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Abstract

Background: The endophytic fungus, Neotyphodium coenophialum, can enhance drought tolerance of its host
grass, tall fescue. To investigate endophyte effects on plant responses to acute water deficit stress, we did
comprehensive profiling of plant metabolite levels in both shoot and root tissues of genetically identical clone pairs
of tall fescue with endophyte (E+) and without endophyte (E-) in response to direct water deficit stress. The
E- clones were generated by treating E+ plants with fungicide and selectively propagating single tillers. In time
course studies on the E+ and E- clones, water was withheld from 0 to 5 days, during which levels of free sugars,
sugar alcohols, and amino acids were determined, as were levels of some major fungal metabolites.

Results: After 2–3 days of withholding water, survival and tillering of re-watered plants was significantly greater for
E+ than E- clones. Within two to three days of withholding water, significant endophyte effects on metabolites
manifested as higher levels of free glucose, fructose, trehalose, sugar alcohols, proline and glutamic acid in shoots
and roots. The fungal metabolites, mannitol and loline alkaloids, also significantly increased with water deficit.

Conclusions: Our results suggest that symbiotic N. coenophialum aids in survival and recovery of tall fescue plants
from water deficit, and acts in part by inducing rapid accumulation of these compatible solutes soon after
imposition of stress.
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Background
Tall fescue (Lolium arundinaceum=Schedonorus arundinaceus=
Festuca arundinacea) is the most widely planted forage
grass in the United States [1] and it is often infected with
the endophytic fungus, Neotyphodium coenophialum. The
relationship between the endophyte and plant is generally
considered mutualistic because the endophyte significantly
improves host plant tolerance to drought, insects, diseases,
and nematodes, along with increased persistence and
vigor; and in turn the plant provides the symbiont with
nutrients, protection, and reliable and efficient dissemin-
ation (reviewed in [2]). Evidence suggests that tall fescue
plants with the endophyte (E+) grow and persist longer
under stressful conditions, such as water deficit, compared
to endophyte free plants (E-), and are, therefore, likely to
have an adaptive and competitive advantage [3-9]. Mecha-
nisms for endophyte-enhanced drought avoidance or
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tolerance appear complex, and might involve direct and
indirect effects of the endophyte on metabolism and other
physiological changes in the host plant [10-13].
Processes affected by the tall fescue endophyte include

stomatal closure [14], decreased root diameter and in-
creased root hair length [7,15], increased turgid weight/
dry weight ratios suggesting reduced damaged to cell
walls [10], and enhanced production of phenolic root ex-
udates [15]. Leaf rolling under drought stress is reported
to be much more common in E+ than E- plants [3].
Greater cell wall elasticity [10] and higher water use effi-
ciency [16] in E+ tall fescue compared to E- plants under
drought stress have also been reported. Previous re-
search has also shown that E+ tall fescue plants of some
genotypes exhibit lower stomatal conductance than
E- plants with more sensitive inducement of stomatal
closure in E+ plants in response to early stages of water
deficit [17-19]. Endophyte infection confers population
stability in tall fescue during drought stress through im-
proved tiller and whole plant survival [5].
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A correlation between drought tolerance and accu-
mulation of compatible solutes such as carbohydrates,
amino acids, and mineral ions that contribute to osmotic
adjustment has been documented in grasses [20-22]. In
general, accumulation of sugars, sugar alcohols [23], and
proline [24,25] in response to water deficit in grasses has
been reported. A significant endophyte effect on accu-
mulation of simple sugars in leaves of E+ tall fescue, was
observed when plants were osmotically stressed by poly-
ethylene glycol [26]. Under water deficit, E+ tall fescue
plants are reported to exhibit decreased growth and in-
creased root and leaf senescence, as well as greater accu-
mulation of sugars within the pseudostem, and decreased
water potential compared to E- plants [27]. Effects of the
endophyte on levels of other metabolites, such as pro-
line [28] and other amino acids have not been well stud-
ied. Here we report what is, to our knowledge, the first
comprehensive profiling of shoot and root metabolite
responses to acute water deficit stress, assessing the
timing of endophyte effects on sugars, sugar alcohols
and amino acids relative to the endophyte effects on
subsequent plant recovery.

Methods
Experimental design
Tall fescue is an obligately outcrossing grass, so that iso-
genic lines cannot be generated, and plants derived from
different seeds are necessarily unique genotypes. There-
fore, to control for host genotype effects we developed
genetically identical clones with endophyte (E+) and with-
out endophyte (E-) as follows. Ramets of tall fescue ‘Ken-
tucky 31’ plants naturally infected with Neotyphodium
coenophialum were treated with the fungicide propi-
conazole or tebuconazole to remove the fungus [29,30].
The stock plants and fungicide-treated clones were ex-
amined for the presence or absence of endophyte by tis-
sue print immunoblot [31], PCR [32], and microscopy.
This resulted in E+/E- clone pairs, two of which were
used in this study. Lab identification numbers 278 (E+)
and 279 (E-) represented one clone pair, and 4607 (E+)
and 4608 (E-) represented the other clone pair. Plants of
each clone pair were raised side-by-side in the greenhouse
for more than one year prior to being used in the study.
Ramets consisting of three tillers of similar size were

planted into 8.5 × 8.5 cm square pots in sand, in the
greenhouse. Sand was chosen as the growth medium be-
cause it allows even, uniform and rapid drying, and also
provides for easy harvesting of roots. Plants were
watered twice daily for six weeks before subjecting them
to experimental conditions to allow for regeneration and
accumulation of sufficient biomass for sampling. After
sufficient re-growth had occurred, water was withheld
from the test group, while control plants were watered
twice daily. Pots were randomized once while setting
up the experiment and again before subjecting them
to treatments, in order to control for effects micro-
environmental variation.
Treatments were endophyte-infected watered controls

