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Many socially important search tasks are characterized
by low target prevalence, meaning that targets are rarely
encountered. For example, transportation security
officers (TSOs) at airport checkpoints encounter very few
actual threats in carry-on bags. In laboratory-based
visual search experiments, low prevalence reduces the
probability of detecting targets (Wolfe, Horowitz, &
Kenner, 2005). In the lab, this ‘‘prevalence effect’’ is
caused by changes in decision and response criteria
(Wolfe & Van Wert, 2010) and can be mitigated by
presenting a burst of high-prevalence search with
feedback (Wolfe et al., 2007). The goal of this study was
to see if these effects could be replicated in the field
with TSOs. A total of 125 newly trained TSOs
participated in one of two experiments as part of their
final evaluation following training. They searched for
threats in simulated bags across five blocks. The first
three blocks were low prevalence (target prevalence
� .05) with no feedback; the fourth block was high
prevalence (.50) with full feedback; and the final block
was, again, low prevalence. We found that newly trained
TSOs were better at detecting targets at high compared
to low prevalence, replicating the prevalence effect.
Furthermore, performance was better (and response
criterion was more ‘‘liberal’’) in the low-prevalence block
that took place after the high-prevalence block than in
the initial three low-prevalence blocks, suggesting that a
burst of high-prevalence trials may help alleviate the
prevalence effect in the field.

Introduction

The search for threats in carry-on luggage is an
important aspect of airport security. It is also a very
difficult visual search task. In typical visual search tasks
in the laboratory, observers look for a target item
among distractor items. After several decades of
research, the factors that modulate search difficulty are
well established (Kundel, 2004; Wolfe, 2010; Wolfe &
Reynolds, 2008). Search is easiest if the target is defined
by a unique basic feature like color, size, or orientation
(Egeth, Jonides, & Wall, 1972; Neisser, 1963). As the
difference between the target and distractors gets
smaller (or less salient), the search gets harder (Nagy &
Sanchez, 1990; Nothdurft, 2000). As distractors be-
come more heterogeneous, the search gets harder
(Duncan & Humphreys, 1989). As the target definition
becomes more abstract, search gets harder (J. Wolfe,
Horowitz, Kenner, Hyle, & Vasan, 2004). When the
target is not defined by a unique feature (e.g., when it is
an arbitrary object), search is inefficient (Vickery, King,
& Jiang, 2005). It is harder to find the target if the scene
is cluttered and/or the neighborhood around the target
is cluttered (Beck, Lohrenz, & Trafton, 2010; Rose-
nholtz, Li, & Nakano, 2007). Finally, it is harder to find
an object if the clutter is random, compared to being a
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feature of a meaningful scene (Eckstein, Drescher, &
Shimozaki, 2006; Neider & Zelinsky, 2006).

On all of these counts, the x-ray screener task
(XRST) is hard. The target is broadly defined (and
changes over time). Target items are not always marked
by unique features. Distractors are very diverse and, in
some cases, very similar in appearance to possible
targets. Objects do not appear in well-structured
‘‘scenes’’ but in cluttered luggage x-rays. Packed bags
follow some rules, but they do not provide the sort of
guidance that a natural scene or even a medical x-ray
provides. Moreover, x-rays add the challenges of object
transparency and overlap.

As if these factors did not render the task challenging
enough, transportation security officers (TSOs) are
looking for targets that are very rare. The probability
of finding a real threat would be vanishingly rare for an
average TSO on an average day although TSOs do
confront a higher prevalence of prohibited items, like
water bottles, and other items requiring action, such as
opaque regions that could hide a threat. The ‘‘preva-
lence’’ of threat images is increased because target items
are projected into the image by the checkpoint x-ray
itself. This is a quality-control measure known as threat
image projection (TIP). The target prevalence rate for a
TSO performing his task would be the TIP rate plus the
very small true threat rate. The rate with which TIP
images are inserted into images is security-sensitive
information, but it is fair to say that it is well below the
0.5 target prevalence rate that would be common in a
typical laboratory study.

