

Online Submissions: http://www.wjgnet.com/esps/ bpgoffice@wjgnet.com doi:10.3748/wjg.v19.i44.8114 World J Gastroenterol 2013 November 28; 19(44): 8114-8132 ISSN 1007-9327 (print) ISSN 2219-2840 (online) © 2013 Baishideng Publishing Group Co., Limited. All rights reserved.

META-ANALYSIS

Laparoscopic vs open total gastrectomy for gastric cancer: A meta-analysis

Jun-Jie Xiong, Quentin M Nunes, Wei Huang, Chun-Lu Tan, Neng-Wen Ke, Si-Ming Xie, Xun Ran, Hao Zhang, Yong-Hua Chen, Xu-Bao Liu

Jun-Jie Xiong, Chun-Lu Tan, Neng-Wen Ke, Si-Ming Xie, Xun Ran, Hao Zhang, Yong-Hua Chen, Xu-Bao Liu, Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China Quentin M Nunes, Wei Huang, NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool L69 3GA, United Kingdom Author contributions: Xiong JJ and Nunes QM contributed equally to this work; Liu XB, Chen YH and Zhang H designed

the research, and corrected and approved the manuscript; Xiong JJ, Nunes QM and Tan CL developed the literature search and carried out the statistical analyses of the studies; Huang W, Ke NW, Xie SM and Ran X performed data extraction; Xiong JJ, Nunes QM and Huang W wrote the manuscript; All authors read and approved the final manuscript.

Supported by UK/China Postgraduate Scholarships for Excellence, an NIHR Translational Research Fellowship and a Royal College of Surgeons of England-Ethicon Research Fellowship grant

Correspondence to: Xu-Bao Liu, MD, PhD, Professor, Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital, Sichuan University, Guo Xue Rd 37, Chengdu 610041, Sichuan Province, China. liuxb2011@126.com

Telephone: +86-28-85422474 Fax: +86-28-85422872

Received: June 19, 2013 Revised: September 10, 2013 Accepted: September 16, 2013

Published online: November 28, 2013

Abstract

AIM: To conduct a meta-analysis comparing laparoscopic total gastrectomy (LTG) with open total gastrectomy (OTG) for the treatment of gastric cancer.

METHODS: Major databases such as Medline (PubMed), Embase, Academic Search Premier (EBSCO), Science Citation Index Expanded and the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library were searched for studies comparing LTG and OTG from January 1994 to May 2013. Evaluated endpoints were operative, postoperative and oncological outcomes. Operative outcomes included operative time and intraoperative blood loss. Postoperative recovery included time to first flatus, time to first oral intake, hospital stay and analgesics use. Postoperative complications comprised morbidity, anastomotic leakage, anastomotic stenosis, ileus, bleeding, abdominal abscess, wound problems and mortality. Oncological outcomes included positive resection margins, number of retrieved lymph nodes, and proximal and distal resection margins. The pooled effect was calculated using either a fixed effects or a random effects model.

RESULTS: Fifteen non-randomized comparative studies with 2022 patients were included (LTG - 811, OTG - 1211). Both groups had similar short-term oncological outcomes, analgesic use (WMD -0.09; 95%CI: -2.39-2.20; P = 0.94) and mortality (OR = 0.74; 95%CI: 0.24-2.31; P = 0.61). However, LTG was associated with a lower intraoperative blood loss (WMD -201.19 mL; 95%CI: -296.50--105.87 mL; P < 0.0001) and overall complication rate (OR = 0.73; 95%CI: 0.57-0.92; P = 0.009); fewer wound-related complications (OR = 0.39; 95%CI: 0.21-0.72; P = 0.002); a quicker recovery of gastrointestinal motility with shorter time to first flatus (WMD -0.82; 95%CI: -1.18--0.45; *P* < 0.0001) and oral intake (WMD -1.30; 95%CI: -1.84--0.75; P < 0.00001); and a shorter hospital stay (WMD -3.55; 95%CI: -5.13--1.96; P < 0.0001), albeit with a longer operation time (WMD 48.25 min; 95%CI: 31.15-65.35; *P* < 0.00001), as compared with OTG.

CONCLUSION: LTG is safe and effective, and may offer some advantages over OTG in the treatment of gastric cancer.

 $\ensuremath{\mathbb{C}}$ 2013 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Gastric cancer; Laparoscopic total gastrectomy; Laparoscopic assisted total gastrectomy; Open

total gastrectomy; Meta-analysis

Core tip: Currently, surgical resection is the mainstay treatment for gastric cancer. With technical advances and improved instrumentation, laparoscopic total gastrectomy (LTG) is being used increasingly to treat this malignant disease. However, compared with conventional open total gastrectomy (OTG), the safety and technical feasibility of LTG have not been adequately evaluated. This study clarified that, compared with OTG, LTG has similar short-term oncological outcomes, analgesic use and mortality. Furthermore, LTG was associated with lower intraoperative blood loss and overall complication rate, fewer wound-related complications, quicker recovery of gastrointestinal motility and a shorter hospital stay, albeit with a longer operation time.

Xiong JJ, Nunes QM, Huang W, Tan CL, Ke NW, Xie SM, Ran X, Zhang H, Chen YH, Liu XB. Laparoscopic vs open total gastrectomy for gastric cancer: A meta-analysis. *World J Gastroenterol* 2013; 19(44): 8114-8132 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i44/8114.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i44.8114

INTRODUCTION

Gastric cancer is one of the most common cancers worldwide and is a leading cause of cancer death^[1]. Despite improvements in diagnosis and systemic therapy, surgery, in the form of gastrectomy with lymph node dissection, still forms the mainstay of treatment^[2]. Since it was first described in 1994^[3], laparoscopic surgery, and more specifically laparoscopic distal gastrectomy, has been used widely in the far East to treat early gastric cancers and is associated with many advantages over open surgery^[4-7]. On the other hand, laparoscopic total gastrectomy (LTG) with lymph node dissection, which was reported in 1999^[8], is practiced less widely and is more challenging to perform^[9]. The procedure is associated with a high risk of bleeding and a technically demanding anastomosis, all within a narrow operating field^[9,10]. However, with technical advances and improved instrumentation, LTG is now being used increasingly to treat gastric cancer^[11-14]

A number of studies comparing the short-term or long-term outcomes, of LTG *vs* conventional open total gastrectomy (OTG) for early and advanced gastric carcinoma have shown it to be feasible, oncologically effective and safe in experienced hands^[14-17]. LTG offers the potential advantage of being less invasive, causing less surgical trauma with less postoperative pain and a quicker recovery^[18,19]. However, most studies were too small to adequately evaluate the surgical outcomes of LTG. The aim of the current study was to inform future surgical practice by comparing the technical feasibility, effectiveness, and safety of LTG and OTG in the treatment of Xiong JJ et al. Laparoscopic vs open total gastrectomy

early and advanced gastric cancer, through a systematic review and meta-analysis of published comparative studies.

MATERIALS AND METHODS

Literature search

A comprehensive literature search in Medline (PubMed), Embase, Academic Search Premier (EBSCO), Science Citation Index Expanded and the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library was carried out for relevant studies, between January 1994 and May 2013, comparing OTG and LTG in the treatment of gastric cancer. The following search terms were used: "gastric cancer; laparoscopic total gastrectomy; laparoscopic assisted total gastrectomy; minimally invasive surgery; open total gastrectomy" along with their synonyms or abbreviations. Reference lists of selected articles were also examined to identify relevant studies that were not identified in the database searches. Investigators and experts in the field of laparoscopic surgery were contacted to ensure that all relevant studies were identified. Only comparative clinical trials with fulltext descriptions were included. Final inclusion of articles was determined by consensus; when this failed, a third author adjudicated.

Inclusion criteria

Studies included: (1) English language articles published in peer-reviewed journals; (2) human studies; (3) studies with at least one of the outcomes mentioned; (4) clear documentation of the operative techniques as "open" or "laparoscopic" or "laparoscopic-assisted"; and (5) where multiple studies came from the same institute and/or authors, either the higher quality study or the more recent publication was included in the analysis.

Exclusion criteria

Excluded studies: (1) abstracts, letters, editorials, expert opinions, case reports, reviews and studies lacking control groups; (2) studies for benign lesions and gastrointestinal stromal tumor (GIST); (3) studies comparing two laparoscopic surgical approaches or comparing laparoscopic and robot-assisted gastrectomy; (4) studies including only subgroup analyses comparing LTG with OTG; and (5) repeated reports between authors, centers, and the patient community.

Outcomes of interests

Operative outcomes included operation time and intraoperative blood loss. Oncological outcomes included positive resection margins, number of retrieved lymph nodes, and proximal and distal resection margins. Postoperative recovery outcomes included time to first flatus, time to first oral intake, analgesic use and hospital stay. Outcomes for postoperative complications included overall complication rate, anastomotic leakage, anastomotic stenosis, ileus, bleeding, abdominal abscess, wound-related prob-

lems and mortality.

Data extraction and quality assessment

Two independent observers using standardized forms extracted the data. The recorded data included study characteristics, quality assessment and perioperative outcomes. The quality of the studies was assessed using the modified Newcastle-Ottawa Scale, with changes made to reflect the needs of this study^[20,21]. The maximum number of stars in the selection, comparability, and outcome categories were 3, 4, and 2, respectively. Studies achieving 6 or more stars were considered high quality^[22].

Statistical analysis

Meta-analysis was performed using Review Manager Version 5.0 software (The Cochrane Collaboration, Oxford, United Kingdom). For continuous variables, treatment effects were expressed as weighted mean difference (WMD) with corresponding 95% confidence interval (CI). For categorical variables, treatment effects were expressed as odds ratio (OR) with corresponding 95%CI. Heterogeneity was evaluated using the χ^2 test, and a *P* value < 0.1 was considered significant; I^2 values were used for the evaluation of statistical heterogeneity^[23]. A fixed-effects model was initially calculated for all outcomes^[24], but if the test rejected the assumption of homogeneity of the studies, then a random-effects analysis was performed^[25]. Sensitivity analyses were performed by removing individual studies from the data set and analyzing the effect on the overall results, to identify sources of significant heterogeneity. Subgroup analyses were also undertaken by including only high quality studies to present cumulative evidence. Funnel plots based on the operation time were constructed to evaluate potential publication bias^[26].

RESULTS

Description of trials included in the meta-analysis

The search strategy generated 91 relevant clinical studies, among which 19 full text articles^[9,10,14-18,27-38] were identified for further investigation. Of these, four studies^[18,31,35,36] were excluded for various reasons: 1 study^[36], based on an administrative database, was used to assess hospital practice performance with regard to the quantity of medical care items and diet provided during hospitalization; another study^[35] only compared LTG with OTG in a subgroup analysis; and two studies were repeated reports^[18,31]. Finally, 15 studies^[9,10,14-17,27-30,32-34,37,38] were identified for inclusion, of which two were prospective non-randomized comparative studies^[14,28], the rest being retrospective comparative studies. Figure 1 shows the study selection process in our meta-analysis.

Study and patient characteristics

Two thousand and twenty-two patients, 811 patients from the LTG group and 1211 patients from the OTG group, were included in the study. Eleven stud-

Figure 1 Flow diagram outlining the study selection process according to PRISMA guidelines. OTG: Open total gastrectomy; LTG: Laparoscopic total gastrectomy.

ies^[9,10,14,16,17,28,29,32,34,37,38] included patients with both early and advanced gastric cancer, while three studies^[15,30,33] only included patients with early gastric cancer; one study^[27] only included patients with advanced gastric cancer. In seven studies^[14,17,27,30,32,33,37], D2 lymph node dissection was exclusively performed, while $D1+\beta$ was completed in three studies^[9,15,28]. The remaining studies^[10,16,29,34,38] reported D1+ α/β and D2 dissections. All the studies were conducted in Asia and Europe, and were published between 2009 and 2013. The sample size ranged from 19 to 448 patients. From the nine studies^[9,15,17,27,28,30,32,37,38] that reported data on conversion to an open procedure; LTG was converted to an open procedure in five patients in two studies^[17,37]. The study characteristics (Table 1), quality assessment scoring (Table 2), perioperative outcomes of the included studies (Table 3) and the results of the meta-analysis (Table 4) have been summarized appropriately.