(E+D-), endophyte-infected water-deficit stressed (E+
D+), endophyte-free watered controls (E-D-), and endophyte-
free water-deficit stressed (E-D+). Entire pots were
sampled on each day from day 0 to day 5 of withhold-
ing water. Beyond day 5 plants were fully dried and
mostly dead. Three or four replicates were sampled for
each treatment x day. For the first experiment, which
was conducted with the 278/279 clone pair, samples
were harvested from February 2–7, 2007. For the sec-
ond experiment with clone pair 278/279, samples were
harvested from June 2–7, 2008. The third experiment
was conduced with clone pair 4607/4608, sampled
from July 21–26, 2008. All plants were grown in
the greenhouse under natural light conditions, with
45-70% relative humidity ranges, and temperatures set
to 27°C/22°C (day/night). Photoactive radiation (PAR)
measurements were recorded during the three experi-
ments (see Additional file 1, panels a, b, c). Samples
were harvested between 7:30 a.m. to 8:30 a.m. local
time each day, immediately frozen in liquid nitrogen,
lyophilized and subsequently prepared for metabolite
analysis as described below. The samples were divided
into shoot (leaf along with tiller base down to 1 cm
from crown region) and root material.

Tiller recovery experiment
Five to six pots subjected to water-deficit conditions
from each E+/E- clone pair for each day of treatment
were left unharvested, and were placed back into a daily
watering regime in order to determine their ability to re-
cover from the water-deficit stress. Live tiller numbers
were counted after 6 weeks of recovery.

Carbohydrate analysis by high pH anion exchange
chromatography
Sugars were extracted in 1 ml of 80% ethanol per
100 mg of ground lyophilized plant material. The sam-
ples were incubated at 65°C for 1 hr and 90°C for 5 min
and the supernatant was evaporated in a vacuum cen-
trifuge. The residue was reconstituted in purified water
at 4°C and filtered through spin-X HPLC 0.4 μm nylon
filter micro centrifuge (Corning, NY) tubes. Filtered
supernatant (100 μL) was diluted to 1 ml and used for
analysis on a Dionex ICS 3000 with either a carbopac
PA1 column for neutral sugars or a carbopac MA1
column for polyols. Neutral sugars were separated by
an isocratic program with 24 mM NaOH, and sugar al-
cohols were separated using 480 mM NaOH. The de-
tection was by pulsed amperometry, using a gold
working electrode. Peak identity and sugar quantity
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were determined by comparison with standards. The
internal standard was 2-deoxyglucose.

Amino acid analysis by liquid chromatography-mass
spectrometry (LC-MS)
The yields of free amino acids from plant samples were
compared for different extraction methods using a) 80%
ethanol, or b) chloroform: methanol: water (5:12:3), and
incubating at different temperatures (4°C and 45°C) for
1 hr. However both extraction solvents and methods
resulted in similar extraction efficiency, so the simpler ex-
traction method was chosen for further analysis. Finely
ground lyophilized plant shoot and root material (50 mg)
was extracted with 5 ml of 80% ethanol on ice for 1 hr.
The crude extract was filtered through 0.4 μm centrifuge
tubes and the supernatant was used for sample cleanup
and derivatization with EZ faast LCMS kit for free amino
acids from Phenomenex, according to the kit protocol.
Briefly, 100 μL of each sample was mixed with 100 μL
of internal standard containing homoarginine, d3-
methionine, and homophenylalanine provided in the
kit. Then sample was loaded onto a pipet tip packed
with ion exchange resin on which free amino acids were
bound, subsequently washed and released from resin.
The free amino acids were then derivatized by propyl
chloroformate and liquid-liquid extracted with isooc-
tane. The organic phase containing the derivatized
amino acids was removed under a stream of high purity
nitrogen gas and the residue was redissolved in 200 μL
2:1 mobile phase of A:B (A: 10 mM ammonium formate
in water and B: 10 mM ammonium formate in metha-
nol). Analysis was performed by liquid chromatography
mass spectrometry with a dual pump ProStar 210 HPLC
with 1200 L quadrupole MS-MS (Varian).

Loline alkaloid analysis
Loline alkaloids were extracted from samples using
chloroform under alkaline conditions [33]. Quinoline was
used as an internal standard and the lolines were quanti-
fied by gas chromatography (Varian CP-3800) interfaced
with a Varian Saturn 2200 ion trap mass spectrometer.
Loline amounts were calculated as the total of loline,
N-methylloline, N-formylloline, N-acetylloline and N-
acetylnorloline.