In prior research with volunteer, non-TSO observers,
it was found that prevalence has a profound effect on
the pattern of errors in search tasks. Specifically, miss
errors are much more common at low prevalence
(Wolfe et al., 2005). In the original study, miss errors
rose from about 7% at 0.5 prevalence to 30% at 0.02
prevalence. Fleck and Mitroff (2007) argued that these
were essentially motor errors with which observers,
who had gotten into the habit of responding ‘‘no,’’
mistakenly responded ‘‘no’’ when they meant ‘‘yes.’’ In
their experiment, the prevalence effect was abolished
when observers were given the chance to ‘‘call back’’ an
error that they noticed. If true, this would render the
prevalence effect uninteresting in an airport setting. If a
TSO sees a gun but erroneously pushes the ‘‘clear’’
button, she would still have the opportunity to correct
her error and stop the bag from leaving the x-ray
chamber. Such motor errors do occur. However,
studies have found that if the task is reasonably hard
(e.g., a search for guns and knives in realistic baggage
stimuli), the prevalence effect does not disappear if a
‘‘call back’’ option is provided (Van Wert, Horowitz, &
Wolfe, 2009).

With tasks that produce false-alarm errors, preva-
lence effects appear to be primarily criterion shifts, to

use the terms of signal-detection theory (Green &
Swets, 1967). That is, while miss errors increase at low
prevalence, false-alarm errors decrease. Sensitivity
(measured by signal-detection theory parameter d’)
remains roughly constant while criterion, indicating the
likelihood of a ‘‘target present’’ response, changes
significantly (Wolfe et al., 2007). Change in criterion
with target or signal frequency has been seen repeatedly
in nonsearch tasks (Colquhoun, 1961; Healy &
Kubovy, 1981). The fact that miss and false-alarm
errors trade off is not particularly comforting if miss
errors are far more ‘‘expensive’’ than false alarms.
Observers will respond to differential payoffs for
different types of errors (Maddox, 2002; Navalpakkam,
Koch, & Perona, 2009). Nevertheless, target prevalence
has a powerful effect on search behavior, at least in
laboratory-based search tasks. Moreover, knowledge of
the probability of a target in the next bag is not enough
to suppress the prevalence effect (Ishibashi, Kita, &
Wolfe, 2012; Lau & Huang, 2010).

A similar phenomenon has been observed in the
vigilance literature under the heading of ‘‘signal-
probability effects.’’ It has been widely demonstrated
that low signal probability reduces hit rates in classical
low event-rate, low cognitive-load vigilance tasks by
shifting criterion rather than by decreasing sensitivity
(Baddeley & Colquhoun, 1969; Davies & Parasuraman,
1982; Parasuraman & Davies, 1976; Williges, 1973),
and these effects are accompanied by a slowing of ‘‘yes’’
reaction times and speeding of ‘‘no’’ reaction times
(Parasuraman & Davies, 1976), similar to the pattern
we observe in visual search (Wolfe et al., 2005; Van
Wert, Horowitz, & Wolfe, 2009). Thus, prevalence
effects may be a more general phenomenon, applying
across many cognitive domains. However, the preva-
lence effects we observe in the search context are
unlikely to be simple examples of signal-probability
effects in vigilance. In general, in vigilance paradigms,
as the task becomes more complex and demanding,
signal probability affects sensitivity rather than crite-
rion (See, Howe, Warm, & Dember, 1995). Factors that
make a vigilance task more demanding include, inter
alia, memory load (e.g., having to compare a stimulus
with a standard in memory) and perceptual degrada-
tion of the stimulus (e.g., Nuechterlein, Parasuraman,
& Jiang, 1983). For example, Matthews (1996) found
sensitivity effects, rather than effects of signal proba-
bility, on criterion in a task that required participants
to respond only to the digit ‘‘0’’ among other digits with
30% added pixel noise. It is reasonable to suppose that
the memory demands of the XRST are at least an order
of magnitude greater than those in Matthews’ exper-
iment. When we also consider the perceptual difficulty,
a purely vigilance-based account of prevalence effects
would predict an effect on sensitivity rather than
criterion in the XRST, which is the opposite of what we
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have observed. Moreover, it is important to remember
that in the XRST the observer must actively dismiss
each stimulus rather than, for example, failing to notice
it as it passes by.

Prevalence effects are scientifically interesting, giving
us insight into how observers adjust their quitting
criteria. However, for practical application, the critical
question is whether prevalence would have a similar
effect on professional searchers performing in their
domain of expertise. Would TSOs, looking at baggage,
miss more threats at low target prevalence than at
higher prevalence? The answer to that question is
‘‘yes.’’ In this study, newly trained TSOs examined test
images of bags with and without inserted threat images.
Threats were inserted at low or high prevalence rates.
Lower prevalence produced higher miss error rates.
This being the case, one would want to ameliorate the
problem. Laboratory tests have found that a period of
high-prevalence testing with good feedback to the
observer reduces the miss rate for a subsequent period
of low prevalence with poor feedback (Wolfe et al.,
2007). This study finds some evidence that this might
work with expert populations as well.