Operative outcomes

"Operation time" was reported in all studies. The analysis showed that the LTG group had a significantly longer operation time compared with the OTG group (WMD 48.25 min, 95%CI: 31.15-65.35, P < 0.00001), albeit with a significant heterogeneity ($I^2 = 93\%$). Data from 12 studies^[9,14.17,27-29,31,33,37,38] were pooled together to obtain the

Table 1 Study of	haracter	istics										
Author, year	Country	Study design	Group	No. of patients	Age (yr)	Gender (M/F)	BMI (kg/m²)	ASA (1:2:3)	Tumor size (cm)	Tumor stage ¹	Extent of LND	Population
Dulucq <i>et al</i> ^[28] ,	France	PCS	LTG	8	75 ± 8	3/5	NA	NA	5.5 ± 2	NA	D1 + β	EGC + AGC
2005			OTG	11	67 ± 14	5/6	NA	NA	6.1 ± 0.4	NA		
Usui et al ^[9] ,	Japan	RCS	LTG	20	66.0 ± 10.4	13/7	21.3 ± 3.1	NA	NA	8/10/2/0/0	D1 + β	EGC + AGC
2005			OTG	19	66.2 ± 10.2	14/5	22.1 ± 2.4	NA	NA	10/8/1/0/0		
Kim <i>et al</i> ^[34] ,	South	RCS	LTG	27	57.3 ± 14.2	16/11	22.6 ± 3.1	NA	NA	NA	$D1 + \alpha/\beta$, $D2$	EGC + AGC
2008	Korea		OTG	33	61.6 ± 9.2	23/10	22.4 ± 2.1	NA	NA	NA		
Mochiki et al ^[15] ,	Japan	RCS	LTG	20	66 ± 2.4	16/4	NA	NA	3.6 ± 0.5	NA	D1 + β	EGC
2008			OTG	18	63 ± 2.2	16/2	NA	NA	5.7 ± 0.8	NA		
Topal et al ^[14] ,	Belgium	PCS	LTG	38	68 (37-85)	23/15	24 (17-30)	NA	47 (7-180)	0/17/7/10/4	D2	EGC + AGC
2008			OTG	22	69 (38-86)	17/5	24 (17-30)	NA	30 (10-180)	0/7/7/6/2		
Kawamura <i>et al</i> ^[30] ,	Japan	RCS	LTG	46	64 ± 10.4	10/36	22.8 ± 3.0	15/27/4	NA	NA	D2	EGC
2009			OTG	35	65.2 ± 10.7	10/25	22.9 ± 2.4	14/15/6	NA	NA		
Sakuramoto et al ^[16] ,	Japan	RCS	LTG	30	63.7 ± 9.2	12/18	21.9 ± 2.7	9/20/1	4.0 ± 2.9	0/25/2/3/0	D1 + β , D2	EGC + AGC
2009			OTG	44	67.2 ± 9.9	10/34	22.5 ± 3.6	8/28/8	6.1 ± 3.7	0/15/17/12/0		
Du <i>et al</i> ^[27] ,	China	RCS	LTG	82	60.4 ± 18.5	54/28	22.3 ± 2.6	NA	5.4 ± 1.4	0/3/36/43/0	D2	AGC
2010			OTG	94	57.8 ± 17.2	61/33	22.5 ± 2.4	NA	5.9 ± 1.6	0/6/31/57/0		
Kim <i>et al</i> ^[33] ,	South	RCS	LTG	63	55.9 ± 12.2	43/20	22.7 ± 2.5	45/15/3	3.8 ± 2.1	NA	D2	EGC
2011	Korea		OTG	127	57.3 ± 11.1	81/46	23.0 ± 2.9	86/39/2	3.9 ± 2.7	NA		
Eom <i>et al</i> ^[10] ,	South	RCS	LTG	100	54.9 ± 13.5	57/43	22.7 ± 2.8	NA	4.3 ± 2.9	NA	D1 + β , D2	EGC + AGC
2012	Korea		OTG	348	58.7 ± 11.5	254/94	23.8 ± 2.9	NA	4.4 ± 3.0	NA		
Guan et al ^[17] ,	China	RCS	LTG	41	60.7 ± 9.1	33/8	NA	NA	NA	0/18/20/3/0	D2	EGC + AGC
2012			OTG	56	57.8 ± 9.9	40/16	NA	NA	NA	0/25/25/6/0		
Siani et al ^[38] ,	Italy	RCS	LTG	25	65 ± 8.5	15/10	NA	NA	NA	0/6/5/14/0	$D1 + \alpha/\beta$, $D2$	EGC + AGC
2012			OTG	25	66 ± 7.8	18/7	NA	NA	NA	0/4/5/16/0		
Kim <i>et al</i> ^[32] ,	South	RCS	LTG	139	58 (30-84)	86/53	23.6 (13.6-32.4)	85/46/8	3.2 (0.2, 15)	NA	D2	EGC + AGC
2013	Korea		OTG	207	56 (31-84)	134/73	24.1 (16.7-35.2)	137/52/18	4.0 (0.3, 22)	NA		
Jeong et al ^[29] ,	South	RCS	LTG	122	63.2 ± 11.2	89/33	23.1 ± 3.4	33/80/9	NA	NA	D1 + β , D2	EGC + AGC
2013	Korea		OTG	122	62.6 ± 11.7	93/29	23.5 ± 3.2	43/67/12	NA	NA		
Lee <i>et al</i> ^[37] ,	South	RCS	LTG	50	50.6 ± 22.1	32/18	23.2 ± 3.7	34/11/5	NA	0/24/13/9/4	D2	EGC + AGC
2013	Korea		OTG	50	51 ± 22.6	32/18	23 ± 3.4	31/16/3	NA	0/24/13/9/4		

Continuous variables are presented as means ± SD or median and range. ¹Pathological tumor stage (0/ I / II / II/IV). PCS: Prospective comparative study; RCS: Retrospective comparative study; LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy; BMI: Body mass index; NA: Not available; ASA: American Society of Anesthesiologists; LND: Lymph node dissection; EGC: Early gastric cancer; AGC: Advanced gastric cancer; M/F: Male/female.

mean intraoperative blood loss in the two groups. LTG was associated with a significantly lower intraoperative blood loss compared with OTG (WMD -201.19 mL, 95%CI: -296.50--105.87 mL, P < 0.0001), with a significant heterogeneity ($I^2 = 98\%$). Forest plots for operative outcomes are shown in Figure 2.

Postoperative recovery Twelve studies^[9,16,17,27-30,32-34,37,38] reported the time to first flatus and eight studies^[9,16,17,27,29,32,33,37] reported data on oral intake post-surgery. Our analyses showed that patients undergoing LTG had a quicker recovery of intestinal motility compared with the OTG group. The time to first flatus (WMD -0.82, 95%CI: -1.18--0.45, P < 0.0001) and the time to first oral intake (WMD -1.30, 95%CI: -1.84--0.75, P < 0.00001) were significantly shorter in the LTG group compared with the OTG group. Analysis of the 13 studies $^{[9,10,15-17,28-30,32-34,37,38]}$ that reported the duration of hospital stay indicated that LTG was associated with a significantly shorter postoperative hospital stay compared with OTG (WMD -3.55, 95%CI: -5.13--1.96, *P* < 0.0001). However, there was no statistically significant difference between the two groups in the use of analgesics post-surgery (WMD -0.09, 95%CI: -2.39-2.20, P = 0.94). Forest plots for postoperative recovery outcomes are shown in Figure 3.

Postoperative complications

A pooled analysis of 14 studies^[10,14-17,27-30,32-34,37,38] indicated that the overall complication rate was significantly lower in the LTG group compared with the OTG group (OR = 0.73, 95%CI: 0.57-0.92, P = 0.009). Also, the analysis of 13 studies^[10,15-17,27-30,32-34,37,38] suggested that patients in the LTG group had significantly fewer wound-related complications compared with the OTG group (OR =0.39, 95%CI: 0.21-0.72, P = 0.002). However, there were no significant differences in the rate of anastomotic leak (OR = 1.6, 95%CI: 0.88-2.91, P = 0.12), anastomotic stenosis (OR = 1.22, 95%CI: 0.68-2.21, P = 0.50), ileus (OR 1.26, 95%CI: 0.69,2.30; P = 0.46), bleeding (OR = 1.42, 95%CI: 0.70-2.87; P = 0.33), abdominal abscess (OR = 0.53, 95%CI: 0.28-1.03, P = 0.06) or mortality (OR = 0.74, 95%CI: 0.24-2.31, P = 0.61) between the two groups. Forest plots for postoperative outcomes are shown in Figure 4.

Oncological outcomes

All included studies reported data on the number of lymph nodes retrieved; there was no significant difference between the two groups (WMD -2.49, 95%CI: -5.18-0.21, P = 0.07), albeit with a significant heterogeneity in the result ($I^2 = 74\%$). Five studies^[14,17,27,28,32] reported

Table 2 Quality assessment	t scoring of included studies, according			to NOS crite				
Author, year		Selection		Compa	rability ¹	Outcome	assessment	Star Score
	1	2	3	4	5	6	7	
Dulucq <i>et al</i> ^[28] , 2005	*	*	*	*		*	*	*****
Usui <i>et al</i> ^[9] , 2005	*	*	*			*	*	****
Kim <i>et al</i> ^[34] , 2008	*	*	*			*		****
Mochiki et al ^[15] , 2008	*	*	*	*		*	*	*****
Topal <i>et al</i> ^[14] , 2008	*	*	*	**	**	*		******
Kawamura <i>et al</i> ^[30] , 2009	*	*	*	**	*	*	*	******
Sakuramoto et al ^[16] , 2009	*	*	*	**		*	*	******
Du et al ^[27] , 2010	*	*	*	**		*	*	******
Kim <i>et al</i> ^[33] , 2011	*	*	*	**	*	*		******
Eom <i>et al</i> ^[10] , 2012	*	*	*			*	*	****
Guan <i>et al</i> ^[17] , 2012	*	*	*		*	*		****
Siani <i>et al</i> ^[38] , 2012	*	*	*	*	*	*	*	******
Kim <i>et al</i> ^[32] , 2013	*	*	*	**		*		*****
Jeong <i>et al</i> ^[29] , 2013	*	*	*	**	*	*		******
Lee <i>et al</i> ^[37] , 2013	*	*	*	**	*	*	*	******

Based on Newcastle-Ottowa Scale with maximum of *** for selection, ****for comparability, and ** for outcome assessment. ¹Comparability variables are (1) age, (2) sex, (3) body mass index, (4) American Society of Anesthesiologists, (5) comorbidity, (6) tumor size and (7) tumor stage. Group comparable for (1)-(3) or (4)-(7) (if yes, two stars, one star if one of these three characteristics was not reported, even if there were no other differences between the two groups and other characteristics had been controlled; no points were assigned if the two groups differed).

Table 3 Perioperative outcomes

Author, year	Group	Operation time (min)	Intraoperative blood loss (mL)	No. of resected lymph nodes (n)	Time to first flatus (d)	Time to first oral intake (d)	Hospital stay (d)	Analgesics use (times)	Postoperative complications (%)	In-hospital Mortality (%)
Dulucg et al ^[28] ,	LTG	183 ± 48	81 ± 107	24 ± 12	3.6 ± 1.2	NA	16.9 ± 3	NA	0	0
2005	OTG	165 ± 60	125 ± 95	20 ± 8	4.7 ± 1.2	NA	24 ± 9	NA	18	9
Usui et al ^[9] ,	LTG	280.1 ± 45.2	227.5 ± 148.1	28.0 ± 15.1	2.9 ± 0.9	5.7 ± 2.1	15.5 ± 3.9	2.1 ± 1.3	NA	NA
2005	OTG	266.4 ± 48.2	393.1 ± 173.6	28.9 ± 14.3	4.2 ± 1.4	8.8 ± 1.3	23.2 ± 4.6	3.4 ± 4.4	NA	NA
Kim <i>et al</i> ^[34] ,	LTG	527.5 ± 95.7	NA	27.2 ± 15.7	3.6 ± 0.9	NA	16.2 ± 7.1	NA	7.4	0
2008	OTG	320.9 ± 75.8	NA	37.2 ± 15.7	4.1 ± 1.3	NA	16.0 ± 9.3	NA	24.2	0
Mochiki et al ^[15] ,	LTG	254 ± 10	299 ± 50	26 ± 3	NA	NA	19 ± 3	NA	25	0
2008	OTG	248 ± 12	758 ± 78	35 ± 4	NA	NA	29 ± 3	NA	16.7	0
Topal et al ^[14] ,	LTG	187 ± 60	10.0 ± 98.8	NA	NA	NA	NA	NA	39.5	2.6
2008	OTG	152.5 ± 25	450.0 ± 337.5	NA	NA	NA	NA	NA	40.9	4.5
Kawamura et al ^[30] ,	LTG	291.9 ± 59.4	54.9 ± 45.3	48.5 ± 16.3	4.1 ± 1.0	NA	15.5 ± 3.3	6.9 ± 5.6	8.7	0
2009	OTG	272.1 ± 76.8	304.3 ± 237.3	47.1 ± 21.5	4.3 ± 1.3	NA	18.8 ± 6.3	4.0 ± 3.2	22.9	0
Sakuramoto et al ^[16] ,	LTG	313 ± 81	134 ± 98	43.2 ± 17.2	2.4 ± 1.1	4.9 ± 1.1	13.5 ± 2.7	6.8 ± 6.4	16.7	0
2009	OTG	218 ± 53	407 ± 270	51.2 ± 22.1	3.3 ± 1.0	6.0 ± 2.1	18.2 ± 9.6	11.8 ± 11.0	27.3	0
Du et al ^[27] ,	LTG	275 ± 78	156 ± 112	34.2 ± 13.5	3.5 ± 0.8	3.5 ± 0.8	NA	NA	9.8	0
2010	OTG	212 ± 51	339 ± 162	36.4 ± 19.1	5.3 ± 1.3	5.3 ± 1.3	NA	NA	24.5	2.1
Kim <i>et al</i> ^[33] ,	LTG	150.8 ± 31.2	179.7 ± 123.8	38.7 ± 15.7	3.3 ± 0.7	4.3 ± 1.7	8.1 ± 3.8	5.3 ± 4.9	12.7	0
2011	OTG	131.2 ± 21.6	272.7 ± 209.6	35.6 ± 13.1	3.8 ± 0.8	5.6 ± 4.4	9.6 ± 5.3	3.6 ± 3.9	18.9	0
Eom <i>et al</i> ^[10] ,	LTG	283.7 ± 84.1	NA	48.3 ± 16.4	NA	NA	12.6 ± 15.5	NA	27	1
2012	OTG	198.5 ± 59.7	NA	49.8 ± 18.4	NA	NA	14.3 ± 16.7	NA	23.6	0.9
Guan et al ^[17] ,	LTG	235.7 ± 38.5	104.2 ± 42.9	23.1 ± 8.0	3 ± 0.7	2.2 ± 0.9	9.7 ± 2.2	NA	4.9	0
2012	OTG	211.5 ± 33.2	355.6 ± 51.3	24.2 ± 7.5	3.3 ± 0.4	3.1 ± 0.5	13.6 ± 3.6	NA	5.4	0
Siani et al ^[38] ,	LTG	211 ± 23	250 ± 150	35 ± 18	2.1 ± 0.9	NA	10.5 ± 1.5	NA	16	0
2012	OTG	185 ± 19	495 ± 190	40 ± 16	4.1 ± 1.5	NA	14.5 ± 3.1	NA	4	0
Kim et al ^[32] ,	LTG	144 ± 104.3	NA	37 ± 24	3 ± 2	3 ± 12.3	7 ± 19.3	3 ± 24.5	10	0
2013	OTG	137 ± 105	NA	34 ± 18.8	4 ± 2.3	5 ± 10	8 ± 9	4 ± 9.3	21.7	0
Jeong et al ^[29] ,	LTG	289 ± 89	249 ± 204	42 ± 15	2.9 ± 0.8	3.9 ± 4.4	11.8 ± 11.8	NA	23.8	1.6
2013	OTG	203 ± 78	209 ± 157	46 ± 17	3.0 ± 0.8	3.6 ± 3.3	10.8 ± 7.0	NA	17.2	0.9
Lee <i>et al</i> ^[37] ,	LTG	258 ± 54	167.3 ± 135.2	48.4 ± 18.4	4 ± 1.2	5 ± 1.7	9.3 ± 4.2	NA	24	0
2013	OTG	198 ± 57	178.4 ± 107	54.3 ± 20.5	4.5 ± 1.5	6.1 ± 2.5	11.7 ± 7.3	NA	32	0

LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy; NA: Not available.

data on positive resection margins; in only one study^[14], resection margins were found to be positive in one patient each from the LTG and OTG groups and with no significant difference between the two groups (OR = 0.57, 95%CI: 0.03-9.55, P = 0.69). There were also no

significant differences in the lengths of the proximal resection margin (WMD -0.26, 95%CI: -0.54-0.01, P = 0.06) and distal resection margin (WMD 0.32, 95%CI: -0.05-0.68, P = 0.09) between the two groups when data from four studies^[10,27,32,33] were pooled. Seven studies re-

Table + Results of fileta-allaly	sis comparing lap			open total gasti	ectomy		
Outcome of interest	No. of studies	No. of patients	OR/WMD	95%CI	P value	Heterogeneity <i>P</i> value	ľ
Operative outcomes							
Operation time (min)	15	2022	48.25	31.15-65.35	< 0.00001	< 0.00001	93%
Intraoperative blood loss (mL)	12	1168	-201.19	-296.50105.87	< 0.0001	< 0.00001	98%
Postoperative recovery							
Time to first flatus (d)	12	1412	-0.82	-1.180.45	< 0.0001	< 0.00001	90%
Time to first oral intake (d)	8	1266	-1.3	-1.840.75	< 0.00001	< 0.00001	82%
Hospital stay (d)	13	1786	-3.55	-5.131.96	< 0.0001	< 0.00001	86%
Analgesics use (times)	5	730	-0.09	-2.39-2.20	0.94	0.0008	79%
Postoperative complications							
Overall complication	14	1983	0.73	0.57-0.92	0.009	0.08	37%
Anastomotic leakage	14	1983	1.6	0.88-2.91	0.12	0.68	0%
Anastomotic stenosis	13	1923	1.22	0.68-2.21	0.50	0.95	0%
Ileus	13	1923	1.26	0.69-2.30	0.46	0.85	0%
Bleeding	13	1923	1.42	0.70-2.87	0.33	0.26	23%
Abdominal abscess	13	1923	0.53	0.28-1.03	0.06	0.37	8%
Wound problems	13	1923	0.39	0.21-0.72	0.002	0.75	0%
Oncological outcomes							
Positive resection margins	5	698	0.57	0.03-9.55	0.69	-	-
No. of resected lymph nodes	14	1962	-2.49	-5.18-0.21	0.07	< 0.00001	74%
Proximal resection margin (cm)	4	1160	-0.26	-0.54-0.01	0.06	0.65	0%
Distal resection margin (cm)	4	1160	0.32	-0.05-0.68	0.09	0.22	32%

ported data on long-term survival following the two procedures^[10,15,16,27,28,37,38]. Lee *et al*^[37] reported no significant difference in the disease-specific survival rate between the LTG and OTG groups at a median follow-up of 50 months; there were also no significant differences reported in the disease-free survival rate (100% vs 90.9%, P = 0.5) and the cumulative survival rate (91.5% vs 95.2%, P = 0.618) in patients with stage I cancer (TNM) between the LTG and OTG groups. Eom et al^[10] reported no significant difference in the disease-free survival rates between the LTG and OTG groups, after adjustment for five variables (age, tumor size, Lauren classification, depth of invasion and lymph node metastasis). Mochiki et $al^{[15]}$ reported no significant difference in the cumulate 5-year or disease-specific survival rates between the LTG and OTG groups, while Siani et al^[38] reported 5-year overall and disease free survival rates of 55.7% and 54.2% in the LTG group and 52.9% and 52.1% in the OTG group respectively, with no statistically significant differences. However, as the duration of follow-up varied between studies, it was difficult to compare the survival rates. Forest plots for oncological outcomes are shown in Figure 5.

Sensitivity and subgroup analysis

Sensitivity analyses were performed by removing individual studies from the data and analyzing the effect on the overall results to identify sources of significant heterogeneity. These exclusions did not alter the results obtained from the cumulative analyses. Subgroup analyses were undertaken for all outcome measures by including only high quality studies. Analysis of the high-quality studies showed that there were no significant differences for any of the outcomes. These are shown in Figure 6.

Publication bias

The funnel plot based on the operation time is shown in

Figure 7. There was no broad evidence of publication bias, as none of the studies lay outside the 95%CI limits.

DISCUSSION

Laparoscopic surgery is being used increasingly to treat gastric cancer, and has been shown to have many advantages over open surgery. However, LTG is less widely practiced compared with laparoscopic distal gastrectomy because of the technical challenges it poses and the absence of compelling evidence to substantiate its use^[9]. Technical advances, better instrumentation and increasing surgical experience in the procedure are aiding its increasing application to treat of early and advanced gastric cancer. The aim of the current study was to inform future surgical practice by comparing the technical feasibility, effectiveness, and safety of LTG with OTG in the treatment of early and advanced gastric cancer, using a systematic review and meta-analysis of published comparative studies.

Our analyses indicated that the operation time was significantly longer in the LTG group than in the OTG group. This may be because LTG is more technically demanding than OTG and may result from the learning curve associated with the procedure^[9,10,35]. While adequate training in laparoscopic techniques is necessary, it was concluded that an experienced laparoscopic surgeon would not require any more time to perform LTG compared with OTG^[15]. In one study, the operation time for LTG in the later period was significantly shorter than in the early period; this related to the experience gained by the surgeon over the period of the study^[34]. Further development in surgical techniques, especially for anastomosis and new instruments, may further decrease the operation time for LTG^[10]. In our study, LTG was associated with a significantly lower intraoperative blood

Α			LTG			OTG			Mean difference		Mean difference
	Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95%CI	Year	IV, random, 95%CI
	Usui 2005	280.1	45.2	20	266.4	48.2	19	6.3%	13.70 [-15.66, 43.06]	2005	
	Dulucq 2005	183	48	8	165	60	11	4.8%	18.00 [-30.62, 66.62]	2005	
	Mochiki 2008	254	10	20	248	12	18	7.6%	6.00 [-1.07, 13.07]	2008	+
	Kim 2008	527.5	95.7	27	320.9	75.8	33	5.1%	206.60 [162.19, 251.01]	2008	•
	Topal 2008	187	60	38	152.5	25	22	6.9%	34.50 [12.75, 56.25]	2008	
	Sakuramoto 2009	313	81	30	218	53	44	6.0%	95.00 [62.06, 127.94]	2009	
	Kawamura 2009	291.9	59.4	46	272.1	76.8	35	6.2%	19.80 [-10.89, 50.49]	2009	
	Du 2010	275	78	82	212	51	94	7.0%	63.00 [43.22, 82.78]	2010	
	Kim 2011	150.8	31.2	63	131.2	21.6	127	7.6%	19.60 [11.03, 28.17]	2011	
	Guan 2012	235.7	38.5	41	211.5	33.2	56	7.3%	24.20 [9.55, 38.85]	2012	
	Eom 2012	283.7	84.1	100	198.5	59.7	348	7.1%	85.20 [67.56, 102.84]	2012	_
	Siani 2012	211	23	25	185	19	25	7.5%	26.00 [14.31, 37.69]	2012	
	Jeong 2013	289	89	122	203	78	122	6.9%	86.00 [65.00, 107.00]	2013	
	Lee 2013	258	54	50	198	57	50	6.9%	60.00 [38.24, 81.76]	2013	
	Kim 2013	144	104.3	139	137	105	207	6.8%	7.00 [-15.48, 29.48]	2013	
	Total (95%CI)			811			1211	100.0%	48.25 [31.15, 65.35]		•
	Heterogeneity: Tau	J ² = 98	4.69; χ ³	² = 21	4.38, <i>di</i>	^e = 14	(<i>P</i> < 0	.00001); <i>I</i> ²	= 93%	100	
	Test for overall effe	ect: <i>Z</i> =	= 5.53 (<i>i</i>	P < 0.0	00001)					-100	Favours LTG Favours OTG

Figure 2 Forest plots illustrating results of operative outcomes in the form of a meta-analysis comparing laparoscopic total gastrectomy vs open total gastrectomy for gastric cancer. Pooled weighted mean difference (WMD) with 95%Cl was calculated using the random effects model. A: Operation time; B: Intraoperative blood loss. LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy.

		LTG			OTG			Mean difference		Mean difference
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95%CI	Year	IV, random, 95%CI
Dulucq 2005	3.6	1.2	8	4.7	1.2	11	5.3%	-1.10 [-2.19, -0.01]	2005	
Usui 2005	2.9	0.9	20	4.2	1.4	19	7.1%	-1.30 [-2.04, -0.56]	2005	_ -
Kim 2008	3.6	0.9	27	4.1	1.3	33	8.1%	-0.50 [-1.06, 0.06]	2008	
Kawamura 2009	4.1	1	46	4.3	1.3	35	8.4%	-0.20 [-0.72, 0.32]	2009	
Sakuramoto 2009	2.4	1.1	30	3.3	1	44	8.5%	-0.90 [-1.39, -0.41]	2009	_ _
Du 2010	3.5	0.8	82	5.3	1.3	94	9.3%	-1.80 [-2.11, -1.49]	2010	-
Kim 2011	3.3	0.7	63	3.8	0.8	63	9.5%	-0.50 [-0.76, -0.24]	2011	
Guan 2012	3	0.7	41	3.3	0.4	56	9.6%	-0.30 [-0.54, -0.06]	2012	
Siani 2012	2.1	0.9	25	4.1	1.5	25	7.4%	-2.00 [-2.69, -1.31]	2012	_ _
Lee 2013	4	1.2	50	4.5	1.5	50	8.3%	-0.50 [-1.03, 0.03]	2013	
Jeong 2013	2.9	0.8	122	3	0.8	122	9.7%	-0.10 [-0.30, 0.10]	2013	-
Kim 2013	3	2	139	4	2.3	207	8.7%	-1.00 [-1.46, -0.54]	2013	
Total (95%CI)			653			759	100.0%	-0.82 [-1.18, -0.45]		
Heterogeneity: Tau	² = 0.35	$\xi_{i}^{2} =$	113.3	3, <i>df</i> = 1	11 (P	< 0.000	$(001); I^2 = 9$	90%		▼
Test for overall effe	ect: <i>Z</i> = -	4.37 (<i>P</i>	< 0.0	001)						-4 -2 0 2 4
		`		,						Favours LTG Favours OTG