Statistical analysis
Factorial Analysis of Variance (2 × 2 × 6) was run to analyze
tiller recovery and metabolite levels in PROC GLM, SAS
(SAS Institute Inc., Cary, NC, USA.). Following ANOVA,
tiller recovery and metabolite levels of E+ and E- clones
were compared on each day using Estimate Statements. In
order to control the overall α-level for multiple tests, the
distribution of the maximum of the absolute value of ele-
ments of a multivariate (six variate) t-distribution with μ =
0 and ∑ = I [34], i.e. t-max, was used to calculate the sig-
nificance levels for each of the six t-tests. Because of the
extremely conservative nature of this procedure, α = 0.10 is
used to determine significance of differences [p. 71 in ref.
[35]. The three factor ANOVAs of all metabolites in all
three experiments are given in Tables 1, 2, and 3. For the
tiller numbers after recovery, four biological replications
were run for each treatment in the first experiment on
clone pair 278/279, and five biological replications were
run for the other two experiments on clone pair 278/279
and clone pair 4607/4608. For metabolites, four biological
replications were run for each treatment in the first experi-
ment, and three biological replications were run for the
other two experiments. In the graphs the significant differ-
ences of various metabolites between E+ and E- plants in
the water deficit stress treatments were represented based
on t-max values; ‘*’ denotes p- values = > 0.01 - 0.10; ‘**’ de-
notes p-values > 0.001 - 0.01; ‘***’ denotes p- values < 0.001.

Results
Tiller number and recovery
Overall the E+ plants survived the stress conditions im-
posed during the experiment better than the E- plants
when number of tillers produced upon recovery was
used as the measure. In the first experiment with clone
pair 278/279, after 2–4 days of withholding water, E+
plants produced more tillers than E- plants during re-
covery. However, after 5 days withholding water, none
of the E+ or E- plants recovered (Figure 1a). In the sec-
ond experiment with the same clone pair, starting at
3 days of withholding water, tiller recovery was signifi-
cantly higher in E+ clones (Figure 1b). With clone pair
4607/4608 (Figure 1c), after 3-days of water deficit
there was greater tillering of E+ plants, which was mar-
ginally significant (p = 0.110 based on tmax, p = 0.019
based on t values).

Neutral sugars
The levels of galactose, glucose, fructose, sucrose, raffi-
nose, stachyose, and trehalose were quantified in the tall
fescue clone pairs in response to water deficit stress and
endophyte infection. Of these, glucose, fructose and su-
crose were the major free sugars identified. In Experi-
ment 1 with clone pair 278/279, E+ shoots accumulated
approximately 2-fold more free glucose and free fructose
at day 1 compared to E- shoots (Figures 2a and 3a).
Similarly in roots, free glucose and free fructose levels in
E+ clones at day 1 after withholding water were signifi-
cantly higher than in the E- clones (Figures 2b and 3b).
In contrast, at day 1, E+ and E- clones showed no differ-
ence in sucrose levels compared to watered controls. Su-
crose levels increased in shoots and roots of both E+
and E- clones starting from day 2 after withholding
water (Figure 4a and b, Table 1). Comparing combined



Table 1 Three-factor ANOVA [Fdf (5,72)] values of all metabolites in Experiment 1

Metabolite Endophyte Day Stress Day * Endophyte Stress * Endophyte Stress * Day Endophyte * Stress * Day

Shoot glucose 48.89*** 54.96 *** 36.91*** 6.05*** 2.37 7.13*** 39.52***

Shoot fructose 6.77* 35.59 *** 143.32*** 4.64*** 0.88 9.37*** 8.75***

Shoot sucrose 13.18*** 13.97*** 113.23*** 2.38 0.23 15.59*** 2.58**

Shoot GFS 1.72 37.69*** 206.12*** 0.96 0 9.72*** 9.85***

Shoot proline 0.2 148.29*** 178.23*** 12.33*** 4.50** 145.27*** 16.86***

Shoot glutamine 0.03 26.92 *** 33.29*** 3.61** 0.26 6.16*** 3.24**

Shoot glutamic acid 6.55* 64.80*** 61.02*** 3.56** 11.03*** 9.48*** 5.88***

Shoot asparagine 0.8 8.27*** 25.16*** 2.11 0.24 8.49*** 2.70*

Shoot aspartic acid 0.98 19.41*** 0.49 3.37** 0.14 10.01*** 10.11***

Shoot tryptophan 20.09*** 40.29*** 533.71*** 2.60* 0.02 41.42*** 9.05***

Shoot phenylalanine 9.94** 78.52*** 564.58*** 7.90*** 36.25*** 56.47*** 17.66***

Shoot tyrosine 34.61*** 19.69*** 67.21*** 9.91*** 5.33* 15.41*** 9.73***

Shoot lolines 1930.18*** 3.11* 17.84*** 3.11* 17.84*** 9.97*** 9.97***

Root glucose 0.4 17.57*** 0.38 10.03*** 7.12*** 6.16*** 14.24***

Root fructose 0.2 27.72 *** 22.17*** 5.39*** 4.93* 18.99*** 15.73***

Root sucrose 0.02 9.19 *** 36.32*** 1.97 0.02 8.71*** 4.75***

Root GFS 0.13 12.59*** 25.81*** 5.22*** 4.10* 5.80*** 6.04***

Root proline 1.37 16.07 *** 209.87*** 7.74*** 0.17 18.11*** 6.19***

Root glutamine 5.51* 29.58*** 27.53*** 18.69*** 3.17 6.67*** 1.35

Root glutamic acid 7.13** 50.81*** 86.53*** 23.01*** 0 5.57*** 14.41***

Root asparagine 40.63*** 5.21*** 43.23*** 3.09* 0.75 2.87* 1.7

Root aspartic acid 5.55* 32.52*** 18.15*** 7.71*** 5.69* 10.40*** 10.25***

Root tryptophan 6.35* 4.88*** 0.23 1.75 0.63 2.14 3.40*

Root phenylalanine 18.44*** 20.94*** 8.01** 9.37*** 10.26** 7.83*** 3.00*

Root tyrosine 13.03*** 7.95*** 0.03 4.07** 8.11** 2.64* 2.32

Root lolines 1914.28*** 3.64** 35.14*** 3.64** 35.14*** 1.64 1.64

‘*’ denotes p-values = > 0.01 - 0.05; ‘**’ denotes p-values = > 0.001 - 0.01; ‘***’ denotes p-values = < 0.001.
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Table 2 Three-factor ANOVA [Fdf (5,48)] values of all metabolites in Experiment 2

