
feron stimulated genes (ISGs)[45]. The secreted IFN and 
cytokines then activate NKs, DCs and Kupffer cells etc. 
These cells also play a significant role in mounting T/B 
cell-based immunity[46]. The PAMP region lies on the 3’ 
untranslated region (UTR) of  HCV and induces RIG-1 
signaling[47] that results in a RIG-1 interaction with IFN-β 
promoter stimulator (IPS-1) which causes activation of  
IRF-3 and nuclear factor κB (NFκB). 

HCV can effectively evade innate immunity resulting 
in persistent viral infection. This occurs because HCV 
has evolved to counteract the RIG-1 pathway[48] and thus 
evade the immune challenge. This phenomenon is the 
reason for chronicity in the majority of  HCV infected 
patients. For this, the non-structural proteins of  HCV i.e., 
NS3 and NS4A form a complex which activates the NS 
protease domain to target cleavage of  IPS-1. After cleav-
age, IPS-1 can no longer signal downstream to activate 
IRF-3 and NFκB and the infected cells no longer pro-
duce IFN-β or express ISGs[49].

NK cells, a major arm of  innate immunity, play an im-
portant role in eradication of  HCV. The liver is enriched 
in NK cells that are usually activated in an early phase 
of  HCV infection. The activated NK cells recruit virus-
specific T cells and induce antiviral immunity in the liver. 
They also eliminate virus-infected hepatocytes directly by 
cytolytic mechanisms and indirectly by secreting cytokines 
including IFN-γ and TNF-α. These cytokines induce an 
antiviral state in host cells. Surprisingly, HCV has evolved 
multiple strategies to counter the host’s NK cell response. 
It is interesting that activated NK cells contribute toward 
liver injury, while inactive or compromised NK cells per-
mit the virus to continue invasion[50].

Adaptive immunity 
After entry and replication of  the virus inside liver cells, 
the viral molecules are transported to the endoplasmic 
reticulum and associate with major histocompatibility 
complex (MHC) molecules, which are finally transported 
to the cell surface. These molecules on the cell surface 
are recognized by T cells for their immune action. The 
majority of  CTLs are CD8+ and recognize antigens pre-
sented on MHC class Ⅰ molecules. Approximately 10% 
of  CTLs are CD4+ which recognize antigens presented 
on MHC II molecules. These CTLs eliminate cells infect-
ed with virus. However, HCV is reported to have evolved 
mechanisms to avoid recognition by CTLs. They either 
reduce the expression of  MHC molecules or prevent the 
viral peptide from presentation at the cell surface. Thus, 
CTLs play a major role in viral eradication[51] and immu-
nopathogenesis of  HCV infection[52]. 

In another pathway of  the disease mechanism, the 
destruction of  HCV-infected hepatocytes release HCV 
fragments that are taken up by myeloid DCs. These DCs 
migrate to the draining lymph nodes and express HCV 
antigens on HLA class II molecules. Subsequently, they 
increase expression of  costimulatory molecules (CD80, 

CD86) which interact with and activate antigen-specific 
helper T (Th) cells[53]. These activated Th cells promote 
the maturation of  DCs and increase the expression of  
CD40 ligand and TNF-α. The mature DCs induce T-cell 
activation by overexpression of  their surface molecules. 
They also enhance antigen presentation capacity via 
HLA-I and production of  cytokines that stimulate T-cell 
activation. IL-12 has been shown to play an important 
role in stimulating IFN-γ production from activated T 
cells[54,55], and thus, induces development of  the type 1 
(Th1) immune response characteristic of  CTL activa-
tion. The effector CTLs release perforin, granzyme, and 
TNF-α, or express Fas ligand, and initiate a direct attack 
on HCV-infected hepatocytes[56,57]. 

