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Likelihood Formulation of Parent-of-Origin Effects on Segregation Analysis,
Including Ascertainment
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We developed a likelihood-based method for testing for parent-of-origin effect in complex diseases. The likelihood
formulations model parent-of-origin effect and allow for incorporation of ascertainment, as well as differential
male and female ascertainment probabilities. The results based on simulated data indicated that the estimates of
parental effect (either maternal or paternal) were biased when ascertainment was ignored or when the wrong
ascertainment model was used. The exception was single ascertainment, in which we proved that ignoring ascer-
tainment does not bias the estimation of parental effect, in a simple parent-of-origin model. These results underscore
the importance of considering ascertainment models when testing for parent-of-origin effect in complex diseases.

Introduction

Parent-of-origin effect refers to differential penetrance
or expression of disease in the offspring, depending on
the sex of the transmitting parent. Parent-of-origin effect
may encompass several possible underlying biological
phenomena, including genomic imprinting, trinucleo-
tide-repeat expansion, or mitochondrial inheritance. Ge-
nomic imprinting (also referred to as “gametic” or “pa-
rental” imprinting) is the epigenetic marking of a gene,
on the basis of its parental origin, that results in monoal-
lelic expression. Genomic imprinting differs from clas-
sical Mendelian genetics in that the parental comple-
ments of imprinted genes are not equivalent with respect
to their expression. In maternal imprinting, gene ex-
pression is inhibited after passage through the mother’s
germline, whereas, in paternal imprinting, gene expres-
sion is inhibited after passage through the father’s germ-
line. Prader-Willi syndrome (maternally imprinted) and
Angelman syndrome (paternally imprinted) are two clas-
sic examples of the numerous human diseases in which
the effects of imprinting are observed (Falls et al. 1999).
Studies have revealed that genomic imprinting has the
following intrinsic properties: silencing of gene ex-
pression, stable propagation in dividing somatic cells,
possible reversal of the imprint pattern under certain
conditions, and establishment of the imprint during ga-
metogenesis. The mechanism(s) of genomic imprinting
are complex and not well understood; however, evi-
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dence suggests that methylation is a likely candidate,
since it satisfies the aforementioned criteria (Tycko et
al. 1997; Constancia et al. 1998).

Another biological phenomenon that can result in a
parent-of-origin effect is trinucleotide-repeat expansion.
Instability in expansion of trinucleotide repeats (e.g.,
CAG, CGG, CTG, and GAA) is observed during germ-
line transmission when the length of the repeat exceeds
a critical value (Reddy and Housman 1997). The in-
stability is generally observed when the transmitted re-
peat size is 40–100 bp. Studies of individuals diagnosed
with early-onset Huntington disease have revealed a sig-
nificant increase in sperm trinucleotide repeat (CAG)
lengths compared with the repeat lengths of the father.
On the other hand, in Fragile X syndrome, expansion
of trinucleotide repeats (CGG) in the FMR1 gene is
observed when the gene is transmitted maternally. Nu-
merous models have been proposed to explain the trip-
let-repeat expansion leading to human disease (Pearson
and Sinden 1998). For example, one model involves the
formation of DNA hairpin structures that lead to errors
in replication (e.g., replication slippage) and/or promote
recombination via unequal sister-chromatid exchange.

A third phenomenon is mitochondrial inheritance,
which manifests a transmission pattern consistent with
parent-of-origin effect. mtDNA is almost exclusively
maternally inherited (Lightowlers et al. 1997), but a
mitochondrial disorder may exhibit either a maternal
or a Mendelian inheritance pattern, depending on the
site of the primary gene defect. Leber hereditary optic
neuropathy was the first disease found to be caused by
a point mutation in mtDNA (Wallace et al. 1988); since
then, numerous other mutations that lead to diseases
such as myoclonic epilepsy and ragged-red fibers, mi-
tochondrial encephalomyopathy, lactic acidosis and
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stroke-like episodes, and progressive external ophthal-
moplegia have been found. The clinical spectrum of pos-
sible mitochondrial defects has been expanded to in-
clude several common disorders. In disorders such as
Parkinson disease and Alzheimer disease, mitochondrial
defects may not be the primary cause but have been
suggested to modify the outcome of disease (Suomalai-
nen 1997).