Metabolite Endophyte Day Stress Day * Endophyte Stress * Endophyte Stress * Day Endophyte * Stress * Day

Shoot glucose 42.30*** 11.03 *** 15.13*** 0.61 1.84 2.93* 3.08*

Shoot fructose 39.02*** 14.48 *** 21.23*** 1.45 2.6 3.69** 3.35**

Shoot sucrose 17.26*** 16.55*** 0.01 2.33 0.12 3.51** 0.68

Shoot GFS 37.84*** 15.85*** 8.37** 0.67 1.38 2.98* 1.67

Shoot proline 25.90*** 124.48*** 581.24*** 7.46*** 25.52** 126.22*** 7.31***

Shoot glutamine 11.43** 42.89 *** 113.19*** 2.39* 0.05 28.25*** 1.09

Shoot glutamic acid 0 7.19*** 34.68*** 0.4 0.44 6.66*** 0.34

Shoot asparagine 10.25** 12.48*** 79.38*** 1.05 1.16 18.03*** 0.38

Shoot aspartic acid 2.37 7.66*** 6.45* 1.47 0.12 5.49*** 0.22

Shoot threonine 0.19 48.84*** 260.74*** 1.97 3.46 58.15*** 0.95

Shoot tryptophan 0.88 80.90*** 245.37*** 0.61 2.66 60.11*** 0.75

Shoot phenylalanine 0.27 91.52*** 431.11*** 0.12 1.4 88.98*** 0.31

Shoot tyrosine 17.32*** 18.31*** 204.79*** 3.35* 2.16 38.27*** 0.92

Shoot lolines 486.57*** 2.21 15.81*** 2.21 15.81*** 3.05* 3.05*

Shoot mannitol 89.37*** 19.68*** 18.41*** 13.54*** 16.47*** 4.22** 3.84**

Shoot arabitol 15.72*** 6.25*** 26.29*** 3.26** 21.25*** 5.66*** 3.77***

Shoot sorbitol 10.36** 4.01** 3.67 0.85 1.48 1.87 1

Shoot myo-inositol 4.98* 17.81*** 14.50*** 1.3 0.66 4.28** 1.2

Shoot trehalose 13.11*** 21.50*** 5.65* 0.71 7.38** 7.35*** 0.8

Root glucose 28.46*** 5.10*** 20.44*** 2.61* 5.14* 3.97** 2.33*

Root fructose 37.16*** 23.23 *** 11.34*** 4.24** 29.11*** 1.77 1.85

Root sucrose 5.67* 6.50 *** 28.68*** 5.83*** 5.99* 3.86** 2.36*

Root GFS 11.09** 14.02*** 0.05 3.90** 20.57*** 2.03 2.92*

Root proline 46.51*** 28.74 *** 121.16*** 10.55*** 43.90*** 29.80*** 11.07***

Root glutamine 3.18 10.28*** 38.96*** 1.26 0.61 8.63*** 1.15

Root glutamic acid 19.29*** 9.22*** 0.12 4.34** 1.7 0.46 0.3

Root asparagine 17.03*** 14.58*** 0.28 1.91 3.84 2.24 1.99

Root aspartic acid 32 7.86*** 1.72 4.02** 0.84 3.31* 2.19

Root threonine 0 19.91*** 93.19*** 7.36*** 13.08*** 19.69*** 2.46*

Root phenylalanine 78.70*** 90.43*** 177.24*** 96.78*** 100.52*** 98.98*** 80.49***

Root lolines 249.61*** 0.73 36.01*** 0.73 36.01*** 3.14* 3.14*

‘*’ denotes p-values = > 0.01 - 0.05; ‘**’ denotes p-values = > 0.001 - 0.01; ‘***’ denotes p-values = < 0.001.
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Table 3 Three-factor ANOVA [Fdf (5,48)] values of all metabolites in Experiment 3

Metabolite Endophyte Day Stress Day * Endophyte Stress * Endophyte Stress * Day Endophyte * Stress * Day