The hepatocytes infected with HCV and DCs pro-
duce Type Ⅰ IFNs which suppress viral replication by 
inducing enzymes such as 2’-5’ oligoadenylate synthetase 
(OAS) and RNA-dependent protein kinase (PKR) in he-
patocytes[58]. The plasmacytoid DC recognizes HCV-relat-
ed markers through TLR-7, which interacts with single-
stranded RNA[59]. The TLR-signaling up-regulates PDC-
triggering receptor expressed on myeloid cells (PDC-
TREM) which induce further production of  IFN-α[60]. 
Activated OAS destroys viral RNAs, whereas PKR 
inhibits forming polysomes of  viral mRNA[58]. When 
HCV-specific CTL responses are not strong enough to 
eradicate the virus this leads to persistent infection[61]. 

Successful clearance of  HCV during acute HCV 
infection depends on the rise, vigor and persistence of  
the Th1 immune response[62,63]. Patients who developed 
a strong Th1 response showed efficient viral clearance 
and a self-limited disease course. In contrast, those who 
lacked IL-12 and IFN-γ production invariably developed 
chronic persistence of  the virus. The majority of  patients 
fail to control the infection and develop a chronic infec-
tion with a variable degree of  hepatitis and viremia[64,65]. 
Experimental studies have also demonstrated that HCV 
components induce an antigen processing mechanism 
and IFN-stimulated genes in infected livers[66-68]. Impaired 
function of  DCs, as antigen-presenting cells in induc-
ing immunity, may be responsible for the impaired im-
mune responses. Various studies have reported that viral 
proteins including HCV core, E1, and NS3 inhibit DC 
maturation[69,70]. HCV infects DCs through the binding 
of  HCV E2 protein and thereby suppress DC function in 
promoting an antiviral effect[41,71]. 

CTLs activated by viral proteins, not only kill virus-
infected cells, but also contribute to virus control through 
a noncytolytic mechanism by secreting cytokines, e.g., 
IFN-γ, IFN-α/β and TNF-α. These cytokines induce an 
antiviral state in host cells. This also renders uninfected 
cells resistant to infection and prevents viral replication. 
The progression of  the majority of  infected persons to 
chronic infection suggests inability of  the antiviral im-
munity to contain this infection. There may be several 
reasons for this failure, including the emergence of  es-
cape variants as a result of  a high rate of  virus mutations, 
decreased production of  antiviral cytokines or “stunning” 
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of  HCV-specific CTLs, a compromised cytolytic potential 
of  the CTLs and antagonistic peptides[72]. 

It is important to note here that the HCV genome 
in a single host is a dynamic population of  different, but 
closely related genomes, designated quasispecies. The 
generation of  quasispecies is usually ascribed to high 
variation in hyper variable region-1 (HVR-1) during viral 
replication[73]. In acute resolving hepatitis, HVR-1 shows 
very little variation, as compared to that in chronic hepa-
titis[74]. HVR-1 induces anti-HCV neutralizing antibod-
ies[75,76] and HVR-1 specific CD4+ and CD8+ T cells[77,78]. 
Using the responding host cellular immune response dif-
ferentially, HVR-1 favors viral escape[79,80]. HVR-1 varia-
tions result from the action of  a continuous immune-
driven positive selection[81,82]. Thus, HVR-1 complexity 
helps in the virus adaptive strategy to escape the immune 
onset. HCV clearance is associated with a vigorous HCV 
specific CD4+ and CD8+ T cell response in the acute 
phase of  infection. In contrast, viral persistence is associ-
ated with a weak and dysfunctional virus specific T cell 
response[79-83]. T cell failure and HCV immune evasion 
have been explained in several reports[84-86]. 