The phenomenon of parent-of-origin effect has been
investigated in the transmission of neurological and psy-
chiatric diseases such as Tourette syndrome, bipolar dis-
order, and panic disorder (Lichter et al. 1995; McMa-
hon et al. 1995; Stine et al. 1995; Gershon et al. 1996;
Kato et al. 1996; Eapen et al. 1997; Battaglia et al. 1999;
Haghighi et al. 1999). In previous studies, similar ap-
proaches have been adopted in the analysis of disease
transmission. Some investigators have systematically as-
certained two-generation pedigrees and have dichoto-
mized their data into maternal- and paternal-trans-
mission groups (McMahon et al. 1995). Others have
utilized multigenerational pedigrees and have divided
them into maternal- and paternal-transmission branches
(Gershon et al. 1996; Haghighi et al. 1999). The latter
approach discards valuable information by breaking
down multigenerational pedigrees into maternal and pa-
ternal branches and by ignoring parental mating types
(MTs) in which maternal or paternal transmission can-
not be determined (i.e., unaffected # unaffected and
affected # affected MTs). In the consideration of the
maternal and paternal branches, these methods do not
account for the potential transmission of the disease
gene through the unaffected parent (via reduced pene-
trance). Also, these methods do not incorporate ascer-
tainment models. Consequently, we developed a likeli-
hood-based approach that utilizes all available data for
testing for parent-of-origin effect, allowing for modeling
of ascertainment (Haghighi and Hodge 1999).

The likelihood-based method presented here models
parent-of-origin effect in nuclear families, for a single
locus. Extension of this model to general pedigree struc-
tures is described in the “Discussion” section. The like-
lihood calculation handles all possible parental MTs and
variable sibship sizes. For each family in the data set,
the exact likelihood is computed, allowing for reduced
penetrance. This entails consideration of possible dis-
ease-gene transmission from unaffected parent(s) to off-
spring who, in turn, may or may not express the disease
phenotype. The likelihood is parameterized to model
parental effect, by including the penetrances of maternal
and paternal transmission. To assess the potential effect
that ascertainment has on detection of parent-of-origin
effect or on estimation of penetrances of maternal and
paternal transmission, we also incorporated a general
ascertainment model into our likelihood formulation.
We demonstrated that, in the special case of single as-

certainment, no correction needs to be made for ascer-
tainment (for this simple model).

The two goals of this paper are (1) to formulate the
correct full likelihood for parent-of-origin effect in nu-
clear families, incorporating the “p”-based ascertain-
ment model of Weinberg (1928) and Morton (1959)
but also allowing for differential male and female as-
certainment probabilities, and (2) to determine the ef-
fects that ascertainment has on our ability to detect
parent-of-origin effect. We demonstrate the likelihood
derivation and assess its utility, using simulated data
generated under a range of inheritance and ascertain-
ment models. The two principal likelihood models that
are presented consist of the parental-effect model and
the parental-effect-with-ascertainment model. These
models were systematically studied by using simulated
data generated under maternal or paternal parental ef-
fects with “complete” or “single” ascertainment. The
likelihood models were evaluated by examining the es-
timated parental effect and the power to detect such an
effect in the presence or absence of ascertainment.

Methods

Notation

To test for parent-of-origin effect, we have developed
two likelihood models. Model I models parent-of-origin
effect but does not incorporate ascertainment. This
model would apply to situations of “random” ascer-
tainment (see the “Discussion” section). Model II models
parent-of-origin effect and also incorporates ascertain-
ment, as well as allowing for differential male and female
ascertainment probabilities. Before describing the mod-
els in detail, we will define the parameters used in the
likelihood formulations:

of disease allele (denoted by “D”);q p frequency
of nondisease allele (denoted by “d”),p p frequency

where ;p p 1 � q
, defined as the mean betweenf p disease penetrance

the maternal- and paternal-transmission penetrances,
(see below);f p (f � f )/2m p

of the maternal- and paternal-transmissiond p deviation
penetrances from the mean penetrance, where d may
be either positive or negative—that is, d p (f � f )/2m p

so that
-transmission penetrance, defined asf p maternalm

;f � d

-transmission penetrance, defined asf p paternalp

;f � d

;f p f � f � f fmp m p m p

(note that explanations for each of these penetrance
probabilities are given in the subsection “Likelihood
Model I,” below);

ascertainment probability—that is, P(male isp p maleb
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a is affected);probandFhe
ascertainment probability—that is, P(femalep p femaleg

is a is affected);probandFshe
of male offspring in a sibship;s p numberb

of female offspring in a sibship;s p numberg

, defined as ;s p sibship size s p s � sb g

of affected male offspring;r p numberb

of affected female offspring;r p numberg

of affected offspring, defined as .r p number r p r � rb g

Note that “b” (for “boy”) and “g” (for “girl”) are
used to denote male and female offspring, respectively.
Also, in both likelihood models, I and II, d is the pa-
rameter of interest; it is a nongenetic (i.e., “dummy”)
parameter, which is used as an indicator of maternal or
paternal transmission. The use of d in this manner re-
duces model complexity, since the maternal- and the pa-
ternal-transmission penetrances are both defined with
respect to one parameter (see the “Discussion” section).