Shoot glucose 0.55 15.38 *** 188.58*** 1.7 0.18 30.31*** 2.67*

Shoot fructose 5.01* 24.51*** 344.35*** 1.49 11.72 34.71*** 1.56

Shoot sucrose 4.78* 26.49*** 97.38*** 0.39 5.94* 17.83*** 2.98*

Shoot GFS 3.27 24.76*** 320.43*** 1.15 7.24** 35.35*** 2.01

Shoot proline 0.5 37.81*** 329.02*** 0.87 0.6 38.41*** 0.81

Shoot glutamine 0.01 9.91 *** 117.18*** 1.94 0.02 12.05*** 2.62*

Shoot glutamic acid 3.83 7.29*** 0.66 3.64** 1.97 6.94*** 2.67*

Shoot asparagine 0.82 8.43*** 30.99*** 0.41 0.12 3.87** 1.13

Shoot aspartic acid 0.76 1.17 33.33*** 1.37 0.33 3.33* 0.52

Shoot tryptophan 5.01* 24.51*** 344.35*** 1.49 11.72** 34.71*** 1.56

Shoot phenyl alanine 4.78* 26.49*** 97.38*** 0.39 5.94* 17.83*** 2.98*

Shoot tyrosine 3.27 24.76*** 320.43*** 1.15 7.24** 35.35*** 2.01

Shoot threonine 0.55 15.38*** 188.58*** 1.7 0.18 30.31*** 2.67*

Shoot trehalose 23.82*** 10.87*** 69.51*** 2.83* 11.06** 16.26*** 5.79***

Shoot lolines 507.88*** 2.35 18.51*** 2.35 18.51*** 1.23 1.23

Root glucose 0 3.41* 2.54 0.95 0.55 4.62** 1.87

Root fructose 2.2 8.00 *** 103.20*** 0.93 1.56 14.24*** 2.75*

Root sucrose 4.23* 13.00*** 32.14*** 2.05 1.98 9.98*** 1.27

Root GFS 3.22 11.21*** 72.15*** 1.43 1.44 13.96*** 2.51*

Root proline 0 9.55*** 59.35*** 1.93 0 8.94*** 1.67

Root glutamine 1.95 3.22* 24.14*** 2.06 0.73 2.18 1.55

Root glutamic acid 0.38 12.94*** 6.74* 0.56 0.05 0.56 0.54

Root asparagine 1.11 2.39 4.28* 1.21 1.61 0.4 1.53

Root aspartic acid 0.17 32.52*** 18.15*** 0.47 0.08 3.75** 0.34

Root tryptophan 0.25 5.62*** 56.82*** 1 0.03 7.29*** 0.46

Root phenylalanine 0.31 5.38*** 54.78*** 1.13 0.03 7.01*** 0.91

Root tyrosine 0.42 1.35 13.37*** 0.9 0.13 3.97** 0.77

Root threonine 2.07 7.32*** 84.63*** 1.13 2.75 9.03*** 1.37

Root lolines 455.13*** 9.26*** 19.28*** 9.26*** 19.28*** 0.93 0.93

‘*’ denotes p-values = > 0.01 - 0.05; ‘**’ denotes p-values = > 0.001 - 0.01; ‘***’ denotes p-values = < 0.001.
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Figure 1 Tiller recovery from water-deficit stressed E+ and E-
plants after placing them back into normal watering regime.
(a) First clone pair 278 (E+)/279 (E-), Experiment 1, error bars are SEM
(n = 4); (b) First clone pair 278 (E+)/279 (E-), Experiment 2, error bars are
SEM (n = 5); (c) Second clone pair 4607(E+)/4608 (E-), error bars are SEM
(n = 5). E+ D+ = endophyte infected and water withheld for the time
periods indicated; E-D + = endophyte uninfected and water withheld;
E+ D- = endophyte infected and unstressed; E-D- = endophyte
uninfected and unstressed. Symbols indicating statistical significance
based on t-max are ‘***’ p< 0.001; ‘**’ p> 0.001 - 0.01; ‘*’p> 0.01 - 0.1;
‘†’ p= 0.110 based on t-max; p= 0.019 based on t values).
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totals of glucose, fructose and sucrose at day 1, E+
clones had approximately 2–4 fold higher levels in
shoots and roots compared to their watered controls,
whereas the totals in E- clones did not differ signifi-
cantly from their watered controls (see Additional file 2,
panels a, b).
Results in Experiment 2, also with clone pair 278/279,

were very similar except for a one-day delay in effects
on tiller survival and metabolites, probably because
of overcast skies on the first day (see Additional file 1,
panel b). At day 2 of withholding water, free glucose and
fructose levels in E+ were approximately 2–4 fold
higher than in watered controls or in E- stressed plants
(Figures 2c and 3c). There were no significant differ-
ences in sucrose levels at day 2 between E+ and E-
plants (Figure 4c, Table 2). In roots, sucrose levels were
2–3 fold higher in E+ compared to E- roots from day 2 to
day 4 (Figure 4d), though there were no significant diffe-
rences in glucose or fructose (Figures 2d and 3d, Table 2,
and see Additional file 2, panels c, d).
Comparing free glucose and fructose sugars in clone

pair 4607/4608 during the water deficit period, there
were significant differences between E+ and E- in the
roots (Figures 2f and 3f ); but not in shoots except for
fructose at day 5, where E+ shoots accumulated fruc-
tose to higher levels than E- shoots (Figures 2e and 3e).
Root glucose and fructose concentrations increased by
day 2 of withholding water, and were significantly
higher in E+ than E- plants.
The level of the disaccharide, trehalose, was low in the

tall fescue clone pairs. However the trehalose levels were
higher in water deficit tissues compared to the watered
control samples (Tables 2 and 3), and after 3 days of
withholding water significant higher levels of trehalose
were observed in the E+ clones compared to the E-
clones (Figure 5a and b).