90 WJG | www.wjgnet.com

В			LTG			OTG			Mean difference		Mean difference
	Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95%CI	Year	IV, random, 95%CI
	Usui 2005	5.7	2.1	20	8.8	1.3	19	10.6%	-3.10 [-4.19, -2.01]	2005	
	Sakuramoto 2009	4.9	1.1	30	6	2.1	44	13.8%	-1.10 [-1.83, -0.37]	2009	-
	Du 2010	3.5	0.8	82	5.3	1.3	94	17.4%	-1.80 [-2.11, -1.49]	2010	-
	Kim 2011	4.3	1.7	63	5.6	4.4	127	12.5%	-1.30 [-2.17, -0.43]	2011	
	Guan 2012	2.2	0.9	41	3.1	0.5	56	17.4%	-0.90 [-1.21, -0.59]	2012	
	Jeong 2013	3.9	4.4	122	3.6	3.3	122	11.6%	0.30 [-0.68, 1.28]	2013	_ _ _
	Kim 2013	3	12.3	139	5	10	207	3.9%	-2.00 [-4.46, 0.46]	2013	
	Lee 2013	5	1.7	50	6.1	2.5	50	12.8%	-1.10 [-1.94, -0.26]	2013	
		-									-
	Total (95%CI)			547			719	100.0%	-1.30 [-1.84, -0.75]		•
	Heterogeneity: Tau	$1^2 = 0.42$	2; $\chi^2 =$	37.91,	<i>df</i> = 7	(P <	0.00001	l); I ² = 82	.%		, *
	Test for overall effe	ect: <i>Z</i> =	4.67 (<i>F</i>	? < 0.0	0001)						-4 -2 0 2 4
											Favours LTG Favours OTG
~			LTC			отс			Maan difference		Manua difference
L		Maan		Tatal	Maan		Tatal	Mainht	Mean difference	Veen	Mean difference
	Study or subgroup	Mean	50	Total	Mean	SD	Total	weight		rear	
	Dulucq 2005	16.9	3	8	24	9	11	4.3%	-7.10 [-12.81, -1.39]	2005	
	Usui 2005	15.5	3.9	20	23.2	4.6	19	7.7%	-7.70 [-10.38, -5.02]	2005	
	Mochiki 2008	19	3	20	29	3	18	8.6%	-10.00 [-11.91, -8.09]	2008	- - -
	Kim 2008	16.2	7.1	27	16	9.3	33	5.9%	0.20 [-3.95, 4.35]	2008	
	Sakuramoto 2009	13.5	2.7	30	18.2	9.6	44	7.3%	-4.70 [-7.70, -1.70]	2009	_
	Kawamura 2009	15.5	3.3	46	18.8	6.3	35	8.2%	-3.30 [-5.59, -1.01]	2009	
	Kim 2011	8.1	3.8	63	9.6	5.3	127	9.2%	-1.50 [-2.82, -0.18]	2011	
	Eom 2012	12.6	15.5	100	14.3	16.7	348	6.6%	-1.70 [-5.21, 1.81]	2012	
	Guan 2012	9.7	2.2	41	13.6	3.6	56	9.4%	-3.90 [-5.06, -2.74]	2012	
	Siani 2012	10.5	1.5	25	14.5	3.1	25	9.2%	-4.00 [-5.35, -2.65]	2012	
	Lee 2013	9.3	4.2	50	11.7	4.3	50	8.9%	-2.40 [-4.07, -0.73]	2013	
	Jeona 2013	11.8	11.8	122	10.8	7	122	8.0%	1.00 [-1.43, 3.43]	2013	
	Kim 2013	7	19.3	139	8	9	207	6.7%	-1.00 [-4.43, 2.43]	2013	
	Total (95%CI)		<i>c</i> ,	691		- (-	1095	100.0%	-3.55 [-5.13, -1.96]		◆
	Heterogeneity: Tau	$1^2 = 6.6$	$b; \chi^2 =$	86.74,	ar = 1	2 (P <	0.0000	$(11); 1^2 = 8$	66%		-10 -5 0 5 10
	Test for overall effe	ect: Z =	4.38 (F	< 0.0	001)						Favours LTG Favours OTG
			LTC			отс			Moon difforence		Moon difference
υ	Study or subgroup	Mean	SD	Total	Mean		Total	Weight	IV random 95%CI	Voar	IV random 95%CI
			10	10(a)		30	10(2)		1 20 5 2 25 0 761	2005	
	USUI 2005 Sakuramoto 2000	2.1	1.3	20	3.4 11 0	4.4	19	22.6%		2005	
		0.0	0.4	30	11.0	2.2	77	13.1%	-3.00 [-0.96, -1.02]	2009	
		0.9	5.0	40	4	3.2	122	25.1%	2.90 [0.97, 4.65]	2009	
	KIM 2011	5.3	4.9	63	3.6	3.9	127	25.1%	1.70 [0.31, 3.09]	2011	
	KIM 2013	3	24.5	139	4	9.3	207	14.1%	-1.00 [-5.27, 3.27]	2013	-
	Total (95%CI)			298			432	100.0%	-0.09 [-2.39, 2.20]		
	Heterogeneity: Tau	² = 4.9	6; χ ² =	18.98,	<i>df</i> = 4	(<i>P</i> =	0.0008)	; I ² = 799	6		
	Test for overall effe	ect: <i>Z</i> =	0.08 (<i>F</i>	? = 0.9	4)		,				Favours LTG Favours OTG
			•								

Figure 3 Forest plots illustrating results of postoperative recovery in the form of a meta-analysis comparing laparoscopic total gastrectomy vs open total gastrectomy for gastric cancer. Pooled weighted mean difference (WMD) with 95%Cl was calculated using the random-effects model. A: Time to first flatus; B Time to first oral intake; C: Hospital stay; D: Analgesic use. LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy.

loss, which depends considerably on a surgeon's skill and experience^[34].

The times to first flatus and to first oral intake were significantly shorter in the LTG group compared with the OTG group, which suggests that intestinal motility recovered more quickly in the LTG group. Also, the period of hospital stay was significantly shorter in the LTG group. LTG is a less invasive procedure and is associated with less surgical trauma. This results in a reduced inflammatory response and better glucose tolerance, which may aid a quicker recovery^[10,30]. Pain following LTG subsides earlier when compared to OTG^[18]. However, our study showed no significant difference in the postoperative use of analgesics between the two groups.

A quicker recovery and shorter hospital stay have important cost and quality of life implications for the wider use of LTG in the treatment of gastric cancer.

Total gastrectomy has often been described as highrisk^[39,40] and LTG is technically demanding^[9,10]. Common postoperative complications associated with LTG include anastomotic leak, anastomotic stenosis and luminal bleeding^[37]. The anastomotic complications could be caused by excessive traction applied on the esophagus and jejunal limb mobilization^[10] or may reflect the learning curve associated with LTG^[37]. In our study, the overall complication rate was significantly lower in the LTG group compared with the OTG group. Also, there were significantly fewer wound-related complications in the LTG

A

		LTG		OTG	Weight	Odds ratio		Odds Ratio
Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year	M-H, fixed, 95%CI
Dulucq 2005	0	8	2	11	1.3%	0.22 [0.01, 5.34]	2005	• • •
Topal 2008	15	38	9	22	4.3%	0.94 [0.32, 2.75]	2008	
Mochiki 2008	5	20	3	18	1.5%	1.67 [0.34, 8.26]	2008	
Kim 2008	2	27	8	33	4.1%	0.25 [0.05, 1.30]	2008	
Sakuramoto 2009	5	30	12	44	5.0%	0.53 [0.17, 1.71]	2009	
Kawamura 2009	4	46	8	35	5.1%	0.32 [0.09, 1.17]	2009	
Du 2010	8	82	23	94	12.0%	0.33 [0.14, 0.79]	2010	
Kim 2011	8	63	24	127	8.6%	0.62 [0.26, 1.48]	2011	
Guan 2012	2	41	3	56	1.5%	0.91 [0.14, 5.68]	2012	
Siani 2012	4	25	5	25	2.6%	0.76 [0.18, 3.25]	2012	
Eom 2012	27	100	82	348	16.5%	1.20 [0.72, 1.99]	2012	
Kim 2013	14	139	45	207	20.1%	0.40 [0.21, 0.77]	2013	_ _
Lee 2013	12	50	16	50	7.5%	0.67 [0.28, 1.62]	2013	
Jeong 2013	29	122	21	122	9.9%	1.50 [0.80, 2.81]	2013	+
Total (95%CI)		791		1192	100.0%	0.73 [0.57, 0.92]		•
Heterogeneity: $\chi^2 =$	20.60, <i>df</i> =	= 13 (<i>P</i> =	0.08); I ² =	= 37%				•
Test for overall effect	ct: Z = 2.62	(P = 0.0)	09)					
								0.01 0.1 1 10 10(

В			LTG		OTG	Weight	Odds ratio		Odds ratio	
	Study or subgroup	Events	Total	Events	Total	5	M-H, fixed, 95%CI	Year	M-H, fixed, 95%CI	
	Dulucq 2005	0	8	0	11		Not estimable	2005		_
	Kim 2008	1	27	0	33	2.5%	3.79 [0.15, 96.92]	2008		
	Mochiki 2008	2	20	1	18	5.6%	1.89 [0.16, 22.79]	2008		
	Topal 2008	2	38	0	22	3.5%	3.08 [0.14, 67.16]	2008		
	Sakuramoto 2009	0	30	3	44	16.7%	0.19 [0.01, 3.90]	2009	← ■	
	Kawamura 2009	0	46	0	35		Not estimable	2009		
	Du 2010	0	82	0	94		Not estimable	2010		
	Kim 2011	1	63	3	127	11.6%	0.67 [0.07, 6.54]	2011		
	Eom 2012	4	100	5	348	12.7%	2.86 [0.75, 10.85]	2012		
	Guan 2012	0	41	0	56		Not estimable	2012		
	Siani 2012	1	25	0	25	2.8%	3.12 [0.12, 80.39]	2012		
	Lee 2013	3	50	2	50	11.2%	1.53 [0.24, 9.59]	2013		
	Kim 2013	0	139	3	207	16.7%	0.21 [0.01, 4.09]	2013		
	Jeong 2013	9	122	3	122	16.5%	3.16 [0.83, 11.97]	2013		
	Total (95%CI)		791		1192	100.0%	1.60 [0.88, 2.91]		•	
	Heterogeneity: $\chi^2 =$	6.62, <i>df</i> =	9 (<i>P</i> = 0	.68); <i>I</i> ² = (0%				•	
	Test for overall effect	ct: <i>Z</i> = 1.54	(P = 0.1)	.2)					· · · · · · · · ·	
				-					0.01 0.1 1 10 10	0

Favours LTG Favours OTG

		LTG		OTG	Weight	Odds ratio		Odds ratio
Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year	M-H, fixed, 95%CI
Dulucq 2005	0	8	0	11		Not estimable	2005	
Kim 2008	0	27	0	33		Not estimable	2008	
Mochiki 2008	1	20	1	18	5.1%	0.89 [0.05, 15.44]	2008	
Sakuramoto 2009	2	30	1	44	3.9%	3.07 [0.27, 35.49]	2009	
Kawamura 2009	0	46	1	35	8.6%	0.25 [0.01, 6.26]	2009	← ■
Du 2010	0	82	0	94		Not estimable	2010	
Kim 2011	0	63	0	127		Not estimable	2011	
Eom 2012	9	100	26	348	54.4%	1.22 [0.55, 2.71]	2012	
Siani 2012	0	25	0	25		Not estimable	2012	
Guan 2012	0	41	0	56		Not estimable	2012	
Kim 2013	2	139	2	207	8.2%	1.50 [0.21, 10.75]	2013	
Jeong 2013	2	122	2	122	10.1%	1.00 [0.14, 7.22]	2013	
Lee 2013	3	50	2	50	9.7%	1.53 [0.24, 9.59]	2013	
Total (95%CI)		753		1170	100.0%	1.22 [0.68, 2.21]		•
Heterogeneity: $\chi^2 =$	1.67, <i>df</i> =	6(P = 0	.95); <i>I</i> ² =	0%				
Test for overall effect	ct: Z = 0.67	P = 0.5	50)					0.01 0.1 1 10 100
								Favours LTG Favours OTG

		LTG		OTG	Weight	Odds ratio			Odd	s rati	0	
Study or subgroup	Events	Iotal	Events	lotal		M-H, fixed, 95%Cl	Year		M-H, fix	ed, 95	5%CI	
Dulucq 2005	0	8	0	11		Not estimable	2005					
Kim 2008	1	27	0	33	2.4%	3.79 [0.15, 96.92]	2008			_	•	
Mochiki 2008	1	20	0	18	2.7%	2.85 [0.11, 74.38]	2008				-	
Sakuramoto 2009	2	30	1	44	4.2%	3.07 [0.27, 35.49]	2009				•	-
Kawamura 2009	0	46	0	35		Not estimable	2009					
Du 2010	0	82	0	94		Not estimable	2010					
Kim 2011	0	63	1	127	5.5%	0.66 [0.03, 16.53]	2011	-			<u> </u>	
Eom 2012	8	100	31	348	70.1%	0.89 [0.40, 2.00]	2012		-	<u> </u>		
Guan 2012	0	41	0	56		Not estimable	2012					
Siani 2012	0	25	0	25		Not estimable	2012					
Kim 2013	3	139	1	207	4.3%	4.54 [0.47, 44.14]	2013		_			_
Lee 2013	1	50	1	50	5.4%	1.00 [0.06, 16.44]	2013			-		
Jeong 2013	1	122	1	122	5.5%	1.00 [0.06, 16.17]	2013			+		
Total (95%CI)		753		1170	100.0%	1.26 [0.69, 2.30]				\bullet		
Total events	17		36							-		
Heterogeneity: $\chi^2 =$	= 3.33, <i>df</i> =	7(P = 0	.85); <i>I</i> ² = (0%				L	1		I	
Test for overall effect	ct: $Z = 0.75$	(<i>P</i> = 0.4	i6)					0.01 Fa	0.1 avours LTG	1	10 Favours C	100)TG

E		LTG		OTG	Weight	Odds ratio		Odds ratio
Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year	M-H, fixed, 95%CI
Dulucq 2005	0	8	0	11		Not estimable	2005	
Kim 2008	1	27	0	33	3.3%	3.79 [0.15, 96.92]	2008	
Mochiki 2008	0	20	0	18		Not estimable	2008	
Sakuramoto 2009	1	30	0	44	3.0%	4.53 [0.18, 114.89]	2009	
Kawamura 2009	0	46	0	35		Not estimable	2009	
Du 2010	0	82	0	94		Not estimable	2010	
Kim 2011	1	63	5	127	25.3%	0.39 [0.04, 3.44]	2011	
Guan 2012	0	41	0	56		Not estimable	2012	
Siani 2012	0	25	0	25		Not estimable	2012	
Eom 2012	0	100	6	348	22.5%	0.26 [0.01, 4.69]	2012	_
Kim 2013	3	139	2	207	12.2%	2.26 [0.37, 13.71]	2013	
Jeong 2013	9	122	2	122	14.4%	4.78 [1.01, 22.60]	2013	
Lee 2013	0	50	2	50	19.2%	0.19 [0.01, 4.10]	2013	← ■
Total (95%CI)		753		1170	100.0%	1.42 [0.70, 2.87]		•
Total events	15		17					•
Heterogeneity: $\chi^2 =$	7.75, <i>df</i> =	6(P = 0	.26); <i>I</i> ² =	23%				
Test for overall effect	ct: Z = 0.98	B(P = 0.3)	33)					0.01 0.1 1 10 100 Favours LTG Favours OTG