Likelihood Model I

We began by calculating the exact likelihood for each
of the four phenotypic parental MTs: (1) affected mother
# unaffected father, (2) unaffected mother # affected
father, (3) unaffected mother # unaffected father, and (4)
affected mother # affected father. We assumed an au-
tosomal dominant mode of inheritance. For each phe-
notypic MT, we enumerated the possible underlying pa-
rental genotypes consistent with the genetic model. These
parental genotypes were then used to enumerate the pos-
sible offspring genotypes and to assign probabilities to
them (see equation (1), below). A sample likelihood com-
putation for the unaffected mother # unaffected father
MT is shown in table 1, with corresponding parental
probabilities, as well as offspring penetrance and trans-
mission probabilities. We chose to illustrate this particular
MT because it illustrates the use of all possible underlying
parental genotypes. The remaining parental MTs are cal-
culated in the same fashion, except that, depending on
the parental phenotypes, not all parental genotypes are
possible. Thus, the likelihood tables for these other MTs
will contain some empty cells.

The exact likelihood calculation described above
can be formulated as a simple probability, which is

, where denotes the vector ( ) ofP (f ,f ,f ) f f , … , fc m p c c c1 s

the observed phenotypes of the s children, ; andc , … , c1 s

and denote the observed maternal and paternalf fm p

phenotypes, respectively. Using the law of total proba-
bility, we rewrite this probability to allow for all un-
derlying genotypes, where and denote maternalg gm p

and paternal genotypes, respectively (the symbols “ ”fc

and “ ,” not in boldface, denote the phenotype and thegc

genotype, respectively, of a single child):

P(f ,f ,f ) p P(f Ff ,f ,g ,g )P(f ,f ,g ,g )��c m p c m p m p m p m p
g gm p

p P(f Fg ,g )P(f Fg )P(g )P(f Fg )P(g )�� c m p m m m p p p
g gm p

p P(f Fg )P(g )P(f Fg )P(g )�� m m m p p p
g gm p

r s�r# [P(f p affFg ,g )] [P(f p unaffFg ,g )]c m p c m p

p P(f Fg )P(g )P(f Fg )P(g )�� m m m p p p
g gm p

r

# P(f p affFg ,g ,g )P(g Fg ,g )� c c m p c m p[ ]
gc

s�r

# P(f p unaffFg ,g ,g )P(g Fg ,g ) .� c c m p c m p[ ]
gc

(1)

This is essentially Elston and Stewart’s (1971) algorithm,
except that, to model parent-of-origin effect, we con-
dition the offspring phenotypes on the parental geno-
types in addition to the usual offspring genotypes.

The probabilities in the last expression in equation (1)
can be found in table 1. They are all derived from the
usual functions of penetrance f and from Mendel’s first
law, except the terms , which we now ex-P(f Fg ,g ,g )c c m p

plain:

is assumed to be 0, inde-P(f p affFg p dd,g ,g )c c m p

pendent of and .g gm p

is taken to equal (or ),P(f p affFg p Dd,g ,g ) f fc c m p m p

if the Dd child clearly inherited the D allele from the
mother (or father) (i.e., if one parent is Dd and the other
parent is either DD or dd, or if one parent is DD and
the other parent is dd). If either parent is equally likely
to have contributed the D allele (i.e., if both parents
are Dd), then P(f p affFg p Dd,g p Dd,g p Dd)c c m p

is set to —that is, it is the mean off p (1/2) (f � f )m p

the two parental-transmission penetrances.
For , the DD child mustP(f p affFg p DD,g ,g )c c m p

have received the D allele from both parents. This
probability is found by first considering its com-
plement, . For a childP(f p unaffFg p DD,g ,g )c c m p

with a DD genotype to be unaffected requires that
the D allele not be “expressed” from either parent;
thus, ,P(f p unaffFg p DD,g ,g ) p (1 � f )(1 � f )c c m p m p

under the assumption of the independence of the
two parents. Therefore, P(f p affFg p DD,g ,g ) pc c m p