Method

These data were collected at the TSA training facility
at Chelsea, Massachusetts. Observers were trainees at
the end of their training to be TSOs. Training
equipment presents images of luggage with and without
threats inserted in them. At the end of training,
students are given various tests of their proficiency. To
accommodate this study, students performed five
blocks of 80 (or, in some cases, 100) bags per block (one
bag ¼ one trial). Blocks 1, 2, 3, and 5 were low-
prevalence blocks. Block 4 was a high-prevalence
block. Three sets of bag images were created for each of
the five blocks. An observer saw one of those three sets.
The order of blocks—low, low, low, high, low—was
fixed. However, the order of the low-prevalence blocks
was varied so that different sets of low-prevalence bags
could be shown in the final block. Low-prevalence
blocks contained three or four targets (prevalence¼
0.0375 or 0.05). High-prevalence blocks had prevalence
rates of 0.5. One type of high-prevalence block had 100
rather than 80 bags (50 targets). Within a block, the
order of bags was randomized. Thus, while all
observers who saw block X would have seen the same
bags, they would not have seen them in the same order.

In the low-prevalence blocks, targets were rare, and
no feedback was given. In the high-prevalence block,
targets were frequent, and feedback was provided on
every trial. The primary purpose of this design was to
test the hypothesis that high-prevalence training with

feedback would reduce miss errors on subsequent low-
prevalence trials as has been shown in the laboratory
(Wolfe et al., 2007).

A secondary consideration of the design was
ecological validity or representativeness. The low-
prevalence blocks mimicked working conditions at the
airport. Two caveats should be kept in mind concern-
ing the low-prevalence blocks: (a) The specific value of
prevalence was not intended to match prevalence at the
checkpoint. Targets were merely rare. (b) At the
checkpoint, TSOs would get feedback about TIP trials
but not about the vast set of other bags. In this study,
no feedback was given in the low-prevalence blocks.
Meanwhile, the high-prevalence blocks mimicked
typical training conditions in which prevalence would
be high relative to airport conditions, and feedback
would be present. The present design does not allow us
to independently assess the effects of manipulating
prevalence and feedback. While it would be valuable to
test the effects of each factor separately, that was not
possible in this context. Note that, in addition to
feedback about accuracy, observers could also utilize a
‘‘bag file’’ feature to get a list of the bag’s contents
along with a diagram with arrows pointing out certain
elements. On each trial that contained a threat, they
could also access a magnified image of the threat all by
itself, both as a photograph and as an x-ray image.
Observers completed all blocks in a single day,
generally spending about three hours on the five blocks.

Observers

Data were obtained from 102 TSO trainees as part of
their training. The test blocks reported here were
deemed to fall into the category of quality-assurance
and quality-improvement measures that do not require
formal consent procedures beyond the consent to be
trained as a TSO. Nevertheless, data were de-identified
for the analysis reported here, and no individual
observer results were reported from this analysis to
TSA staff (although, of course, TSA has access to the
original results that they collected as part of the
observers’ training). Twenty-three of the data sets were
unusable (incomplete data, incorrect order of testing),
leaving 79 observers. All observers met the basic vision
and color vision qualifications for TSO training. TSO
applicants were aged 18–70. All of the observers had
passed a basic computer-based x-ray assessment test
prior to any initial training. This is a requirement for
entrance into TSO training. All of the participants in
the study had then successfully completed their
classroom training and passed a certification x-ray
assessment. After the classroom training, all the
participants in the study then proceeded to the airport
to complete approximately three weeks of on-the-job
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training. At the end of the on-the-job training,
potential officers need to pass another x-ray assessment
to become certified. The present testing was performed
at that time.

These observers could be classified, somewhat
oxymoronically, as ‘‘novice experts.’’ That is, by virtue
of their training, they were qualified to do baggage
screening tasks that untrained novices would not be
qualified to do. At the same time, these observers were
still rookies, and their performance would, no doubt,
change with experiment. Biggs, Cain, Clark, Darling,
and Mitroff (2013) have shown differences in TSO
performance as a function of experience, and our
observers did not have that experience. That said, our
particular interest is whether prevalence effects can be
seen in trained observers performing the task that they
were trained to do. These observers fall into that
category.