F		LTG		OTG	Weight	Odds ratio			0	Odds ratio	0	
Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year		М-Н,	fixed, 95	5%CI	
Dulucq 2005	0	8	1	11	4.6%	0.41 [0.01, 11.46]	2005			-		
Kim 2008	0	27	0	33		Not estimable	2008					
Mochiki 2008	0	20	0	18		Not estimable	2008					
Sakuramoto 2009	0	30	2	44	7.5%	0.28 [0.01, 6.01]	2009		-			
Kawamura 2009	0	46	0	35		Not estimable	2009					
Du 2010	0	82	0	94		Not estimable	2010					
Kim 2011	4	63	9	127	21.0%	0.89 [0.26, 3.01]	2011		-	-	_	
Siani 2012	0	25	0	25		Not estimable	2012					
Eom 2012	0	100	0	348		Not estimable	2012					
Guan 2012	0	41	0	56		Not estimable	2012					
Lee 2013	3	50	1	50	3.5%	3.13 [0.31, 31.14]	2013				•	_
Jeong 2013	5	122	8	122	28.8%	0.61 [0.19, 1.92]	2013		_			
Kim 2013	0	139	11	207	34.6%	0.06 [0.00, 1.05]	2013	←	-			
Total (95%CI)		753		1170	100.0%	0.53 [0.28, 1.03]						
Total events	12		32							-		
Heterogeneity: $\chi^2 =$	= 5.43, <i>df</i> =	5 (<i>P</i> = 0	.37); <i>I</i> ² = 8	3%				L	1			
Test for overall effe	ct: Z = 1.88	B(P = 0.0)	06)					0.01	0.1	1	10	100
		-	-					Fa	avours LT	G	Favours (JTG

G		LTG		OTG	Weight	Odds ratio		Odds ratio
Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year	M-H, fixed, 95%CI
Dulucq 2005	0	8	0	11		Not estimable	2005	
Kim 2008	1	27	0	33	1.1%	3.79 [0.15, 96.92]	2008	
Mochiki 2008	0	20	0	18		Not estimable	2008	
Kawamura 2009	0	46	0	35		Not estimable	2009	
Sakuramoto 2009	1	30	2	44	4.1%	0.72 [0.06, 8.36]	2009	
Du 2010	7	82	11	94	24.5%	0.70 [0.26, 1.91]	2010	_
Kim 2011	1	63	5	127	8.5%	0.39 [0.04, 3.44]	2011	
Siani 2012	0	25	2	25	6.4%	0.18 [0.01, 4.04]	2012	•
Eom 2012	0	100	4	348	5.2%	0.38 [0.02, 7.13]	2012	
Guan 2012	0	41	1	56	3.3%	0.45 [0.02, 11.22]	2012	
Lee 2013	1	50	5	50	12.8%	0.18 [0.02, 1.63]	2013	
Jeong 2013	0	122	3	122	9.1%	0.14 [0.01, 2.73]	2013	• • •
Kim 2013	1	139	12	207	25.0%	0.12 [0.02, 0.92]	2013	
Total (95%CI)		753		1170	100.0%	0.39 [0.21, 0.72]		•
Total events	12		45					
Heterogeneity: χ^2 =	= 5.95, <i>df</i> =	9 (<i>P</i> = 0	.75); <i>I</i> ² = (0%				
Test for overall effe	ect: $Z = 3.03$	(<i>P</i> = 0.0	002)					0.01 0.1 1 10 100 Favours LTG Favours OTG

н		LTG		OTG	Weight	Odds ratio		Odds ratio
Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year	M-H, fixed, 95%CI
Dulucq 2005	0	8	1	11	17.2%	0.41 [0.01, 11.46]	2005	
Topal 2008	1	38	1	22	17.4%	0.57 [0.03, 9.55]	2008	
Mochiki 2008	0	20	0	18		Not estimable	2008	
Kim 2008	0	27	0	33		Not estimable	2008	
Sakuramoto 2009	0	30	0	44		Not estimable	2009	
Kawamura 2009	0	46	0	35		Not estimable	2009	
Du 2010	0	82	2	94	32.8%	0.22 [0.01, 4.74]	2010	
Kim 2011	0	63	0	127		Not estimable	2011	
Guan 2012	0	41	0	56		Not estimable	2012	
Eom 2012	1	100	3	348	18.7%	1.16 [0.12, 11.29]	2012	_
Siani 2012	0	25	0	25		Not estimable	2012	
Kim 2013	0	139	0	207		Not estimable	2013	
Lee 2013	0	50	0	50		Not estimable	2013	
Jeong 2013	2	122	1	122	13.9%	2.02 [0.18, 22.54]	2013	
Total (95%CI)		791		1192	100.0%	0.74 [0.24, 2.31]		-
Total events	4		8					
Heterogeneity: χ^2 =	= 1.55, <i>df</i> =	4(P = 0	.82); <i>I</i> ² = 0)%				
Test for overall effe	ct: $Z = 0.52$	e (<i>P</i> = 0.6	51)					Favours LTG Favours OTG

Figure 4 Forest plots illustrating results of postoperative complications in the form of a meta-analysis comparing laparoscopic total gastrectomy vs open total gastrectomy for gastric cancer. Pooled odds ratio (OR) with 95%CI was calculated using the fixed-effects model. A: Overall complication rate; B: Anastomotic leak; C: Anastomotic Stenosis; D: Ileus; E: Bleeding; F: Abdominal abscess; G: Wound-related complications; H: Mortality. LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy.

		LTG			OTG			Mean difference		Mean difference
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95%CI	Year	IV, random, 95%CI
Usui 2005	28	15.1	20	28.9	14.3	19	4.8%	-0.90 [-10.13, 8.33]	2005	
Dulucq 2005	24	12	8	20	8	11	4.6%	4.00 [-5.57, 13.57]	2005	
Mochiki 2008	26	3	20	35	4	18	10.2%	-9.00 [-11.27, -6.73]	2008	-
Kim 2008	27.2	15.7	27	37.2	15.7	33	5.6%	-10.00 [-17.99, -2.01]	2008	
Kawamura 2009	48.5	16.3	46	47.1	12.5	35	6.9%	1.40 [-4.87, 7.67]	2009	
Sakuramoto 2009	43.2	17.2	30	51.2	22.1	44	5.0%	-8.00 [-16.97, 0.97]	2009	
Du 2010	34.2	13.5	82	36.4	19.1	94	8.1%	-2.20 [-7.04, 2.64]	2010	
Kim 2011	38.7	15.7	63	35.6	13.1	127	8.4%	3.10 [-1.40, 7.60]	2011	
Siani 2012	35	18	25	40	16	25	4.7%	-5.00 [-14.44, 4.44]	2012	
Guan 2012	23.1	8	41	24.2	7.5	56	9.6%	-1.10 [-4.24, 2.04]	2012	
Eom 2012	48.3	16.4	100	49.8	18.4	348	9.1%	-1.50 [-5.25, 2.25]	2012	
Kim 2013	37	24	139	34	18.8	207	8.2%	3.00 [-1.74, 7.74]	2013	
Jeong 2013	42	15	122	46	17	122	8.9%	-4.00 [-8.02, 0.02]	2013	
Lee 2013	48.4	18.4	50	54.3	20.5	50	5.9%	-5.90 [-13.54, 1.74]	2013	
Total (95%CI)			773			1189	100.0%	-2.49 [-5.18, 0.21]		•
Heterogeneity: Tau	² = 17.	15;χ² =	= 50.76	b, df = 1	3 (<i>P</i> <	0.0000	1); <i>I</i> ² = 7	4%		-20 -10 0 10 20

Test for overall effect: Z = 1.81 (P = 0.07)

Xiona 11 et al	Lanarosconic	vs open tot	al gastrectomy
7.1011g 33 Ct u/.	Laparoscopic	vo open tot	ar gasa cecomy

3		LTG		OTG	Weight	Odds ratio			Oc	lds ratio	C	
Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year		M-H, fi	xed, 95	5%CI	
Dulucq 2005	0	8	0	11		Not estimable	2005					
Topal 2008	1	38	1	22	100.0%	0.57 [0.03, 9.55]	2008					
Du 2010	0	82	0	94		Not estimable	2010					
Guan 2012	0	41	0	56		Not estimable	2012					
Kim 2013	0	139	0	207		Not estimable	2013					
Total (95%CI)		308		390	100.0%	0.57 [0.03, 9.55]						
Total events	1		1									
Heterogeneity: Not	applicable	2						L				
Test for overall effe	ect: <i>Z</i> = 0.	39 (<i>P</i> =	0.69)					0.01 Fa	0.1 avours LTG	1	10 Favours (100 DTG

С			LTG			OTG			Mean difference		Mean difference
	Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, fixed, 95%CI	Year	IV, fixed, 95%CI
	Du 2010	3	1.4	82	3.1	1.2	94	50.8%	-0.10 [-0.49, 0.29]	2010	— B —
	Kim 2011	2.8	2.3	63	3.2	1.8	127	18.2%	-0.40 [-1.05, 0.25]	2011	
	Eom 2012	4.4	2.4	100	4.8	2.7	348	25.4%	-0.40 [-0.95, 0.15]	2012	_
	Kim 2013	2.3	4.2	139	3	6.8	207	5.7%	-0.70 [-1.86, 0.46]	2013	
	Total (95%CI)	4.62		384		<u></u>	776	100.0%	-0.26 [-0.54, 0.01]		•
	Heterogeneity: χ^2 :	= 1.63, 0	f = 3 ((P = 0.)	65); 12 =	= 0%					
	Test for overall effe	ect: $Z =$	1.88 (P	? = 0.00	6)						Favours LTG Favours OTG

D			LTG			OTG			Mean difference		Mea	an diffe	erence	
	Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, fixed, 95%CI	Year	IV, t	fixed, 9	95%CI	
	Du 2010	3.1	1.8	82	2.9	0.6	94	78.9%	0.20 [-0.21, 0.61]	2010				
	Kim 2011	13.4	4.9	63	13.2	4.8	127	6.1%	0.20 [-1.27, 1.67]	2011		+		
	Eom 2012	11.4	4.7	100	10.8	5	348	11.7%	0.60 [-0.46, 1.66]	2012		•		
	Kim 2013	13.5	10.9	139	11.2	6.2	207	3.3%	2.30 [0.30, 4.30]	2013		-		
	Total (95%CI)			384			776	100.0%	0.32 [-0.05, 0.68]					
	Heterogeneity: χ^2 =	= 4.39, a	f = 3 (P = 0.2	22); I ² =	32%				L				
	Test for overall effe	ect: Z = 1	1.71 (P	= 0.09)					-100	-50	0	50	100
											Favours LIG	F	-avours OIG	

Figure 5 Forest plots illustrating results of oncological outcomes in the form of a meta-analysis comparing laparoscopic total gastrectomy vs open total gastrectomy for gastric cancer. Pooled weighted mean difference (WMD) or odds ratio (OR) with 95%Cl were calculated using the fixed or random-effects model. A: No. of resected lymph nodes; B: Positive resection margins; C: Proximal resection margin; D: Distal resection margin. LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy.

A			LTG			OTG			Mean difference		Mean difference
	Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95%CI	Year	IV, random, 95%CI
	Dulucq 2005	183	48	8	165	60	11	5.5%	18.00 [-30.62, 66.62]	2005	
	Mochiki 2008	254	10	20	248	12	18	11.0%	6.00 [-1.07, 13.07]	2008	-
	Topal 2008	187	60	38	152.5	25	22	9.3%	34.50 [12.75, 56.25]	2008	
	Sakuramoto 2009	313	81	30	218	53	44	7.6%	95.00 [62.06, 127.94]	2009	
	Kawamura 2009	291.9	59.4	46	272.1	76.8	35	7.9%	19.80 [-10.89, 50.49]	2009	+
	Du 2010	275	78	82	212	51	94	9.6%	63.00 [43.22, 82.78]	2010	
	Kim 2011	150.8	31.2	63	131.2	21.6	127	10.8%	19.60 [11.03, 28.17]	2011	+
	Siani 2012	211	23	25	185	19	25	10.6%	26.00 [14.31, 37.69]	2012	-
	Jeong 2013	289	89	122	203	78	122	9.4%	86.00 [65.00, 107.00]	2013	
	Lee 2013	258	54	50	198	57	50	9.3%	60.00 [38.24, 81.76]	2013	
	Kim 2013	144	104.3	139	137	105	207	9.2%	7.00 [-15.48, 29.48]	2013	
	Total (95%CI)			623			755	100.0%	38.78 [22.81, 54.74]		•
	Heterogeneity: Tau	² = 592	.67; χ^2	= 105.	91, <i>df</i> =	: 10 (P	< 0.000	001); <i>I</i> ² =	91%	_	
	Test for overall effe	ect: <i>Z</i> =	4.76 (P	< 0.00	001)						-100 -50 0 50 100
			- (,						Favours LTG Favours OTG

WJG | www.wjgnet.com

В			LTG			OTG			Mean difference		Mean difference
	Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95%CI	Year	IV, random, 95%CI
	Dulucq 2005	81	107	8	125	95	11	9.9%	-44.00 [-137.00, 49.00]	2005	
	Mochiki 2008	229	50	20	758	78	18	10.3%	-529.00 [-571.17, -486.83]	2008	◀
	Topal 2008	10	98.8	38	450	337.5	22	9.2%	-440.00 [-584.49, -295.51]	2008	←
	Kawamura 2009	54.9	45.3	46	304.3	237.3	35	10.0%	-249.40 [-329.10, -169.70]	2009	
	Sakuramoto 2009	134	98	30	407	270	44	9.9%	-273.00 [-360.15, -185.85]	2009	_ - -
	Du 2010	156	112	82	339	162	94	10.3%	-183.00 [-223.74, -142.26]	2010	
	Kim 2011	179.7	123.8	63	272.7	209.6	127	10.2%	-93.00 [-140.58, -45.42]	2011	
	Siani 2012	250	150	25	495	190	25	9.8%	-245.00 [-339.89, -150.11]	2012	(
	Lee 2013	167.3	135.2	50	178.4	107	50	10.2%	-11.10 [-58.89, 36.69]	2013	
	Jeong 2013	249	204	122	209	157	122	10.2%	40.00 [-5.68, 85.68]	2013	
	Total (95%CI)			484			548	100.0%	-200.47 [-330.87, -70.06]		
	Heterogeneity: Tau	² = 426	87.18; ;	$\chi^2 = 44$	12.70, <i>a</i>	lf = 9 (A	² < 0.00)001); <i>I</i> ² =	98%		
	Test for overall effe	ect: Z =	3.01 (P	= 0.00	3)						-200 -100 0 100 200
											Favours LTG Favours OTG