, which we subse-1 � (1 � f )(1 � f ) p f � f � f fm p m p m p

quently write as “ ” for short.fmp
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Figure 1 Pedigree used for illustration of likelihood calculation

Table 1

Transmission Probabilities (of Offspring Genotypes) and Penetrances (of Offspring Phenotypes), Conditioned on Indicated Parental
Genotypes, for Parental Genotypes Compatible with Unaffected Mother # Unaffected Father MT

UNAFFECTED

FATHER’S GENOTYPE

TRANSMISSION PROBABILITIES WHEN UNAFFECTED MOTHER’S GENOTYPE IS

dd; 2p Dd; 2pq(1 � f ) DD; 2q (1 � f )

dd; 2p dd; , ,P(dd) p 1 P(affFdd) p 0
P(unaffFdd) p 1

dd; , ,P(dd) p .5 P(affFdd) p 0
P(unaffFdd) p 1

Dd; , ,P(Dd) p .5 P(affFDd) p fm

P(unaffFDd) p 1 � fm

Dd; , ,P(Dd) p 1 P(affFDd) p fm

P(unaffFDd) p 1 � fm

Dd; 2pq(1 � f ) dd; , ,P(dd) p .5 P(affFdd) p 0
P(unaffFdd) p 1

dd; , ,P(dd) p .25 P(affFdd) p 0
P(unaffFdd) p 1

Dd; , ,P(Dd) p .5 P(affFDd) p fp

P(unaffFDd) p 1 � fp

Dd; , ,( )P(Dd) p .5 P(affFDd) p 1/2 (f � f )m p

( )P(unaffFDd) p 1 � 1/2 (f � f )[ ]m p

Dd; , ,P(Dd) p .5 P(affFDd) p fm

P(unaffFDd) p 1 � fm

DD; , ,P(DD) p .25 P(affFDD) p fmp

P(unaffFDD) p 1 � fmp

DD; , ,P(DD) p .5 P(affFDD) p fmp

P(unaffFDD) p 1 � fmp

DD; 2q (1 � f ) Dd; , ,P(Dd) p 1 P(affFDd) p fp

P(unaffFDd) p 1 � fp

Dd; , ,P(Dd) p .5 P(affFDd) p fp

P(unaffFDd) p 1 � fp

DD; , ,P(DD) p .5 P(affFDD) p fmp

P(unaffFDD) p 1 � fmp

DD; , ,P(DD) p 1 P(affFDD) p fmp

P(unaffFDD) p 1 � fmp

NOTE.—We define as (see text).f f � f � f fmp m p m p

We demonstrate an actual likelihood calculation using
the family in figure 1. For the sake of simplicity, we
assume that the disease allele is rare (i.e., q is very
small), only for this example. This reduces the likely
set of parental genotypes to the following ( ):g # gm p

and . (This is a simplified exam-Dd # dd dd # Dd
ple; in our actual likelihood calculations, all paren-
tal genotypes are considered.) We focus on the MT

, to illustrate the terms in equation (1). In thisDd # dd
case, the parental penetrance terms andP(f Fg )m m

become andP(f Fg ) P(f p unaffFg p Dd) p 1 � fp p m m

, respectively. Similarly, theP(f p unaffFg p dd) p 1p p

parental genotypic probabilities and be-P(g ) P(g )m p

come and , respectively. The2P(Dd) p 2pq P(dd) p p
penetrance and transmission probabilities for the off-
spring are and , which, for theP(f Fg ,g ,g ) P(g Fg ,g )c c m p c m p

affected children, become P(f p affFg p Dd,g pc c m

andDd,g p dd) p f P(g p DdFg p Dd,g p dd)p m c m p

. Note that both children must have genotypep 1/2
Dd. The probabilities for the remaining MT are taken

from table 1. Thus, the (simplified) likelihood for this
family is

2 21 13 3L p 2p q(1 � f ) f � 2p q(1 � f ) f ,m p( ) ( )2 2

where the two terms correspond to the andDd # dd
parental mating genotypes, respectively. If wedd # Dd

(a) did not assume that q is small and (b) included all
eight possible parental genotypic MTs, the complete like-
lihood for this family would be,

2 21 13L p 2p q(1 � f ) f � fm p( ) ( )[ ]2 2
21 12 2 2�4p q (1 � f ) (f � f ) � fm p mp[ ]4 4

2 2 2 2 4 2 2�p q (1 � f )(f � f ) � q (1 � f ) (f )m p mp

2 21 1 1 13 2�2pq (1 � f ) f � f � f � f ,m mp p mp( ) ( )[ ]2 2 2 2

and this is indeed what our program calculates.