Sugar alcohols/polyols
Levels of different sugar alcohols, including myo-inositol,
mannitol, sorbitol, arabitol, galactinol, and chiro-inositol,
were quantified in clone pair 278/279. Significant in-
creases in myo-inositol were observed (days 2 and 3) in
response to water deficit, but there was no significant
effect of endophyte (Figure 6a, Table 2). Mannitol, a
fungal metabolite, was undetectable in E- plants at most
time points, but increased significantly in E+ plants
at day 3 after withholding water, compared to E+ water
controls (Figure 6b, Table 2). Sorbitol was found in both
E+ and E- plants, and water deficit and endophyte did
not influence these levels significantly (Figure 6c,
Table 2). Arabitol was not found in either E+ or E-
watered controls, but upon water deficit stress, arabitol
accumulated with a maximum at day 3 in E+ plants
(Figure 6d, Table 2). Chiro-inositol levels were very low,
and galactinol levels were not significantly affected by
the endophyte or water deficit status (data not shown).

Amino acids
A total of 11 free amino acids were measured in watered
controls and stressed shoot and root tissues of both
clone pairs. The amino acids, methionine, arginine, orni-
thine and homoserine, were very low or undetectable.
Levels of the amino acids valine, tryptophan, tyrosine,
threonine, and phenylalanine were higher in stressed
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plants from day 2 to day 5 compared to watered con-
trols, but no consistent endophyte effects on these
amino-acid levels were observed (Tables 1, 2 and 3).
Serine levels did not change due to endophyte or water
deficit stress. In the first experiment with the 278/279
clone pair, proline levels in shoots and roots of E+ and
E- clones increased under water deficit stress, but not in
watered controls (Figure 7a and b, Table 1). At day 1 of
withholding water, levels of proline increased approxi-
mately 6-fold in E+ shoots and roots, whereas compar-
able increases in E- plants were not observed till day 2.
Thus, levels of proline at day 1 were significantly greater
in E+ than in E- plants (Figure 7a and b). On day 2 of
water deficit, and thereafter, there were no significant
differences in the levels of proline between E+ and
E- plants until day 4. However, levels in the treated
clones remained approximately 13-15-fold higher than
in watered controls. In this experiment, the elevated
levels of proline were accompanied by a slight decrease
in glutamine levels (data not shown), but the total levels
of proline, glutamine, and glutamic acid, which are
metabolically interrelated, were higher in the stressed
tissues. There were no significant differences in aspara-
gine levels between E+ and E- plants upon water deficit
(Table 1).
In the second experiment with clone pair 278/279, in-

creases in amino acid levels started from day 3 after with-
holding water. At that time point, proline levels in E+
clones were significantly higher than in E- clones both in
shoots (Figure 7c) and roots (Figure 7d).
In the experiment with clone pair 4607/4608, proline

levels increased in shoots of both E+ and E- plants
by day 2 of withholding water, but endophyte effect was
not significant (Figure 7e, Table 3). However, levels



160

120

80

40

0

80

60

40

20

0

120

80

40

0

80

60

20

40

0

200

160

120

80

40

0

140

100

60

20
0

Time (days) Time (days)

Time (days) Time (days)

Time (days) Time (days)

a b

c d

e f

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

E+D–

E+D+

E–D+

E-D–

m
ol

 g
   

dw
-1

m
ol

 g
   

dw
-1

m
ol

 g
   

dw
-1

m
ol

 g
   

dw
-1

m
ol

 g
   

dw
-1

m
ol

 g
   

dw
-1

Figure 3 Fructose levels in water-deficit stressed and unstressed shoots (a, c, and e) and roots (b, d, and f) of tall fescue. (a and b)
Shoots and roots, respectively, of 278/279 clone pair, Experiment 1; (c and d) shoots and roots, respectively, of 278/279 clone pair, Experiment 2;
(e and f) shoots and roots, respectively, of 4607/4608 clone pair. Abbreviations are as in Figure 2. Statistical significance is indicated as in Figure 1.
Error bars are SEM of biological replicates as indicated in Figure 2.
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of glutamine and glutamic acid, which are metabolically
linked to proline, were higher at day 2 after water deficit
(Figure 8a and c); and glutamic acid was significantly
higher in E+ compared to E- shoots (Figure 8c). Simi-
larly, in stressed roots, proline levels did not significantly
differ between E+ and E- (Figure 7f, Table 3), but at day
2 glutamine reached approximately 3-fold higher levels
in E+ roots compared to E- stressed roots and to
watered controls (Figure 8b). Asparagine levels increased
in shoots by day 2 of withholding water, but were
not significantly different between E+ and E- shoots
(Figure 8e, Table 3). However, in roots, asparagine levels
were significantly higher at day 2 in E+ compared to
E- clones (Figure 8f ). Overall, in this genotype, the
endophyte effects on metabolites were evident especially
in roots within two days of withholding water.
Loline alkaloids
Lolines are the most abundant alkaloids produced by N.
coenophialum in tall fescue, where the major forms are N-
formylloline and N-acetylloline, although N-methylloline
and N-acetylnorloline are also detected. In Experiment 1
with clone pair 278/279, total loline alkaloid levels in E+
shoot samples were higher in stressed clones from day 2
to day 4 of withholding water (Figure 9a, Table 1). Lower
amounts of lolines were detected in root samples com-
pared to shoot samples (Figure 9b). As expected, lolines
were undetectable in E- root and shoot samples. In the
second experiment with same clone pair, lolines increased
in stressed shoots and were significantly different from
watered controls by day 3 (Figure 9c and d, Table 2).
Loline levels in clone pair 4607/4608 showed similar
trends (Figure 9e and f, Table 3).
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Discussion
We assessed plant survival and differences in metabolite
accumulation in two tall fescue clone pairs with (E+) or
without (E-) symbiotic Neotyphodium coenophialum over
a time course of water deficit stress, and observed that E+
plants recovered significantly better than E- plants after
2–3 days of withholding water. Simultaneously, the E+
plants consistently accumulated more free sugars, sugar
alcohols and amino acids early during the onset of stress,
compared to E- plants. The fungal-specific metabolites,
mannitol and loline alkaloids, also increased in this time
period. The higher metabolite levels in E+ compared to
E- plants over the time course of withholding water con-
sistently occurred within one day prior to a significant
endophyte effect on plant recovery, strongly suggesting
that free sugars, polyols, amino acids, and fungal metabo-
lites play roles in endophyte-enhanced tolerance to water
deficit. The production or release of these substances may
lead to osmotic adjustment [20,36], and help maintain in-
tegrity of cellular enzymes, proteins, nucleic acids and
membranes [37], or protect against reactive oxygen spe-
cies (ROS) [38,39].
The accumulation of soluble sugars is strongly corre-