С		LTG			OTG			Mean difference		Mean d	ifference
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95%CI	Year	IV, rando	om, 95%CI
Dulucq 2005	3.6	1.2	8	4.7	1.2	11	7.7%	-1.10 [-2.19, -0.01]	2005		
Kawamura 2009	4.1	1	46	4.3	1.3	35	11.2%	-0.20 [-0.72, 0.32]	2009		_
Sakuramoto 2009	2.4	1.1	30	3.3	1	44	11.3%	-0.90 [-1.39, -0.41]	2009		
Du 2010	3.5	0.8	82	5.3	1.3	94	12.2%	-1.80 [-2.11, -1.49]	2010		
Kim 2011	3.3	0.7	63	3.8	0.8	63	12.4%	-0.50 [-0.76, -0.24]	2011		
Siani 2012	2.1	0.9	25	4.1	1.5	25	10.2%	-2.00 [-2.69, -1.31]	2012		
Lee 2013	4	1.2	50	4.5	1.5	50	11.1%	-0.50 [-1.03, 0.03]	2013		
Jeong 2013	2.9	0.8	122	3	0.8	122	12.6%	-0.10 [-0.30, 0.10]	2013	-	-
Kim 2013	3	2	139	4	2.3	207	11.5%	-1.00 [-1.46, -0.54]	2013		
Total (95%CI)			565			651	100.0%	-0.88 [-1.35, -0.40]		•	
Heterogeneity: Tau	u ² = 0.46	; $\chi^2 =$	103.35	, <i>df</i> = 8	(P < 0)	.00001)); <i>I</i> ² = 92%		_	· · · · ·	
Test for overall effe	ect: <i>Z</i> = 3	3.60 (<i>P</i>	° = 0.00	03)					-4	4 -2	0 2 4
				,						Favours LTG	Favours OTG

D			LTG			OTG			Mean difference		Mean difference
	Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95%CI	Year	IV, random, 95%CI
	Sakuramoto 2009	4.9	1.1	30	6	2.1	44	19.2%	-1.10 [-1.83, -0.37]	2009	
	Du 2010	3.5	0.8	82	5.3	1.3	94	24.3%	-1.80 [-2.11, -1.49]	2010	•
	Kim 2011	4.3	1.7	63	5.6	4.4	127	17.4%	-1.30 [-2.17, -0.43]	2011	
	Jeong 2013	3.9	4.4	122	3.6	3.3	122	16.0%	0.30 [-0.68, 1.28]	2013	
	Kim 2013	3	12.3	139	5	10	207	5.3%	-2.00 [-4.46, 0.46]	2013	
	Lee 2013	5	1.7	50	6.1	2.5	50	17.8%	-1.10 [-1.94, -0.26]	2013	
	Total (95%CI)			486			644	100.0%	-1.13 [-1.76, -0.49]		•
	Heterogeneity: Tau	² = 0.40	; $\chi^2 =$	18.90,	<i>df</i> = 5 (<i>l</i>	^D = 0.0	02); <i>I</i> 2	= 74%			·
	Test for overall effe	ct: <i>Z</i> = 3	3.49 (<i>P</i>	= 0.00	05)						-4 -2 0 2 4 Favours LTG Favours OTG

Е			LTG			OTG			Mean difference		Mean difference
	Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95%CI	Year	IV, random, 95%CI
	Dulucq 2005	16.9	3	8	24	9	11	6.8%	-7.10 [-12.81, -1.39]	2005	
	Mochiki 2008	19	3	20	29	3	18	12.1%	-10.00 [-11.91, -8.09]	2008	
	Sakuramoto 2009	13.5	2.7	30	18.2	9.6	44	10.5%	-4.70 [-7.70, -1.70]	2009	_
	Kawamura 2009	15.5	3.3	46	18.8	6.3	35	11.6%	-3.30 [-5.59, -1.01]	2009	_
	Kim 2011	8.1	3.8	63	9.6	5.3	127	12.7%	-1.50 [-2.82, -0.18]	2011	
	Siani 2012	10.5	1.5	25	14.5	3.1	25	12.7%	-4.00 [-5.35, -2.65]	2012	
	Lee 2013	9.3	4.2	50	11.7	4.3	50	12.4%	-2.40 [-4.07, -0.73]	2013	
	Jeong 2013	11.8	11.8	122	10.8	7	122	11.4%	1.00 [-1.43, 3.43]	2013	- +
	Kim 2013	7	19.3	139	8	9	207	9.9%	-1.00 [-4.43, 2.43]	2013	
	Total (95%CI)			503			639	100.0%	-3.55 [-5.65, -1.44]		•
	Heterogeneity: Tau	$^{2} = 8.64;$	$\chi^2 = 72$	2.78, df	= 8 (<i>P</i> <	0.00001	.); <i>I</i> ² =	89%			-10 -5 0 5 10
	Test for overall effe	ct: <i>Z</i> = 3.	.30 (<i>P</i> =	0.0010)						Favours LTG Favours OTG

WJG | www.wjgnet.com

Baist

F			LTG			OTG			Mean difference		Mean difference
	Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95%CI	Year	IV, random, 95%CI
	Sakuramoto 2009	6.8	6.4	30	11.8	11	44	19.8%	-5.00 [-8.98, -1.02]	2009	
	Kawamura 2009	6.9	5.6	46	4	3.2	35	29.6%	2.90 [0.97, 4.83]	2009	
	Kim 2011	5.3	4.9	63	3.6	3.9	127	32.0%	1.70 [0.31, 3.09]	2011	
	Kim 2013	3	24.5	139	4	9.3	207	18.6%	-1.00 [-5.27, 3.27]	2013	_
	Total (95%CI)			278			413	100.0%	0.23 [-2.45, 2.91]		
	Heterogeneity: Tau ²	² = 5.33;	$\chi^2 = 13$.66, <i>df</i> :	= 3 (<i>P</i> =	0.003);	I ² = 78%	6			
	Test for overall effe	ct: <i>Z</i> = 0.	17 (<i>P</i> =	0.87)							-10 -5 0 5 10 Favours LTG Favours OTG

G			LTG		OTG	Weight	Odds ratio			Od	ds ratio		
Study or sub	group	Events	Total	Events	Total		M-H, fixed, 95%CI	Year		M-H, fi	ked, 95%	CI	
Dulucq 2005		0	8	2	11	1.6%	0.22 [0.01, 5.34]	2005	•				
Topal 2008		15	38	9	22	5.5%	0.94 [0.32, 2.75]	2008					
Mochiki 2008	3	5	20	3	18	1.9%	1.67 [0.34, 8.26]	2008					
Sakuramoto	2009	5	30	12	44	6.4%	0.53 [0.17, 1.71]	2009					
Kawamura 2	009	4	46	8	35	6.6%	0.32 [0.09, 1.17]	2009					
Du 2010		8	82	23	94	15.4%	0.33 [0.14, 0.79]	2010					
Kim 2011		8	63	24	127	11.0%	0.62 [0.26, 1.48]	2011		-			
Siani 2012		4	25	5	25	3.3%	0.76 [0.18, 3.25]	2012		_			
Kim 2013		14	139	45	207	25.8%	0.40 [0.21, 0.77]	2013		_			
Lee 2013		12	50	16	50	9.7%	0.67 [0.28, 1.62]	2013		-			
Jeong 2013		29	122	21	122	12.7%	1.50 [0.80, 2.81]	2013					
Total (95%C	I)		623		755	100.0%	0.65 [0.49, 0.86]						
Total events	10	4	1	68							•		
Heterogenei	ty: $\chi^2 = 14$	1.72, <i>df</i> =	10 (P = 0.1)	14); <i>I</i> ² = 32	2%				L				
Test for over	rall effect:	Z = 3.05 (P = 0.002)						0.01	0.1	1	10	100

1	Maaa	LTG	T . 4 . 1	Maaaa	OTG	Tabal	M/-:	Mean difference	Maan	Mean difference
Study or subgroup	Mean	SD	lotal	Mean	SD	lotal	Weight	IV, random, 95%CI	Year	IV, random, 95%CI
Dulucq 2005	24	12	8	20	8	11	7.1%	4.00 [-5.57, 13.57]	2005	
Mochiki 2008	26	3	20	35	4	18	13.3%	-9.00 [-11.27, -6.73]	2008	-
Kawamura 2009	48.5	16.3	46	47.1	12.5	35	9.9%	1.40 [-4.87, 7.67]	2009	
Sakuramoto 2009	43.2	17.2	30	51.2	22.1	44	7.6%	-8.00 [-16.97, 0.97]	2009	
Du 2010	34.2	13.5	82	36.4	19.1	94	11.2%	-2.20 [-7.04, 2.64]	2010	
Kim 2011	38.7	15.7	63	35.6	13.1	127	11.6%	3.10 [-1.40, 7.60]	2011	+
Siani 2012	35	18	25	40	16	25	7.2%	-5.00 [-14.44, 4.44]	2012	
Kim 2013	37	24	139	34	18.8	207	11.3%	3.00 [-1.74, 7.74]	2013	+
Jeong 2013	42	15	122	46	17	122	12.0%	-4.00 [-8.02, 0.02]	2013	
Lee 2013	48.4	18.4	50	54.3	20.5	50	8.7%	-5.90 [-13.54, 1.74]	2013	
Total (95%CI)			585			733	100.0%	-2.28 [-5.93, 1.37]		
Heterogeneity: Tau ²	2 = 24.69	$\chi^2 = 4$	3.65, <i>df</i>	= 9 (<i>P</i> <	< 0.0000	1); I ² =	79%			
Test for overall effect	ct: Z = 1.	23 (<i>P</i> =	0.22)							-20 -10 0 10 20
		-								Favours LTG Favours OTG

I	Study or subgroup	Mean	LTG SD	Total	Mean	OTG SD	Total	Mean difference Weight IV, random, 95%CI Year	Mean difference IV, random, 95%CI
	Du 2010	3	1.4	82	3.1	1.2	94	68.0% -0.10 [-0.49, 0.29] 2010	
	Kim 2011	2.8	2.3	63	3.2	1.8	127	24.4% -0.40 [-1.05, 0.25] 2011	_
	Kim 2013	2.3	4.2	139	3	6.8	207	7.6% -0.70 [-1.86, 0.46] 2013	
	Total (95%CI)			284			428	100.0% -0.22 [-0.54, 0.10]	•
	Heterogeneity: $\chi^2 =$ Test for overall effect	= 1.32, <i>df</i> = ct: <i>Z</i> = 1.3	= 2 (<i>P</i> = 34 (<i>P</i> =	= 0.52); 0.18)	<i>I</i> ² = 0%				-1 -0.5 0 0.5 1 Favours LTG Favours OTG

WJG www.wjgnet.com

Bais

Favours LTG Favours OTG

K	Charles and an and	Et.	LTG	Eta	OTG	Weight	Odds ratio	Maan	Odc	ls ratio	
	Study or subgroup	Events	lotal	Events	lotal		M-H, fixed, 95%CI	Year	M-H, fix	ed, 95%CI	
	Dulucq 2005	0	8	0	11		Not estimable	2005			
	Topal 2008	1	38	1	22	100.0%	0.57 [0.03, 9.55]	2008			
	Du 2010	0	82	0	94		Not estimable	2010			
	Kim 2013	0	139	0	207		Not estimable	2013			
	Total (95%CI)		267		334	100.0%	0.57 [0.03, 9.55]				
	Total events	1		1							
	Heterogeneity: Not a	applicable									
	Test for overall effec	t: <i>Z</i> = 0.39 (<i>P</i> =0.69)					0.01	0.1 Favours LTG	1 10 Favours	100 DTG

L			LTG		OTG	Weight	Odds ratio			Odds r	ratio	
	Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year	M-	H, fixed,	, 95%CI	
	Dulucq 2005	0	8	0	11		Not estimable	2005				
	Mochiki 2008	2	20	1	18	6.7%	1.89 [0.16, 22.79]	2008	—		•	-
	Topal 2008	2	38	0	22	4.1%	3.08 [0.14, 67.16]	2008	_		-	
	Sakuramoto 2009	0	30	3	44	19.7%	0.19 [0.01, 3.90]	2009	•			
	Kawamura 2009	0	46	0	35		Not estimable	2009				
	Du 2010	0	82	0	94		Not estimable	2010				
	Kim 2011	1	63	3	127	13.8%	0.67 [0.07, 6.54]	2011				
	Siani 2012	1	25	0	25	3.3%	3.12 [0.12, 80.39]	2012			-	
	Lee 2013	3	50	2	50	13.2%	1.53 [0.24, 9.59]	2013				
	Kim 2013	0	139	3	207	19.7%	0.21 [0.01, 4.09]	2013				
	Jeong 2013	9	122	3	122	19.5%	3.16 [0.83, 11.97]	2013		+	-	
	Total (95%CI)		623		755	100.0%	1.35 [0.68, 2.66]					
	Total events	18		15						-		
	Heterogeneity: $\chi^2 = 5$.67, <i>df</i> = 7	(P =0.58)	; <i>I</i> ² = 0%								
	Test for overall effect:	Z = 0.85 (A	P =0.39)						0.01 0.1 Favours L	TG 1	10 Favours	100 OTG