Likelihood Model II

The likelihood model (i.e., model I, described above)
was extended to incorporate ascertainment. This second
model—model II—allows us to assess the potential in-
fluence that ascertainment has on detection of parent-
of-origin effect. The potential for ascertainment bias, as
is well known, is always a consideration in segregation
analysis. In this case, the problem of ascertainment bias
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is also a concern because estimation of parental effect
falls under the rubric of segregation analysis.

The ascertainment model assumes that families are
ascertained through children (Weinberg 1928; Morton
1959) and incorporates sex-based ascertainment in the
likelihood. The likelihood with differential male and fe-
male ascertainment probabilities is as follows:

P(r ,r ,f ,f Ffamily ascertained)g b m p

P(family ascertainedFr ,r )P(r ,r ,f ,f )g b g b m pp (2)
P(family ascertained)

Note that P(family and child pheno-ascertainedFparental
types) p P(family phenotypes), sinceascertainedFchild
we assume that families are ascertained through the chil-
dren. Hence, the first term in the numerator of equation
(2) is simply P(family ). This ascertain-ascertainedFr ,rg b

ment term, P(family ), allows for mod-ascertainedFr ,rg b

eling of general ascertainment, by a variety of possible
ascertainment criteria, such as sex (male vs. female), dis-
ease subtypes (e.g., early onset vs. late onset and mild
vs. severe), and so on. In this situation, we were inter-
ested in modeling the differential male and female as-
certainment probabilities, so, for any and , this as-p pg b

certainment probability for a family can be expressed as
. The second term in the numer-r rg b1 � (1 � p ) (1 � p )g b

ator, , corresponds to derivedP(r ,r ,f ,f ) P(f ,f ,f )g p m p c m p

in equation (1), here with . Thus, the numer-r p r � rg b

ator of equation (2) becomes

r rg b[1 � (1 � p ) (1 � p ) ]P(r ,r ,f ,f ) .g b g b m p

The denominator of equation (2) is found by summing
the numerator over all possible configurations for sib-
ship sizes and all possible parental phenotypes:

s s min(r,s )b

r rg b[1 � (1 � p ) (1 � p ) ]� � � g b
s p0 rp1 r pmax(0,r�s )b b g

# P(r ,r ,f ,f ) ,�� g b m p
f fm p

where and . Proceeding from leftr p r � r s p s � sg b g b

to right, the first summation traverses through all sibship
configurations with respect to sex; the second summa-
tion enumerates all sibship configurations with at least

to, at most, affected children; and the thirdr p 1 r p s
summation keeps track of the sex of the affected chil-
dren, which is used in the ascertainment term. The last
two (internal) summations traverse through all possible
parental phenotypes. Thus, the expanded form of equa-

tion (2) for unequal male and female ascertainment
probabilities is

P(r ,r ,f ,f Ffamily ascertained)g b m p

r rg b( ) ( ) ( )p 1 � 1 � p 1 � p P r ,r ,f ,f /[ ]{ }g b g b m p

s s min(r,s )b

r rg b[1 � (1 � p ) (1 � p ) ]� � � g b{
s p0 rp1 r pmax(0,r�s )b b g

# P(r ,r ,f ,f ) , (3)�� g b m p }
f fm p

where each is given by equation (1).P (r ,r ,f ,f )g b m p

For the special case in which the male and female as-
certainment probabilities are equal (i.e., ),p p p p pg b

equation (3) is simplified, such that

P(r,f ,f Ffamily ascertained)m p

P(family ascertainedFr)P(r,f ,f )m pp .
P(family ascertained)

In the numerator, the ascertainment term is now
, and isrP(family ascertainedFr) p 1 � (1 � p) P(r,f ,f )m p

as in equation (1). In the denominator, the sibship is
traversed with respect to affection status but not sex.
The final probability for equal male and female ascer-
tainment probabilities becomes

P(r,f ,f Ffamily ascertained)m p

r[1 � (1 � p) ]P(r,f ,f )m pp . (4)s
r� [1 � (1 � p) ] � �P(r,f ,f )m p

rp1 f fm p

Models I and II described above give the full likelihood
for a single nuclear family. The likelihood for a collection
of families is found by multiplying the individual family
likelihoods over all families:

� L(family) ,
all families

where the likelihood of the individual family is given by
equation (1), for model I, and by equations (3) or (4),
for model II.