Role of T regulatory cells in adaptive immunity 
Recent studies have suggested a possible role for differ-
ent regulatory T cell populations in HCV persistence. 
These studies showed a higher frequency of  CD4+CD25+ 
regulatory T cells in the blood and CD4+FoxP3+ T cells 
in the liver of  chronically HCV infected patients[87-89]. 
CD4+CD25+ regulatory T cells suppress HCV specific 
CD8+ T cell and CD4+ T cell proliferation as well as 
CD8+ T cell IFN-γ secretion[87,90-92]. After HCV antigen 
stimulation, Treg cells secrete IL-10 and transforming 
growth factor-β (TGF-β) which suppress virus specific T 
cell responses[91-93]. CD4+CD25+ Treg cells obtained from 
chronically HCV infected patients demonstrated greater 
suppressive activity against HCV specific CD8+ T cells 
compared to Treg cells isolated from acute HCV infected 
patients. However, the suppressive effect observed in 
patients who successfully cleared the virus was still sig-
nificant[90]. Another study showed that the frequency of  
CD4+CD25+FoxP3+ Treg cells and their suppressive ca-
pacity against virus specific T cell responses were as high 
in HCV recovered chimpanzees as those in persistently 
HCV infected chimpanzees[94]. This observation requires 
further in-depth studies to explore the actual suppressive 
effect of  Treg cells during HCV infection. Induction of  
Treg cells by HCV antigens was first demonstrated by 
the response of  CD4+ T cell to HCV core protein. HCV-
specific IL-10 secreting T cells were detected in the blood 
of  chronic HCV infected persons[95]. Regulatory CD8+ 
T cells may play an important role in chronic HCV infec-
tion. HCV-specific CD8+CD25+FoxP3+ T cells from the 
blood of  chronically infected patients suppress HCV-
specific T cell responses via TGF-β secretion. The block-
ade of  TGF-β markedly enhanced HCV specific IFN-γ 
secretion by CD4+ and CD8+ T cells[96]. 

Few other studies have shown that chronic HCV in-

fection results in exhaustion or impairment of  HCV-spe-
cific CD8+ T cells. During chronic HCV infection, CD8+ 
T cells fail to proliferate or secrete antiviral cytokines in-
cluding IFN-γ. This phenomenon is promoted by a lack 
of  CD4+ T cells and the expression of  immunomodu-
latory cytokines such as IL-10[97]. The major cause of  
HCV-specific CD8+ T cell impairment is ascribed to the 
expression of  inhibitory receptors such as Programmed 
death-1, lymphocyte-activation gene-3 (a protein related 
to CD4), CTLA-4 (a member of  the CD28 receptor fam-
ily), T-cell immunoglobulin mucin-3 and 2B4 on HCV-
specific CD8+ T cells in blood and liver[98]. Expression of  
these inhibitory receptors is associated with low levels of  
CD127 expression and impaired proliferation and differ-
entiation of  T cells. Thus, different mechanisms contrib-
ute to the dysfunction of  HCV-specific CD8+ T cells in 
chronic HCV infection.

In addition to cytotoxic T lymphocytes, humoral im-
mune response against viral and cellular components 
during HCV infection is also present. Patients positive for 
HCV RNA and/or anti-HCV antibodies have type Ⅰ anti-
liver kidney microsome antibodies, which also recognize 
cytochrome P450 (CYP) 2D6. The patient’s liver is infil-
trated with auto reactive mononuclear cells, which recog-
nize CYP2D6. It is interesting that the viral core protein 
residues 178-187 bear sequence homology with human 
cytochrome P450 (CYP2A6 and CYP2A7) residues 
8-17[96]. Although HCV is a hepatotropic virus and infects 
hepatocytes, viral genome and its replicative intermediates 
are frequently present in peripheral blood mononuclear 
cells and lymphoid tissues of  chronically infected per-
sons. The viral glycoprotein E2 has been implicated in the 
oligoclonal expansion of  several lymphoma cells[99]. The 

most common rheumatic and cutaneomucous symptoms 
in HCV-infected patients include fatigue, arthralgia, par-
aestheisa, myalgia, pruritus, and the sicca syndrome[100].