lated with drought tolerance in plants [40]. These sugars
affect osmotic adjustment, which is considered an import-
ant mechanism to allow maintenance of water uptake and
cell turgor under stress conditions [41]. Furthermore, hy-
droxyl groups of sugars and polyols can interact with pro-
teins and membranes to prevent denaturation and help
avoid the crystallization of cytoplasm under low-water
stress [42,43]. In addition, these sugars have been shown
to be important regulatory molecules in different signaling
pathways [22,44], helping to maintain redox balance, and
acting as reactive oxygen scavengers [45,46]. In general,
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endophytic fungi are similar to plant pathogenic fungi
in possessing glucan hydrolase-32 (GH32 invertase)
enzymes that convert sucrose into glucose and fructose
for catabolism [47]. Fungal invertase activity and pres-
ence of invertase gene transcripts have been reported
in some of the grass endophytes [48,49], so under the
conditions imposed in our study, fungal enzymes may
play at least a partial role in the observed increases in
these free sugars.
Mannitol and arabitol are common polyols in fungi,

and have been observed to accumulate in plants during
infection [50]. We found that both polyols increased in
response to water deficit in the E+ tall fescue clones.
Our results, are in agreement with Richardson et al. [26]
who reported mannitol in E+ tall fescue plants, although
they did not see an effect on the mannitol levels when
the plants were osmotically stressed with polyethylene
glycol. Arabitol accumulated essentially only under stress
(Figure 6) conditions [26]. Most plants do not normally
contain mannitol, with some salt tolerant species, such
as celery, as exceptions [51]. Note that the very low
levels of mannitol in some E- plants was likely due to
the presence of commensal fungi on the plants, since
the plants were not grown axenically. Plants engineered
to produce mannitol have shown increased tolerances to
drought, salt, and temperature stresses [52-55], so man-
nitol in the E+ plants may have contributed to their tol-
erance of water deficit stress.
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The non-reducing disaccharide, trehalose, is an import-
ant osmoprotectant and storage carbohydrate in many or-
ganisms. In plants, the trehalose pathway is ubiquitous
and indispensible, but with a few exceptions, such as in
resurrection plants, trehalose typically does not accumu-
late to high levels, possibly due to trehalase-catalyzed
cleavage to glucose. Significant increases in trehalose accu-
mulation have been accomplished thorough transgenic ap-
proaches, and shown to protect plants from drought and
salt stresses [56-59]. However, the overproduction or accu-
mulation of high levels of trehalose is also observed to
cause growth aberrations in some of the transgenic experi-
ments [60-63]. In our studies, we observed increased levels
of trehalose after 3 days of withholding water, with signifi-
cantly higher levels in E+ plants. Although the overall
levels of trehalose observed in the E+ and E- plants were
very low compared to the other soluble sugars and polyols,
the observed spike in trehalose accumulation during
stress, and differences between E+ and E- plants in treha-
lose levels suggest a possible functional role. While it is
possible that the low trehalose levels observed in these
plants could function in stress tolerance [64], it seems
more likely that the trehalose accumulation is associ-
ated with the signaling/regulation role that has been
documented [65-70].
Water deficit has been shown to increase levels of

ROS, so an important role of accumulated metabolites
appears to be scavenging or detoxifying ROS [45,71,72].
Production of phenolics, carbohydrates, mannitol, and
proline with antioxidant capacity protects plants from
oxidative stress under water-deficit conditions. As re-
viewed by White and Torres [73], symbiotic plants are
protected from different abiotic and biotic stresses by
production of these antioxidants.
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The timing of metabolite changes was also highly
suggestive of their roles in endophyte-enhanced stress
tolerance. In all three experiments we observed endophyte-
enhanced increases in certain sugars, sugar alcohols and
amino acids one day before observing the significant endo-
phyte effect on recovery of the stressed plants. Interestingly,
endophyte effects on levels of most metabolites were brief,
since levels of these metabolites in E+ plants decreased or
plateaued over the following days to levels similar to those
in E- plants. In addition to enhancing osmotic adjustment,
it is also possible that these accumulated solutes provided
energy, carbon and nitrogen for the survival of meristem-
atic regions, and helped in regrowth of the plant after the
water deficit was alleviated.
Levels of several amino acids have been shown to in-