Details of Simulation and Analysis

We designed and implemented a simulation program
(sim_poo.pl) to simulate nuclear families under the
likelihood models described above. The parental MTs
(i.e., both genotypes and phenotypes) were randomly
generated, on the basis of Hardy-Weinberg proportions
and the user-defined disease penetrances and allele fre-
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Table 2

Observed Values from Simulations of Situation 1, Generatedd̂

under Complete Ascertainment

AM f

d

.1 .2 .3 .4 .5

Complete ascertainment .9 .072 … … … …
.7 .101 .193 .280 … …
.5 .097 .198 .300 .399 .500

Single ascertainment .9 .066 … … … …
.7 .062 .121 .195 … …
.5 .049 .105 .178 .269 .432

Random ascertainment .9 .066 … … … …
.7 .061 .121 .194 … …
.5 .048 .105 .177 .268 .430

quencies. Next, offspring genotypes were generated as-
suming Mendelian laws of inheritance. The affection
statuses of the offspring were randomly determined,
given the user-defined maternal- and paternal-transmis-
sion penetrance probabilities and conditioning on off-
spring and parental genotypes.

We examined three situations (by “situation,” we
mean a combination of generating model [GM], analysis
model [AM], family structure, and data-set size).

Situation 1. Fixed family structure, rare disease
( ). Data set includes 100 families (four sibs/q p 0.0001
sibship). GM includes complete and single ascertain-
ment; selected values of f and of d. AM includes com-
plete, single, and random ascertainment.

Situation 2. Variable sibship sizes. Data set includes
50 families; otherwise same as situation 1.

Situation 3. Higher gene frequency ( ); oth-q p 0.1
erwise, same as situation 2, except that AM includes
only complete and random ascertainment.

For each situation, we evaluated some or all of the
following: (a) bias in the estimate of d, (b) power to
detect parent-of-origin effect when , and (c) type Id 1 0
error rate when there is no parent-of-origin effect (i.e.,
when ). To assess bias in the estimate of d, we usedd p 0
the sample mean of the maximum-likelihood estimates
(MLEs) of d (henceforth denoted simply as “ ”). Ford̂

detection of power, we used the asymptotic approxi-
mation, , where LR is the likelihood22ln(LR) ∼ x (1 df)
ratio of versus . For analysis of type I errorˆL(d) L(d p 0)
rate (a), we set the nominal test size to 0.05 and then
determined the actual test size from our simulations.
Power was computed for a test size of .a p 0.05

Each simulated family was then considered for inclusion
in the sample, subject to a user-specified ascertainment
criterion (i.e., “complete” ascertainment, single ascer-
tainment, or “random” ascertainment). Under complete
ascertainment, the family was ascertained with proba-
bility unity if there was at least one affected child in the
sibship. (Thus, by “complete” ascertainment we mean
the case in which . This situation was originallyp p 1
termed “truncate” ascertainment by Morton [1959], be-
cause the corresponding probability distribution is a
truncated binomial distribution; however, since many
investigators currently refer to this model as “complete”
ascertainment, we use that terminology in this study as
well.) Under single ascertainment, the probability that
any one family will be ascertained is small and is pro-
portional to the number of affected children in the family
(Morton 1959; Stene 1979; Hodge and Vieland 1996)
(also see Appendix A). Under random ascertainment, all
families, including those with no affected children, are
ascertained with a probability of unity.

The families were then analyzed with thecalc_poo.pl
program, which implements the aforementioned likeli-

hood-based algorithms. The program analyzes the data
under the assumption of complete, single, or random
ascertainment. It yields the logarithm of LR, , byln (LR)
comparing the likelihood for a range of d values and the
likelihood of (i.e., no parent-of-origin effect). Thed p 0

value is recorded for each data set, and the sampled̂

mean of these estimates is calculated over all data sets.
The number of data sets considered was 500–1,000, with
50–100 families per data set. The programssim_poo.pl
and calc_poo.pl were written in PERL and are avail-
able on request.

Results

We evaluated the likelihood models by simulation anal-
yses, in which we incrementally increased the complexity
of the data to emulate “real” data sets. The results are
presented for a number of GMs and AMs. The models
covered a range of f and d parameter values and ascer-
tainment criteria (i.e., complete ascertainment, single as-
certainment, and “random” ascertainment). In the like-
lihood calculations, complete ascertainment corresponds
to , whereas single ascertainment corre-p p p p 1.0g b

sponds to . Random ascertainmentp p p p 0.01g b

means that the likelihoods were computed under model
I, which assumes that all families are equally likely to
be ascertained whether they have any affected children
or not. For all analyses described below, values of f and
of q in the AM match those in the GM.