Stimuli

The x-ray training program uses a TIP-ready x-ray
(TRX) simulator that can present images and simulate
all image manipulation functionality as if operating an
actual fielded TSA x-ray system. For our purposes,
there are two types of bag images: clear images and
threat images. A clear image is an entire packed bag
(hard or soft suitcase, shoulder bag, computer bag,
roller bag, garment bag, etc.) containing varying
amounts of clutter in the form of different packed
objects. To create a threat bag, one manually selects a
clear bag and a threat item and then chooses the
location and orientation for the threat item inside the
bag. The TRX simulator can also perform this task by
randomly choosing clear bags and threat items and
splicing them together. The program has a reservoir of
over 1,000 clear x-ray images of bags and over 450
specific threat images.

Every clear bag and threat bag is given a difficulty
rating by the computer simulation. This is based on the
clutter inside the bag, defined by the various nonthreat
items packed in the bag (e.g., clothing, electronic
devices). For threat bags, the simulator also takes into
account the orientation and placement of the threat
item. The threat bags for the low-prevalence blocks
were created by hand, and the simulator chose the clear
bags to fill out the blocks. For the high-prevalence
blocks, the computer created the threat bags and chose
the clear bags to fill in for the rest of the block. All the
blocks were set to the same difficulty level as assessed
by the program. The experiment was not designed to
assess the interaction of prevalence with bag difficulty.
As noted, within a block, bags were presented in
random order.

Data analysis

Because TSO error rates are considered to be
security-sensitive information, we are presenting nor-
malized versions of the data. These are transformations
of the raw error data and signal-detection measures
designed to preserve the relative differences between
blocks and the statistical measures of those differences
without presenting the actual error rates. Thus, Figure
1a shows the probability of correct detection of the
target (hit rate) as a function of block, normalized by
subtracting and dividing by the grand mean. Statistical
analyses were conducted on the raw data, and
analyzing the normalized data leads to identical results.

Accuracy data (hits and false alarms) were arc-sin
transformed before analysis. Accuracy data were also
transformed into the signal-detection theory parame-
ters d’ (sensitivity) and c (criterion). Because these
parameters cannot be computed if either hit rate or
false-alarm rate is 0% or 100%, those cells were
corrected by adding half a correct response or half an
incorrect response as needed (Macmillan & Creelman,
2005).

We report generalized eta-squared (ges) (Bakeman,
2005) as a measure of effect size. Analyses were
conducted in R 2.15.0 (R Development Core Team,
2011), using the ‘‘ez’’ package (Lawrence, 2010).

Experiment 1: Results

Figure 1a shows the (normalized) probability of
correct detection of the target (hit rate) as a function of
the block. It is obvious that the normalized hit rates
(and thus the true hit rates) were higher in the high-
prevalence block. Observers missed more targets at low
prevalence than at high prevalence. This is borne out
statistically. The hit rate was higher in the high-
prevalence fourth block than in the first three low-
prevalence blocks, F(1, 78)¼ 98.1, p , 0.0001, ges¼
0.30. As noted above, laboratory studies have shown
that performing a high-prevalence task with feedback
produced effects that persisted into a subsequent low-
prevalence, no-feedback block (Wolfe et al., 2007).
There is evidence for this effect here. The hit rate was
higher in Block 5 than in the first three low-prevalence
blocks, F(1, 78)¼ 24.8, p , 0.0001, ges¼ 0.12, and the
hit rate in low-prevalence Block 5 was not significantly
lower than the hit rate in the high-prevalence block,
F(1, 78)¼ 1.0, p¼ 0.31, ges¼ 0.01. Hit rate appeared to
decline over the first three low-prevalence blocks as
reflected in a main effect of block over those three
blocks, F(2, 156) ¼ 4.3, p¼ 0.016, ges ¼ 0.02.

These data clearly show that misses are elevated at
low prevalence. This is not a subtle effect. The average
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hit rate for the first three low-prevalence blocks was
lower than the hit rate at high prevalence for 74 of 79
observers.

Figure 1b shows the normalized false-alarm data.
The false-alarm rate was not higher in the high-
prevalence block than in the first three low-prevalence
blocks, F(1, 78)¼ 1.5, p ¼ 0.22, ges ¼ 0.00. The false-
alarm rate in the final low-prevalence block was greater
than the false-alarm rate in both the high-prevalence
block, F(1, 78)¼10.1, p¼0.002, ges¼0.12, and the first
three low-prevalence blocks, F(1, 78) ¼ 5.7, p¼ 0.019,
ges¼ 0.01.