Μ			LTG		OTG	Weight	Odds ratio		Odds ratio
	Study or subgroup	Events	lotal	Events	Total		M-H, fixed, 95%CI	Year	M-H, fixed, 95%CI
	Dulucq 2005	0	8	0	11		Not estimable	2005	
	Mochiki 2008	1	20	1	18	11.3%	0.89 [0.05, 15.44]	2008	
	Kawamura 2009	0	46	1	35	19.0%	0.25 [0.01, 6.26]	2009	
	Sakuramoto 2009	2	30	1	44	8.5%	3.07 [0.27, 35.49]	2009	← ■
	Du 2010	0	82	0	94		Not estimable	2010	
	Kim 2011	0	63	0	127		Not estimable	2011	
	Siani 2012	0	25	0	25		Not estimable	2012	
	Kim 2013	2	139	2	207	17.9%	1.50 [0.21, 10.75]	2013	
	Jeong 2013	2	122	2	122	22.2%	1.00 [0.14, 7.22]	2013	_
	Lee 2013	3	50	2	50	21.2%	1.53 [0.24, 9.59]	2013	
	Total (95%CI)		585		733	100.0%	1.22 [0.51, 2.96]		
	Total events	10		9					Ť
	Heterogeneity: $\chi^2 =$	1.67, <i>df</i> =	5(P = 0)	.89); <i>I</i> ² = 0	%				,,,,
	Test for overall effect	t: <i>Z</i> = 0.45	(P = 0.6)	5)					0.01 0.1 1 10 100
			-	-					Favours LTG Favours OTG

N

Ν		LTG		OTG	Weight	Odds ratio		Odds ratio
Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year	M-H, fixed, 95%CI
Dulucq 2005	0	8	0	11		Not estimable	2005	
Mochiki 2008	1	20	0	18	9.8%	2.85 [0.11, 74.38]	2008	
Sakuramoto 2009	2	30	1	44	15.2%	3.07 [0.27, 35.49]	2009	
Kawamura 2009	0	46	0	35		Not estimable	2009	
Du 2010	0	82	0	94		Not estimable	2010	
Kim 2011	0	63	1	127	19.9%	0.66 [0.03, 16.53]	2011	
Siani 2012	0	25	0	25		Not estimable	2012	
Kim 2013	3	139	1	207	15.7%	4.54 [0.47, 44.14]	2013	
Lee 2013	1	50	1	50	19.6%	1.00 [0.06, 16.44]	2013	
Jeong 2013	1	122	1	122	19.9%	1.00 [0.06, 16.17]	2013	
Total (95%CI)		585		733	100.0%	1.99 [0.69, 5.68]		
Total events	8		5					
Heterogeneity: $\chi^2 =$	1.59, <i>df</i> = 5	(P = 0.90)); <i>I</i> ² = 0%					
Test for overall effec	t: Z = 1.28 (A	P = 0.20)	-					0.01 0.1 1 10 100 Favours LTG Favours OTG

		LTG		OTG	Weight	Odds ratio		Odds ratio
Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year	M-H, fixed, 95%CI
Dulucq 2005	0	8	0	11		Not estimable	2005	
Mochiki 2008	0	20	0	18		Not estimable	2008	
Sakuramoto 2009	1	30	0	44	4.1%	4.53 [0.18, 114.89]	2009	
Kawamura 2009	0	46	0	35		Not estimable	2009	
Du 2010	0	82	0	94		Not estimable	2010	
Kim 2011	1	63	5	127	34.2%	0.39 [0.04, 3.44]	2011	_
Siani 2012	0	25	0	25		Not estimable	2012	
Kim 2013	3	139	2	207	16.5%	2.26 [0.37, 13.71]	2013	
Jeong 2013	9	122	2	122	19.4%	4.78 [1.01, 22.60]	2013	_
Lee 2013	0	50	2	50	25.9%	0.19 [0.01, 4.10]	2013	←
Total (95%CI)		585		733	100.0%	1.67 [0.76, 3.67]		
Total events	14		11					
Heterogeneity: $\chi^2 = 1$	5.86, <i>df</i> = 4	(P = 0.21)	.); <i>I</i> ² = 32%					
Test for overall effect	: <i>Z</i> = 1.27 (P = 0.20)						0.01 0.1 1 10 100
	-	-						Favours LTG Favours OTG

Ρ		LTG			OTG	Weight	Odds ratio			Odd			
S	tudy or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year		M-H, fix	ed, 95%	6CI	
D	Julucq 2005	0	8	1	11	4.6%	0.41 [0.01, 11.46]	2005			1		
Μ	1ochiki 2008	0	20	0	18		Not estimable	2008	_				
S	akuramoto 2009	0	30	2	44	7.5%	0.28 [0.01, 6.01]	2009					
K	awamura 2009	0	46	0	35		Not estimable	2009		•		_	
D	0u 2010	0	82	0	94		Not estimable	2010					
K	íim 2011	4	63	9	127	21.0%	0.89 [0.26, 3.01]	2011					
S	iani 2012	0	25	0	25		Not estimable	2012					
L	ee 2013	3	50	1	50	3.5%	3.13 [0.31, 31.14]	2013					
J	eong 2013	5	122	8	122	28.8%	0.61 [0.19, 1.92]	2013			-		
K	íim 2013	0	139	11	207	34.6%	0.06 [0.00, 1.05]	2013			+		
									+		-		
Т	otal (95%CI)		585		733	100.0%	0.53 [0.28, 1.03]						
Т	otal events	12		32									
H	leterogeneity: $\chi^2 = \frac{1}{2}$	5.43, <i>df</i> = 5	(P = 0.37)	; I ² = 8%									
Т	est for overall effect	: Z = 1.88 (A	? = 0.06)						0.01	0.1	1	10	100
										Favours LTG	- Fa	vours OT	G

⊤せ<u>&</u> Ra<mark>ishiden</mark>a® WJG | www.wjgnet.com

0

Q			LTG		OTG	Weight	Odds ratio			Odds r	atio	
	Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year		M-H, fixed,	, 95%CI	
	Dulucq 2005	0	8	0	11		Not estimable	2005				
	Mochiki 2008	0	20	0	18		Not estimable	2008				
	Kawamura 2009	0	46	0	35		Not estimable	2009				
	Sakuramoto 2009	1	30	2	44	4.5%	0.72 [0.06, 8.36]	2009				
	Du 2010	7	82	11	94	27.1%	0.70 [0.26, 1.91]	2010			<u> </u>	
	Kim 2011	1	63	5	127	9.4%	0.39 [0.04, 3.44]	2011				
	Siani 2012	0	25	2	25	7.1%	0.18 [0.01, 4.04]	2012	←	-		
	Lee 2013	1	50	5	50	14.2%	0.18 [0.02, 1.63]	2013			<u> </u>	
	Jeong 2013	0	122	3	122	10.1%	0.14 [0.01, 2.73]	2013	←		<u> </u>	
	Kim 2013	1	139	12	207	27.7%	0.12 [0.02, 0.92]	2013	-		-	
	Total (95%CI)		585		733	100.0%	0.35 [0.18, 0.67]			•		
	Total events	11		40								
	Heterogeneity: $\chi^2 = 4.21$, $df = 6$ ($P = 0.65$); $I^2 = 0\%$											
	Test for overall effect: 2	Z = 3.12 (P	= 0.002)						0.01	0.1 Favours LTG	I IU Favours O	TG
R			LTG		OTG	Weight	Odds ratio		Odds ratio			
	Study or subgroup	Events	Total	Events	Total		M-H, fixed, 95%CI	Year		M-H, fixed	l, 95%CI	
	Dulucq 2005	0	8	1	11	21.1%	0.41 [0.01, 11.46]	2005	_			
	Topal 2008	1	38	1	22	21.5%	0.57 [0.03, 9.55]	2008				
	Mochiki 2008	0	20	0	18		Not estimable	2008				
	Sakuramoto 2009	0	30	0	44		Not estimable	2009				
	Kawamura 2009	0	46	0	35		Not estimable	2009				
	Du 2010	0	82	2	94	40.3%	0.22 [0.01, 4.74]	2010			<u> </u>	
	Kim 2011	0	63	0	127		Not estimable	2011				
	Siani 2012	0	25	0	25		Not estimable	2012				
	Kim 2013	0	139	0	207		Not estimable	2013				
	Lee 2013	0	50	0	50		Not estimable	2013				
	Jeong 2013	2	122	1	122	17.1%	2.02 [0.18, 22.54]	2013				
	Total (95%CI)		623		755	100.0%	0.64 [0.18, 2.37]					
	Total events	3		5								
	Heterogeneity: $\chi^2 = 1.40$, $df = 3$ ($P = 0.71$); $I^2 = 0\%$										L	
	Test for overall effect: 2	Z = 0.66 (P	=0.51)						0.01	0.1	1 10	100
										ravours LIG	Favours O	16

Figure 6 Forest plots illustrating results of all outcomes in the form of a meta-analysis comparing laparoscopic total gastrectomy vs open total gastrectomy for gastric cancer. Pooled weighted mean difference (WMD) or odds ratio (OR) with 95%Cl were calculated using the fixed or random-effects model. A: Operation time; B: Intraoperative blood loss; C: Time to first flatus; D: Time to first oral intake; E: Hospital stay; F: Analgesics use; G: Postoperative complications; H: No. of resected lymph nodes; I: Proximal resection margin; J: Distal resection margin; K: Positive resection margins; L: Anastomotic leakage; M: Anastomotic Stenosis; N: Ileus; O: Bleeding; P: Abdominal abscess; Q: Wound-related complications; R: Mortality. LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy.

group. However, there were no significant differences in rate of anastomotic leak, anastomotic stenosis, bleeding, abdominal abscess and postoperative mortality in the two groups. These results indicate that LTG is a safe procedure.

While lymph node metastasis is associated with a poor prognosis in gastric cancer, the extent of lymph node dissection required is open to debate. Many surgeons believe that $D1+\alpha$ or β dissection is adequate for early gastric cancer, and D2 dissection is optimal for advanced gastric cancer, although this remains controversial^[41,42]. Surgical removal of at least 15 lymph nodes is advocated in gastric cancer^[43]. The mean number of harvested lymph nodes in all included studies was more than 15. The surgical approach did not appear to influence the lymph node yield; however, LTG with extended lymph node dissection may require further refinement of the operative technique and improved instrumentation, and should be performed with caution by surgeons with adequate experience in laparoscopic gastrectomy^[29]. Another major concern of laparoscopic resection for gastric cancer is obtaining clear

proximal esophageal and distal duodenal margins^[17]. Five included studies reported tumor margins, but only one study reported positive resection margins in one patient each in LTG and OTG, respectively; there was no statistically significant difference between the two groups. Our analyses also showed that there was no significant difference in the lengths of the proximal and distal resection margins between the two groups. Seven studies reported data on long-term survival following the two procedures. However, as the duration of follow-up varied between studies, it was difficult to compare them.

Our study has some limitations. Firstly, all the studies included were non-randomized, because of a lack of randomized controlled trials. Secondly, there was significant heterogeneity in the studies with respect to the extent of lymph node dissection, tumor staging and surgical anastomosis techniques. Also, there were differences in the number of patients in the two groups and between studies.

In conclusion, compared with OTG, LTG with regional lymph node dissection for early and advanced gas-

Figure 7 Funnel plot of operation time of all included studies.

tric cancer is safe and effective; with comparable shortterm oncological outcomes; lower intraoperative blood loss and overall complication rates; fewer wound-related complications; quicker recovery of gastrointestinal motility and a shorter hospital stay, albeit with a longer operating time. However, there is a need to develop welldesigned, adequately powered, prospective, multicenter, randomized controlled trials, investigating LTG with adequate long-term follow-up, before recommending its wider use in surgical practice.

COMMENTS

Background

Since laparoscopic total gastrectomy (LTG) was first reported in 1999, it has been used increasingly to treat gastric cancer as result of technical advances and improved instrumentation. However, compared with conventional open total gastrectomy (OTG), the safety and efficacy of LTG is not known.

Research frontiers

To conduct a meta-analysis comparing the safety and effectiveness of LTG with OTG in patients with gastric cancer; the available perioperative and oncological outcomes were included in this study.

Innovations and breakthroughs

Based on this meta-analysis, when compared with OTG, LTG for early and advanced gastric cancer is safe and effective; with comparable short-term oncological outcomes; lower intraoperative blood loss and overall complication rates; fewer wound-related complications; quicker recovery of gastrointestinal motility and a shorter hospital stay, albeit with a longer operating time.

Applications

LTG is safe, effective and offers some advantages over OTG in the treatment of early and advanced gastric cancer. However, well-designed prospective multicenter, randomized controlled trials investigating the advantage of LTG with adequate long-term follow-up need to be performed before recommending its wider use in surgical practice.

Peer review

In the future, LTG will be rapidly developed in the field of abdominal minimally invasive surgery. This is a well-written study that clarifies some advantages of LTG in the treatment of patients with early and advanced gastric cancer. This study may be interesting for gastrointestinal surgeons worldwide.