Situation 1.—The fixed family structure and the rare-
disease ( ) model enabled us to easily confirmq p 0.0001
the simulation results analytically in any given data set.
The data sets consisted of 100 families, each of which
had exactly four sibs per sibship. The data were gen-
erated under complete ascertainment and then were an-
alyzed assuming complete, single, and random ascer-
tainment (table 2). We observed that, when the AM and
GM were the same, was approximately unbiased, ex-d̂

cept when the value of f was near the defined boundary
limits (0 or 1) and/or d was small (e.g., andf p 0.9
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Table 3

Observed Values from Simulations of Situation 1, Generatedd̂

under Single Ascertainment

AM f

d

.1 .2 .3 .4 .5

Complete ascertainment .9 .082 … … … …
.7 .160 .272 .300 … …
.5 .189 .316 .404 .466 .500

Single ascertainment .9 .076 … … … …
.7 .100 .198 .280 … …
.5 .101 .201 .298 .400 .499

Random ascertainment .9 .076 … … … …
.7 .100 .197 .279 … …
.5 .101 .200 .297 .399 .499

Table 4

Observed Values from Simulations of Situation 2, Generatedd̂

under Complete Ascertainment

AM f

d

.1 .2 .3 .4 .5

Complete ascertainment .9 .061 … … … …
.7 .095 .193 .267 … …
.5 .095 .196 .295 .397 .499

Single ascertainment .9 .057 … … … …
.7 .067 .136 .206 … …
.5 .056 .118 .192 .289 .447

Random ascertainment .9 .057 … … … …
.7 .064 .135 .205 … …
.5 .055 .118 .191 .287 .445

). However, when the data were incorrectly an-d p 0.1
alyzed assuming single or random ascertainment, the

values were consistently lower than they were whend̂

the correct ascertainment model had been used. The d̂

values analyzed assuming random ascertainment were
approximately equal to those for single ascertainment.
In addition, data were generated under single ascer-
tainment and were analyzed assuming complete, single
and random ascertainment (table 3). Similar to the pre-
vious results, was approximately unbiased when thed̂

AM matched the underlying GM. Again, the valuesd̂

for single and random ascertainment were virtually
identical (see “Discussion” and Appendix A). However,
when the data were analyzed assuming complete ascer-
tainment the values were inflated.d̂

Situation 2.—We extended our data sets to include
families with variable sibship sizes, to better emulate
realistic data sets with different family configurations.
Also, we chose to use data sets that contained 50 fam-
ilies, to evaluate the performance of the likelihood mod-
els, since this would be a reasonably attainable size for
a real data set. These analyses were performed using
data simulated under a rare-disease model with the same
parameter values and the same ascertainment models as
before (tables 4 and 5). Even with the smaller data-set
size, the trends in the values were consistent with thosed̂

from the first set of analyses (tables 2 and 3). Specifically,
for the analyses in which the AMs were the same as the
GMs, was generally unbiased. The values were eitherˆ ˆd d

lower (table 4) or higher (table 5) than expected, when
the wrong ascertainment model was used in the analy-
sis. Again, the exception occurs for single ascertainment,
in which ignoring ascertainment does not bias (seed̂

table 5, “Discussion,” and Appendix A). The valuesd̂

that we observed when the data were analyzed assum-
ing single or random ascertainment were always very
similar.

In situation 2, we also investigated the power of the
likelihood models to detect parent-of-origin effect. As
expected, we observed higher power when the AM

matched the true GM (fig. 2A). In contrast, when the
data were generated under single ascertainment, we
found that power was higher when the data were an-
alyzed assuming complete ascertainment (fig. 2B).
Again, the observed power levels for analyses under
single and random ascertainment were very close.
Overall, the power increased with increasing parental
effect in the data set (i.e., the power increased with
increasing d), as one would expect. For these analyses,
power to detect a maternal effect converged to unity
for .d 1 0.3