crease in drought stressed plants [74]. In our experiments,
the levels of proline, threonine, tryptophan, phenylalanine,
tyrosine, and valine increased upon water deficit stress. In
addition, proline was found to be consistently higher in
both shoots and roots of E+ stressed plants than in E-
stressed plants. A correlation between free proline accu-
mulation and the performance of crops in the field at low
water availability suggests that its accumulation is a
drought stress adaptive response that enhances survival
[75]. Proline may serve as an osmoregulator [74] and also
as a ROS scavenger [76].
Loline alkaloids are protective secondary metabolites

produced by the endophyte in tall fescue and other cool
season grasses [77,78]. We observed increased loline alka-
loid levels in response to water deficit stress in both clone
pairs. Lolines are derived from proline and aspartate [79].
Conceivably, proline is depleted by loline production [80],
but since no differences in proline levels were observed
between E+ and E- plants in unstressed conditions, proline
levels were apparently adjusted in response to loline alkal-
oid synthesis. In the first experiment with clone pair 278/
279 total proline and loline levels in E+ plants were higher
even at day 2 after withholding water compared to E-
plants, though levels of proline (and the metabolically
closely related amino acids, glutamic acid and glutamine)
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Figure 9 Loline levels in water-deficit stressed and unstressed shoots and roots of tall fescue. (a and b) Shoots and roots, respectively, of
278/279 clone pair, Experiment 1; (c and d) shoots and roots, respectively, of 278/279 clone pair, Experiment 2; (e and f) shoots and roots,
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were not different in between E+ and E- plants at day 2. It
is possible that the proline is converted to loline in the E+
plants, thus maintaining an apparent equal proline level as
that of E- plants. However, in the other two experiments,
the levels of proline in stressed tissues were far higher
compared to amounts of lolines that accumulated in those
tissues. Although water deficit has been reported to in-
crease loline alkaloid levels in leaf tissues of some tall fes-
cue accessions [81], a direct role of loline alkaloids on
water stress tolerance has not yet been demonstrated.
Differences in the timing of metabolite accumulation

were observed between two experiments with the same
clone pair (278/279), with metabolite peaks at day 1 in Ex-
periment 1 and the corresponding peaks occurring at day
2 or 3 in Experiment 2. This difference may be because of
weather and greenhouse conditions that differed between
these experiments. Specifically, day 1 of Experiment 2 was
accompanied with thunderstorms and heavily overcast
skies, resulting in lower photoactive radiation compared
to day 1 of Experiment 1 (see Additional file 1, panel b),
apparently delaying the onset of drought stress as evi-
denced by the tiller recovery curves (see Figure 1a and b).
Similarly the observed metabolite differences between the
experiments with different clone pairs could be due to
plant genotype effects. Nevertheless, it was clear that, in
our experiments the endophyte in tall fescue sped up plant
responses to water deficit by earlier and faster accu-
mulation of metabolites compared to uninfected tall fescue
plants. Similar results have been reported in bacterial
endophyte-plant systems. Bacterial endophyte enhances
cold tolerance of grapevine plants by altering sugar metab-
olism and photosynthesis [82], and with higher and faster
accumulation of stress related gene transcripts and meta-
bolites [83].
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Rasmussen et al. [84] have conducted comprehensive
metabolomic studies in the related grass, Lolium perenne
(perennial ryegrass), and have shown significant effects
of the endophyte, Neotyphodium lolii, on primary and
secondary metabolism of that grass. The need for more
research to identify robust metabolic traits and pathways
relating to drought tolerance in forage grasses through
integration of metabolomic and transcriptomic data have
been emphasized in reviews [85]. From our study it was
evident that endophyte can affect tall fescue plant me-
tabolism, in response to water deficit stress. Analyzing
these endophyte effects on host plants at the molecular
genetic level by transcriptome profiling is another ap-
proach, that we will be exploring further to help eluci-
date the mechanisms of endophyte-enhanced plant
growth and survival under water deficit conditions.

Conclusions
In conclusion, enabling the plant cells to sense and re-
spond quickly to surrounding environmental signals or
stresses is important for their metabolic and develop-
mental adjustments, and these responses may be en-
hanced due either to primary or secondary metabolite
signals [86,87]. As we observed in the tall fescue clone
pairs, symbiotic fungi in the infected plants may have in-
duced, or rapidly activated, the plant biochemical reac-
tions to accumulate the metabolites early in stress
conditions, and this may be one of the ways that the
presence of the endophyte helps mitigate the effects of,
and enhance recovery from, water deficit stress. The re-
sults presented here demonstrate that symbiosis with en-
dophytes can significantly enhance recovery of host
plants from water deficit stress, and the effect corre-
sponds in timing with accumulation of organic solutes
that may serve as osmolytes and cellular protectants in
leaves and roots.
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Additional file 1: Photoactive radiation (PAR) at the sampling
period. (a) clone pair 278/279, Experiment 1; (b) clone pair 278/279,
Experiment 2; (c) clone pair 4607/4608.

Additional file 2: Total amounts of glucose, fructose, sucrose (GFS) in
water-deficit stressed and unstressed plants of tall fescue clone pairs.
(a and b) Shoots and roots, respectively, of clone pair 278/279, Experiment 1;
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(e and f) shoots and roots, respectively, of clone pair 4607/4608.
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