REFERENCES

- 1 **Jemal A**, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. *CA Cancer J Clin* 2011; **61**: 69-90 [PMID: 21296855 DOI: 10.3322/caac.20107]
- 2 Kim JP. Current status of surgical treatment of gastric cancer. J Surg Oncol 2002; 79: 79-80 [PMID: 11815992]

Xiong JJ et al. Laparoscopic vs open total gastrectomy

- 3 Kitano S, Iso Y, Moriyama M, Sugimachi K. Laparoscopyassisted Billroth I gastrectomy. Surg Laparosc Endosc 1994; 4: 146-148 [PMID: 8180768]
- 4 Kim HH, Hyung WJ, Cho GS, Kim MC, Han SU, Kim W, Ryu SW, Lee HJ, Song KY. Morbidity and mortality of laparoscopic gastrectomy versus open gastrectomy for gastric cancer: an interim report--a phase III multicenter, prospective, randomized Trial (KLASS Trial). *Ann Surg* 2010; **251**: 417-420 [PMID: 20160637 DOI: 10.1097/SLA.0b013e3181cc8f6b]
- 5 Ryu KW, Kim YW, Lee JH, Nam BH, Kook MC, Choi IJ, Bae JM. Surgical complications and the risk factors of laparoscopy-assisted distal gastrectomy in early gastric cancer. *Ann Surg Oncol* 2008; **15**: 1625-1631 [PMID: 18340493 DOI: 10.1245/s10434-008-9845-x]
- 6 Lee SE, Kim YW, Lee JH, Ryu KW, Cho SJ, Lee JY, Kim CG, Choi IJ, Kook MC, Nam BH, Park SR, Kim MJ, Lee JS. Developing an institutional protocol guideline for laparoscopy-assisted distal gastrectomy. *Ann Surg Oncol* 2009; 16: 2231-2236 [PMID: 19430842 DOI: 10.1245/s10434-009-0490-9]
- 7 Viñuela EF, Gonen M, Brennan MF, Coit DG, Strong VE. Laparoscopic versus open distal gastrectomy for gastric cancer: a meta-analysis of randomized controlled trials and highquality nonrandomized studies. *Ann Surg* 2012; 255: 446-456 [PMID: 22330034 DOI: 10.1097/SLA.0b013e31824682f4]
- 8 Uyama I, Sugioka A, Fujita J, Komori Y, Matsui H, Hasumi A. Laparoscopic total gastrectomy with distal pancreatosplenectomy and D2 lymphadenectomy for advanced gastric cancer. *Gastric Cancer* 1999; 2: 230-234 [PMID: 11957104 DOI: 10.1007/s101209900041]
- 9 Usui S, Yoshida T, Ito K, Hiranuma S, Kudo SE, Iwai T. Laparoscopy-assisted total gastrectomy for early gastric cancer: comparison with conventional open total gastrectomy. *Surg Laparosc Endosc Percutan Tech* 2005; 15: 309-314 [PMID: 16340559]
- 10 Eom BW, Kim YW, Lee SE, Ryu KW, Lee JH, Yoon HM, Cho SJ, Kook MC, Kim SJ. Survival and surgical outcomes after laparoscopy-assisted total gastrectomy for gastric cancer: case-control study. *Surg Endosc* 2012; 26: 3273-3281 [PMID: 22648107 DOI: 10.1007/s00464-012-2338-9]
- 11 Inaba K, Satoh S, Ishida Y, Taniguchi K, Isogaki J, Kanaya S, Uyama I. Overlap method: novel intracorporeal esophagojejunostomy after laparoscopic total gastrectomy. J Am Coll Surg 2010; 211: e25-e29 [PMID: 21036074 DOI: 10.1016/j.jamc ollsurg.2010.09.005]
- 12 Usui S, Nagai K, Hiranuma S, Takiguchi N, Matsumoto A, Sanada K. Laparoscopy-assisted esophagoenteral anastomosis using endoscopic purse-string suture instrument "Endo-PSI (II)" and circular stapler. *Gastric Cancer* 2008; **11**: 233-237 [PMID: 19132486 DOI: 10.1007/s10120-008-0481-8]
- 13 Jeong O, Park YK. Intracorporeal circular stapling esophagojejunostomy using the transorally inserted anvil (OrVil) after laparoscopic total gastrectomy. *Surg Endosc* 2009; 23: 2624-2630 [PMID: 19343421 DOI: 10.1007/s00464-009-0461-z]
- 14 Topal B, Leys E, Ectors N, Aerts R, Penninckx F. Determinants of complications and adequacy of surgical resection in laparoscopic versus open total gastrectomy for adenocarcinoma. *Surg Endosc* 2008; 22: 980-984 [PMID: 17690934 DOI: 10.1007/s00464-007-9549-5]
- 15 Mochiki E, Toyomasu Y, Ogata K, Andoh H, Ohno T, Aihara R, Asao T, Kuwano H. Laparoscopically assisted total gastrectomy with lymph node dissection for upper and middle gastric cancer. *Surg Endosc* 2008; 22: 1997-2002 [PMID: 18594925 DOI: 10.1007/s00464-008-0015-9]
- 16 Sakuramoto S, Kikuchi S, Futawatari N, Katada N, Moriya H, Hirai K, Yamashita K, Watanabe M. Laparoscopy-assisted pancreas- and spleen-preserving total gastrectomy for gastric cancer as compared with open total gastrectomy. *Surg Endosc* 2009; 23: 2416-2423 [PMID: 19266232 DOI: 10.1007/s00464-009-0371-0]
- 17 Guan G, Jiang W, Chen Z, Liu X, Lu H, Zhang X. Early

results of a modified splenic hilar lymphadenectomy in laparoscopy-assisted total gastrectomy for gastric cancer with stage cT1-2: a case-control study. *Surg Endosc* 2013; **27**: 1923-1931 [PMID: 23271271 DOI: 10.1007/s00464-012-2688-3]

- 18 Kawamura H, Homma S, Yokota R, Watarai H, Yokota K, Kondo Y. Assessment of pain by face scales after gastrectomy: comparison of laparoscopically assisted gastrectomy and open gastrectomy. *Surg Endosc* 2009; 23: 991-995 [PMID: 18806941 DOI: 10.1007/s00464-008-0090-y]
- 19 Natsume T, Kawahira H, Hayashi H, Nabeya Y, Akai T, Horibe D, Shuto K, Akutsu Y, Matsushita K, Nomura F, Matsubara H. Low peritoneal and systemic inflammatory response after laparoscopy-assisted gastrectomy compared to open gastrectomy. *Hepatogastroenterology* 2011; 58: 659-662 [PMID: 21661448]
- 20 **Stang A**. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol* 2010; **25**: 603-605 [PMID: 20652370 DOI: 10.1007/s10654-010-9491-z]
- 21 Athanasiou T, Al-Ruzzeh S, Kumar P, Crossman MC, Amrani M, Pepper JR, Del Stanbridge R, Casula R, Glenville B. Offpump myocardial revascularization is associated with less incidence of stroke in elderly patients. *Ann Thorac Surg* 2004; 77: 745-753 [PMID: 14759484 DOI: 10.1016/j.athoracsur.2003. 07.002]
- 22 Simillis C, Constantinides VA, Tekkis PP, Darzi A, Lovegrove R, Jiao L, Antoniou A. Laparoscopic versus open hepatic resections for benign and malignant neoplasms--a meta-analysis. *Surgery* 2007; 141: 203-211 [PMID: 17263977 DOI: 10.1016/j.surg.2006.06.035]
- 23 Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ* 2003; **327**: 557-560 [PMID: 12958120 DOI: 10.1136/bmj.327.7414.557]
- 24 Demets DL. Methods for combining randomized clinical trials: strengths and limitations. *Stat Med* 1987; 6: 341-350 [PMID: 3616287]
- 25 **DerSimonian R**, Laird N. Meta-analysis in clinical trials. *Control Clin Trials* 1986; **7**: 177-188 [PMID: 3802833]
- 26 Sterne JA, Egger M, Smith GD. Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. *BMJ* 2001; 323: 101-105 [PMID: 11451790]
- 27 Du J, Zheng J, Li Y, Li J, Ji G, Dong G, Yang Z, Wang W, Gao Z. Laparoscopy-assisted total gastrectomy with extended lymph node resection for advanced gastric cancer--reports of 82 cases. *Hepatogastroenterology* 2010; 57: 1589-1594 [PMID: 21443126]
- 28 Dulucq JL, Wintringer P, Stabilini C, Solinas L, Perissat J, Mahajna A. Laparoscopic and open gastric resections for malignant lesions: a prospective comparative study. *Surg Endosc* 2005; **19**: 933-938 [PMID: 15920691 DOI: 10.1007/ s00464-004-2172-9]
- 29 Jeong O, Jung MR, Kim GY, Kim HS, Ryu SY, Park YK. Comparison of short-term surgical outcomes between laparoscopic and open total gastrectomy for gastric carcinoma: casecontrol study using propensity score matching method. *J Am Coll Surg* 2013; **216**: 184-191 [PMID: 23211117 DOI: 10.1016/ j.jamcollsurg.2012.10.014]
- 30 Kawamura H, Yokota R, Homma S, Kondo Y. Comparison of invasiveness between laparoscopy-assisted total gastrectomy and open total gastrectomy. *World J Surg* 2009; 33: 2389-2395 [PMID: 19760315 DOI: 10.1007/s00268-009-0208-y]
- 31 Kawamura H, Yokota R, Homma S, Kondo Y. Comparison

of respiratory function recovery in the early phase after laparoscopy-assisted gastrectomy and open gastrectomy. *Surg Endosc* 2010; **24**: 2739-2742 [PMID: 20364352 DOI: 10.1007/ s00464-010-1037-7]

- 32 Kim HS, Kim BS, Lee IS, Lee S, Yook JH, Kim BS. Comparison of totally laparoscopic total gastrectomy and open total gastrectomy for gastric cancer. *J Laparoendosc Adv Surg Tech A* 2013; 23: 323-331 [PMID: 23379920 DOI: 10.1089/ lap.2012.0389]
- 33 Kim MG, Kim BS, Kim TH, Kim KC, Yook JH, Kim BS. The effects of laparoscopic assisted total gastrectomy on surgical outcomes in the treatment of gastric cancer. *J Korean Surg Soc* 2011; 80: 245-250 [PMID: 22066043 DOI: 10.4174/ jkss.2011.80.4.245]
- 34 Kim SG, Lee YJ, Ha WS, Jung EJ, Ju YT, Jeong CY, Hong SC, Choi SK, Park ST, Bae K. LATG with extracorporeal esophagojejunostomy: is this minimal invasive surgery for gastric cancer? J Laparoendosc Adv Surg Tech A 2008; 18: 572-578 [PMID: 18721007 DOI: 10.1089/lap.2007.0106]
- 35 Kunisaki C, Makino H, Kosaka T, Oshima T, Fujii S, Takagawa R, Kimura J, Ono HA, Akiyama H, Taguri M, Morita S, Endo I. Surgical outcomes of laparoscopy-assisted gastrectomy versus open gastrectomy for gastric cancer: a casecontrol study. *Surg Endosc* 2012; 26: 804-810 [PMID: 22002202 DOI: 10.1007/s00464-011-1956-y]
- 36 Kuwabara K, Matsuda S, Ishikawa KB, Horiguchi H, Fujimori K. Association of operating time and gastrectomy with initiation of postoperative oral food intake. *Dig Surg* 2011; 28: 157-162 [PMID: 21540602 DOI: 10.1159/000323626]
- 37 Lee MS, Lee JH, Park do J, Lee HJ, Kim HH, Yang HK. Comparison of short- and long-term outcomes of laparoscopicassisted total gastrectomy and open total gastrectomy in gastric cancer patients. *Surg Endosc* 2013; 27: 2598-2605 [PMID: 23539255 DOI: 10.1007/s00464-013-2796-8]
- 38 Siani LM, Ferranti F, De Carlo A, Quintiliani A. Completely laparoscopic versus open total gastrectomy in stage I-III/C gastric cancer: safety, efficacy and five-year oncologic outcome. *Minerva Chir* 2012; 67: 319-326 [PMID: 23022756]
- 39 Bittner R, Butters M, Ulrich M, Uppenbrink S, Beger HG. Total gastrectomy. Updated operative mortality and long-term survival with particular reference to patients older than 70 years of age. Ann Surg 1996; 224: 37-42 [PMID: 8678615]
- 40 Bonenkamp JJ, Hermans J, Sasako M, van de Velde CJ, Welvaart K, Songun I, Meyer S, Plukker JT, Van Elk P, Obertop H, Gouma DJ, van Lanschot JJ, Taat CW, de Graaf PW, von Meyenfeldt MF, Tilanus H. Extended lymph-node dissection for gastric cancer. N Engl J Med 1999; 340: 908-914 [PMID: 10089184 DOI: 10.1056/NEJM199903253401202]
- 41 Hartgrink HH, van de Velde CJ, Putter H, Bonenkamp JJ, Klein Kranenbarg E, Songun I, Welvaart K, van Krieken JH, Meijer S, Plukker JT, van Elk PJ, Obertop H, Gouma DJ, van Lanschot JJ, Taat CW, de Graaf PW, von Meyenfeldt MF, Tilanus H, Sasako M. Extended lymph node dissection for gastric cancer: who may benefit? Final results of the randomized Dutch gastric cancer group trial. J Clin Oncol 2004; 22: 2069-2077 [PMID: 15082726 DOI: 10.1200/JCO.2004.08.026]
- 42 McCulloch P, Niita ME, Kazi H, Gama-Rodrigues JJ. Gastrectomy with extended lymphadenectomy for primary treatment of gastric cancer. *Br J Surg* 2005; **92**: 5-13 [PMID: 15635680 DOI: 10.1002/bjs.4839]
- 43 Kwon SJ. Evaluation of the 7th UICC TNM Staging System of Gastric Cancer. J Gastric Cancer 2011; 11: 78-85 [PMID: 22076207 DOI: 10.5230/jgc.2011.11.2.78]

P- Reviewer: Nishiyama M S- Editor: Wen LL L- Editor: Stewart GJ E- Editor: Zhang DN

WJG www.wjgnet.com

Published by Baishideng Publishing Group Co., Limited

Flat C, 23/F., Lucky Plaza, 315-321 Lockhart Road, Wan Chai, Hong Kong, China Fax: +852-65557188 Telephone: +852-31779906 E-mail: bpgoffice@wjgnet.com http://www.wjgnet.com

© 2013 Baishideng Publishing Group Co., Limited. All rights reserved.