Figure 1c shows the (normalized) signal-detection
parameter, d’, a measure of the ability to discriminate
target-present from target-absent trials. In laboratory
work with baggage stimuli, d’ tends not to change with
prevalence (Gur et al., 2003; Wolfe et al., 2007). In the
case of these TSO observers, however, d’ did change with
prevalence. The d’ at high prevalence was significantly
greater than in the three initial low-prevalence blocks,
F(1, 78)¼304.6, p , 0.0001, ges¼0.51. As in the hit data,
there was some preservation of this improvement in the
final low-prevalence Block 5. The d’ was higher in that

block than in the first three low-prevalence blocks, F(1,
78)¼ 13.5, p¼ 0.0004, ges¼ 0.06. The d’ in Block 5 was
lower than in the high-prevalence Block 4, F(1, 78)¼
70.2, p , 0.0001, ges¼ 0.28. Finally, like the hit rate, d’
fell over the first three low-prevalence blocks, F(1, 78)¼
4.7, p¼ 0.0107, ges¼ 0.03.

Finally, Figure 1d shows the (normalized) signal-
detection criterion parameter c, reflecting the level of
bias toward responding target present or target absent.
A lower criterion is considered more ‘‘liberal’’ and
indicates a greater likelihood of a target-present
response, and a higher criterion is considered more
‘‘conservative’’ and reflects a greater likelihood of a
target-absent response.

Consistent with what has been found in laboratory
studies of prevalence effects (Wolfe & Van Wert,
2010), criterion was significantly lower at high
prevalence than during the first three low-prevalence
blocks, F(1, 78) ¼ 191.4, p , 0.0001, ges ¼ 0.25. This
shift was partially preserved in the last low-prevalence
block, in which criterion remained more liberal than
during the first three low-prevalence blocks, F(1, 78)¼
25.0, p , 0.0001, ges ¼ 0.06, although it was

Figure 1. Normalized hit rate, false alarm, D’, and criterion as functions of prevalence block in Experiment 1. Error bars show 95%

confidence limits around the mean. Scatter plots show one data point per observer.
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significantly more conservative than criterion in the
high-prevalence block, F(1, 78)¼ 33.5, p , 0.0001, ges
¼ 0.08. High prevalence makes observers more likely
to say ‘‘yes,’’ and that bias persists into a subsequent
low-prevalence regime.

Experiment 2: Replication

The basic result from these data is quite clear. Miss-
error rates are markedly higher when newly trained
TSOs are tested at low prevalence without feedback
than when they are tested at high prevalence with
feedback. Anecdotally, it is reported that TSO
performance is lower on the job than it is at the end of
training. It is possible that this reflects the transition
from high prevalence in training to low prevalence on
the job. However, there is a potential problem with
these data. As noted in the Method section, threat
items in the low-prevalence conditions were chosen by
hand, and threat items in the high-prevalence condi-
tion were chosen by the TRX software. Although the
displays had equivalent difficulty ratings from the
software, it is possible that the low-prevalence targets
were systematically more difficult to find, independent
of prevalence. Accordingly, the study was rerun with
both the low- and high-prevalence targets chosen by
the TRX software. Forty-six newly trained TSOs were
tested. Methods were otherwise identical to the
preceding experiment.

Results are shown in Figure 2. It is clear that the
basic pattern of results was replicated although the
effects were somewhat weaker statistically. This ap-
pears to be due, in part, to a restriction of range in the
accuracy data. The basic pattern is seen most clearly in
d’ and criterion analyses. The d’ was higher at high
prevalence than in the first three low-prevalence blocks,
F(1, 45) ¼ 32.2, p , 0.0001, ges¼ 0.25, and criterion
was more liberal, F(1, 45)¼ 14.5, p¼ 0.0004, ges¼ 0.06,
even though the hit and false-alarm rates did not differ
significantly, both F(1, 45) , 2.5, p . 0.1.

Evidence for the beneficial effects of high preva-
lence on subsequent low-prevalence blocks is weaker
than in Experiment 1. The hit rate was greater in
Block 5 than it was in Blocks 1 through 3, F(1, 45) ¼
7.3, p ¼ 0.0095, ges ¼ 0.06. However, the false-alarm
rate was also greater, F(1, 45)¼ 4.4, p¼ 0.0421, ges¼
0.02, leading to no significant change in d’, F(1, 45)¼
0.8, p ¼ 0.37.