ROLE OF VIRAL PROTEINS and 
GENOTYPES
The role of  structural and non-structural components 
of  the HCV virion has been explained by variation in 
their interactions with metabolites affecting pathogenic 
pathways leading to liver damage. HCV-core protein has 
a prominent role in all these interactions as compared to 
envelope and non-structural proteins. Moreover, when 
the mechanism of  this interaction was studied in relation 
to various HCV genotypes, it was observed that different 
genotypes behave differently to regulate all these patho-
genic pathways. 

The role of  NS5A and E2 region was found be im-
portant. NS5A has a role in viral replication, inactivating 
PKR[101-104], blocking the apoptotic pathway, binding of  
growth factor receptor-bound protein 2[105,106] and induc-
tion of  anti-inflammatory interleukin secretion[107,108]. 
Similarly, E2 protein inhibits PKR[109,110]. The region of  
NS5A which interacts with PKR, shows clustering of  
amino acid changes during IFN treatment and plays an 
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important role in the evasion mechanism[111]. Further-
more, this association varies with genotype and thus, 
alters their sensitivity to IFN treatment. NS5A remains 
under strong immune selection, has T- and B-cell epit-
opes and possibly, in combination with individuals’ HLA, 
selects immune cells to produce sensitivity/resistance to 
IFN therapy[112]. The functional activity of  NS5A towards 
immune selection is clearly governed by the HCV-geno-
types and varies accordingly. The response of  genotype 2 
and 3 to IFN treatment may be due to individuals recog-
nizing the NS5A protein immunologically[13]. 

Binding of  HCV E2 protein to DCs induces their 
maturation. Several HCV viral proteins, including core, 
NS3, NS5A and NS5B proteins, have been shown to 
inhibit DC functions[69]. Consequently, the functions of  
both CD4+ Th cells and CD8+ CTLs are impaired in 
chronic HCV patients. This has been suggested to be one 
of  the mechanisms that HCV utilizes to weaken host im-
mune responses and spread the infection. Indeed, many 
clinical studies have shown that in chronic HCV patients, 
not only the functions of  DCs are impaired[113,114], the 
functions of  both CD4+ and CD8+ T cells are also im-
paired[115]. A similar inductive effect of  E2 protein was 
also reported in other cell types, including T cells, B 
cells[116], hepatocytes[117] and hepatic stellate cells[118]. 

The role of  HCV genotypes in the progression of  liv-
er disease is one of  the most controversial areas of  HCV 
research. In patients with chronic HCV, infection with 
genotype-1b is reportedly associated with a more severe 
liver disease and a more aggressive course than the infec-
tion with other HCV genotypes. Similarly, it was found 
that HCV genotype-1b was significantly more prevalent 
among patients with liver cirrhosis and those with de-
compensated liver disease requiring liver transplantation 
than among those with chronic active hepatitis C[119-121]. 
Although this is indirect evidence, it suggests an associa-
tion between HCV genotype-1b and the development 
of  these complications. HCV genotype-1b is a marker 
for more severe HCV associated liver disease, because it 
reflects a longer time of  infection than a mere aggressive 
form of  hepatitis C. 

METABOLIC CONDITIONS AFFECTING 
HCV PATHOGENESIS
In addition to immune mediated HCV pathogenesis, 
there are several other clinical and metabolic conditions 
that have a strong association with HCV pathogenesis. 
These include HCV-induced insulin resistance, oxidative 
stress and hepatic steatosis. The following is a brief  de-
scription of  the conditions affecting HCV pathogens:

HCV-induced insulin resistance 
HCV infection influences overall metabolism leading 
to increased steatosis, fibrosis, inflammation, apoptosis 
and insulin resistance (IR)[122,123] during the course of  the 
disease. The resulting IR shows a modulating impact on 
liver pathogenesis by HCV infection[124]. iR increases the 

de novo lipogenesis i.e., fatty acid (FA) synthesis via over-
expression and maturation of  SREBP-1c. This in turn, 
increases the activities of  lipogenic enzymes including 
Acetyl CoA carboxylase and FA synthase. At the same 
time, intermediates of  triglyceride biosynthesis also acti-
vate inhibitors of  insulin signaling. For example, activa-
tion of  protein kinase C-E by phosphorylating insulin 
receptor substrate, and thus inhibiting phosphatidyl 
inositol-3,4,5-triphosphate[125], inhibits Akt translocation 
by ceramides etc.[126]. HCV-core protein, either directly or 
via increased secretion of  TNF-α, causes IR[127,128]. The 
HCV core can activate inhibitors of  insulin signaling in-
cluding mammalian target of  rapamycin[129] and suppres-
sor of  cytokine signaling (SOCS)-3 and C-Jun N-terminal 
kinase (JNK)[130,131]. The activation of  JNK by HCV core 
may follow a direct or indirect proinflammatory cytokine-
mediated mechanism. 

HCV-associated oxidative stress 
Oxidative stress is reported to be an important part of  
HCV-induced liver damage. Previous studies investigated 
the role of  different molecular components of  HCV 
structure in modulating oxidative stress during HCV 
infection. HCV-core protein present within the outer 
membrane of  mitochondria induces oxidation of  glu-
tathione and promotes Ca2+ uptake into mitochondria. 
Clément et al[96] explained the molecular mechanism and 
demonstrated that following glutathione oxidation, there 
is increased reactive oxygen species (ROS) production by 
mitochondrial electron transport complex Ⅰ and Ⅲ. The 
HCV non-structural protein, NS5A, promotes ROS pro-
duction in the membrane of  endoplasmic reticulum (ER) 
by activating the release of  Ca2+ from ER, thereby induc-
ing oxidative stress[97]. NS3 protein induces ROS produc-
tion by activation of  NADPH oxidase[97]. Increased ROS 
production and consequent oxidative stress is evident by 
the presence of  markers of  increased oxidative stress in 
the blood. Levels of  8-hydroxy deoxyguanosine and 4-hy-
droxy-2-nonenol are increased in HCV infection[132,133]. 
Similarly, few studies have shown reduced levels of  glu-
tathione during HCV infection. Another study showed 
that the serum level of  thioredoxin, a marker of  oxidative 
stress, was significantly reduced in HCV infection[134-136].

The presence of  oxidative stress has been noted in 
different types of  hepatitis including hepatitis B. How-
ever, there is a marked increase in oxidative stress (OS) 
in HCV infection[132]. Several studies have shown that 
structural components of  HCV induce effective OS[132]. 
HCV-core and non-structural components, NS3 and 
NS5A proteins, directly induce OS[137-139]. Core protein is 
involved in OS generation via oxidation of  mitochondrial 
glutathione and uptake of  Ca2+ into mitochondria[139,140] 
thus, changing the permeability of  its membrane[141]. 
Electron transport complex Ⅰ increases production of  
ROS and redistributes cytochrome from mitochondria to 
the cytosolic fraction[93]. NS5A is associated with the ER 
membrane[142] and activates signal transducer transcription 
and NFκB[107]. These activations lead to inflammation, 
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immune response and apoptosis[143]. Similarly, NS3 trig-
gers ROS by activating NADPH oxidase 2 in mononucle-
ar and polymorphonuclear phagocytes[144] which increase 
apoptosis of  hepatocytes[144]. All these reports conclude 
that the structural and non-structural components of  
HCV induce a significant increase in OS that results in 
liver damage during HCV infection. 