Discussion

This paper addresses two questions: First, does the
prevalence effect seen in laboratory settings occur when

trained observers (albeit newly trained) perform search
for rare targets in their area of expertise? Second, if so,
is there anything we can do about it?

The answer to the first question is ‘‘yes’’ at least for
newly trained TSOs. Miss-error rates were higher at
low prevalence than at high prevalence. There are two
caveats here. First, TSOs were not at the airport
checkpoint but were carrying out a simulated test.
Second, the high prevalence was confounded with
feedback. This confound was deliberate: In our
previous work, we found that a ‘‘burst’’ of high-
prevalence trials with no feedback was insufficient to
alter low-prevalence behavior (Wolfe et al., 2007),
presumably because observers could not necessarily
perceive the prevalence of targets without feedback.

As to the first caveat, we suspect that we would get
the same results if we were able to carry out the study at
the checkpoint (although high prevalence would never
be realistic). Keep in mind that the TSOs were highly
motivated because the experiment was part of their
performance evaluation. Furthermore, we have con-
verging data from another expert domain. Breast
cancer screening is also a difficult, low-prevalence
search task. In an experiment in which we slipped cases
into the regular workflow of a breast cancer screening
practice, we found that miss-error rates at low
prevalence were over twice as high as miss-error rates
for the same cases read at 50% prevalence in a
nonclinical setting (Evans, Birdwell, & Wolfe, 2013).
Similar effects were found with expert readers of Pap
tests for cervical cancer (Evans, Tambouret, Wilbur,
Evered, & Wolfe, 2011). We see no reason to expect
that TSOs at work would be any more immune to the
pressures of low prevalence than radiologists. This
research also speaks to the second caveat: It is possible
that it was the feedback rather than the prevalence
manipulation that changed the TSOs’ behavior in the
fourth block. However, this would be counter to the
behavior of both naive observers in the laboratory and
highly trained medical observers in the clinic. Feedback
tends to magnify the effects of prevalence by giving the
searcher more effective information about the preva-
lence. It does not appear to change criterion by itself.

Given a positive answer to the question of whether
prevalence alters the behavior of TSOs, the second
question is whether prevalence effects can be counter-
acted in a manner that might be practical in the field. In
laboratory situations, we have found the effect to be
quite robust and resistant to a variety of ‘‘cures’’ (Wolfe
et al., 2007). One obvious cure would be to raise the
prevalence rate to 50%. This could be done by adding
TIP targets to half of the bags. However, it is not clear
that this is practical. The time required to clear a bag
that includes a TIP is greater than the time required to
clear an otherwise unproblematic bag. The bag needs to
be rescanned without the TIP to make sure that the TIP
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did not obscure a real target. At 50% TIP rates, the
lines at the checkpoint would probably grow unac-
ceptably long. It would also be important to determine
if the presence of a TIP reduces the probability of
detecting a true target (even on the second viewing of
the bag). This would be a version of what is known as
‘‘satisfaction of search’’ in the radiology literature
(Berbaum et al., 1990; Cain, Dunsmoor, LaBar, &
Mitroff, 2011; Nodine, Krupinski, Kundel, Toto, &
Herman, 1992; Samuel, Kundel, Nodine, & Toto,
1995).

Under laboratory conditions, we have found that
brief epochs of high-prevalence search with feedback
reduce miss errors in a subsequent epoch of low-
prevalence search (Wolfe et al., 2007). The present study
was designed to assess whether this might work in the
field. There is an indication that it might. The results are
encouraging, if not unequivocal. In Experiment 1, miss-
error rates were lower in the final block and d’ was
higher. In Experiment 2, the desired reduction in miss
errors was found. The d’ was not improved because
false-alarm errors rose in the final block. This latter
pattern, characteristic of a criterion shift, is the pattern
that has been seen in laboratory studies. If the primary

goal is to reduce miss errors, it appears that exposure to
high prevalence, with feedback, has the desired effect.
Note that this is unlikely to be a simple practice effect
because the effects over the first three blocks were
generally in the wrong direction. However, it is possible
that the trend would have reversed and that the changes
on the final block would have occurred without the high-
prevalence block. It would be desirable to perform a
control experiment with no high-prevalence block to
directly test this hypothesis. Thus, it seems possible that
a regimen of a brief high-prevalence block just prior to
going to work at the checkpoint might be worth
investigating as a countermeasure to the prevalence
effect.

Keywords: visual search, prevalence effects, airport
security, visual attention, error rates, criterion shift
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