HCV-induced steatosis 
HCV infection is reported to have a strong association 
with hepatic steatosis. There are several other factors also 
responsible for steatosis, which include alcohol consump-
tion, obesity, and diabetes[145-147]. Studies on steatosis in 
relation to hepatotropic viruses demonstrated that HCV 
infection directly causes steatosis in some patients[148]. 
Studies in experimental animals have shown that HCV-
core protein promotes liver steatosis[149,150]. Furthermore, 
when steatosis was studied in relation to HCV-genotypes, 
it was noted that although steatosis is induced by all 
HCV-genotypes, it appears more prominent and frequent 
with HCV-genotype 3 infection[151-153]. In patients carry-
ing genotype-3 infection, there was a good correlation 
between the level of  steatosis and HCV replication[153,154] 
and the presence of  HCV-core in the liver. In addition, 
steatosis resolves in patient with genotype-3 when treated 
successfully with anti-viral therapy as compared to those 
with non-genotype-3 who remain steatotic[155,156]. Steato-
sis reappears with relapse of  infection[155]. This clearly 
demonstrates that some HCV-genotypes have more ste-
atogenic potential. Subsequent studies[157] indicated that 
genotype-3 interferes with very low-density lipoprotein 
(VLDL) secretion. Core protein, which promotes lipid 
accumulation in hepatocytes[158,159], was more efficient 
from genotype-3 compared to core protein from geno-
type-1. 

All these reports concluded that HCV causes steatosis 
in three different ways: (1) Impaired secretion of  lipids 
from hepatocytes; (2) Increased de novo synthesis of  free 
fatty acids (FFAs); and (3) Impaired FA degradation. The 
first aspect of  HCV-induced steatosis was proposed due 
to the impaired secretion of  VLDL. To substantiate this, 
reports from different studies demonstrated a decreased 
level of  apolipoprotein B and cholesterol in chronic HCV 
infected patients[159,160]. These low levels pointed to HCV 
disturbing the assembly and secretion of  VLDL from 
the liver[161]. Another important aspect in this relationship 
was increased de novo synthesis of  FFAs in the presence 
of  HCV infection. In this context, it is suggested that 
HCV upregulated the sterol regulatory element binding 
protein-1c (SREBP-1c) signaling pathway[158] with NS2 
and NS4B proteins inducing SREBP at the transcription-
al level[162,163]. SREBP was also induced by expression of  
HCV core protein. Studies in chimpanzees infected with 
HCV also demonstrated that HCV increased the activity 
of  lipogenic enzymes such as ATP citrate lyase[164]. HCV-
core, in particular, activates and helps in cellular lipid syn-
thesis[164], possibly via its binding with retinoid receptor. 

HCV-induced steatosis is also due to impaired FA 

degradation by HCV. Expression of  HCV-core protein 
is reported to reduce the expression of  peroxisome 
proliferation activated receptor-α (PPARα), a nuclear 
receptor involved in FA degradation and down-regulation 
of  mitochondria β-oxidation[165]. Genotype-3 shows 
significant down-regulation of  PPARα as compared to 
genotype-1[166,167]. HCV-core protein also down-regulates 
PPARα and therefore, is more effective when from 
genotype-3 as compared to genotype-1. The core protein 
from genotype-3 also down-regulated the PPARγ and up-
regulated SOCS-7 in human hepatoma cells[167]. These 
data clearly show that HCV-core protein may modulate 
the expression of  various genes responsible for FA deg-
radation via down-regulation of  PPARs.

CONCLUSION
HCV infection, previously known as blood borne non-A, 
non-B infection, is a serious public health problem world-
wide. The diagnosis of  HCV is based on the detection of  
anti-HCV antibodies and/or viral nucleic acid in serum. 
Studies over the last few years have developed assays not 
only for the accurate serodiagnosis of  infection, but also 
identification of  HCV serotypes. The pathogenesis of  
HCV infection is quite complex and regulated by host 
immunity as well as several metabolic activities influenc-
ing liver function. Whereas both innate and adaptive 
immunity are involved in the pathogenic action of  HCV, 
the cytotoxic lymphocytes are crucial in deciding the 
eradication or persistence of  viral particles. Moreover, 
the persistence of  HCV infection is also affected by viral 
proteins, HCV isotypes and liver metabolism. In order to 
understand HCV pathogenesis further investigations are 
needed.
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