Last, for situation 2, we examined the performance
of our likelihood-based methods in the absence of parent-
of-origin effect, to assess type I error. In this case, the
data were simulated with no parental effect ( ), un-d p 0
der both complete and single ascertainment, and were
analyzed assuming complete, single, and random ascer-
tainment. For these models, the values did not appeard̂

to be influenced by potential ascertainment bias in
which the resulting values were approximately equald̂

to 0. Furthermore, for the same models, we found that
the type I error rate did not exceed the nominal size of
the test (0.05), except in one analysis (table 6). This
exception occurred when the data were generated under
single ascertainment and were analyzed assuming com-
plete ascertainment. Note that, in the presence of a pa-
rental effect, this particular GM/AM combination al-
ways gave inflated values, yielding a higher proportiond̂

of individual data sets with inflated values, thus re-d̂

sulting in a higher type I error.
Situation 3.—So far, all the analyses involved data

generated under a rare disease model. However, our
goal was to evaluate the likelihood models in the con-
text of complex common diseases with potential parent-
of-origin effect. Therefore, in situation 3 a higher dis-
ease-gene frequency ( ) was used. This situationq p 0.1
is similar to situation 2 because the data sets were gen-
erated with 50 families of variable sibship sizes under
complete ascertainment and were analyzed assuming
complete or random ascertainment (table 7). We found
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Table 5

Observed Values from Simulations of Situation 2, Generatedd̂

under Single Ascertainment

AM f

d

.1 .2 .3 .4 .5

Complete ascertainment .9 .073 … … … …
.7 .139 .252 .296 … …
.5 .160 .297 .396 .464 .500

Single ascertainment .9 .062 … … … …
.7 .100 .198 .275 … …
.5 .097 .199 .297 .400 .498

Random ascertainment .9 .069 … … … …
.7 .099 .197 .275 … …
.5 .096 .198 .296 .399 .498

that the trends in the estimates of parental effect were
the same for both the common- and rare-disease models
(tables 4 and 7). However, the values were slightlyd̂

lower for the common- versus the rare-disease model,
for both AMs examined. This was most likely due to
an increase in the proportion of uninformative parental
MTs, because of the higher disease-gene frequency in
the population.

We also performed power simulations in situation 3.
For the two AMs, power to detect parental effect was
consistently lower under the common-disease model.
This is because, for common diseases, the proportion
of informative parental MTs with distinct maternal or
paternal disease-gene transmission is smaller than that
for rare diseases. When the data were analyzed assum-
ing complete ascertainment, in which the AM and GM
were the same, the maximum drop in power was 22%
at (fig. 3A). When the same data were analyzedd p 0.2
assuming the wrong ascertainment criterion (i.e., ran-
dom ascertainment), there was a dramatic reduction in
power, in which the observed drop was as high as 89%
at (fig. 3B). Similar to the previous observa-d p 0.1
tions’ estimates of power for both disease models, the
estimates of power increased as the magnitude of pa-
rental effect (i.e., d) increased. Note that, for all the
results presented, the data were simulated for maternal
transmission (positive ds); however, when the data were
generated for paternal transmission (negative ds) the re-
sults were symmetric (data not shown).

Discussion

Summary

In this study, we first formulated likelihood-based
models for parent-of-origin effect in transmission of dis-
ease, allowing for ascertainment in nuclear families. This
likelihood formulation was then used to test for the ex-
istence of parent-of-origin effect and to estimate the size
of this effect (d), in the presence of different ascertain-

ment models. Second, we evaluated the performance of
the procedure under different circumstances, by means
of simulation analyses. In this way, we assessed whether
ascertainment bias would affect test results or estimates
of d. We showed that the estimates of d were approxi-
mately unbiased when the data were analyzed for the
same parametric GM, except when f and d were near
their defined boundary limits. The estimates of d were
biased when ascertainment was ignored or when the
wrong ascertainment model was assumed. The only ex-
ception was for single ascertainment, in which the ig-
noring of ascertainment does not bias the estimates of
d (see below).

We examined only dominant modes of inheritance
—because, in these models, the origin of the disease allele
can often be determined on the basis of its maternal or
paternal transmission, whereas, in recessive inheritance,
both parents transmit the disease allele to the affected
offspring. This may be problematic for studies of com-
mon complex diseases in which the disease gene(s) is
frequent in the population, since a high proportion of
the parents would be homozygous. Also, the lower the
overall penetrance of the condition being studied, the
more families there will be in which the transmitting
parent is not phenotypically affected, so that it is not
obvious whether the mother or father is the transmitting
parent. An additional limitation in the model concerns
our assumption of disease penetrances. The disease pen-
etrance f is defined as the average of maternal- and pa-
ternal-transmission penetrances. In the model considered
here, this average penetrance also equals the population-
wide penetrance of the disease. In a more complex model
(e.g., a model with differential penetrances for male and
female individuals, in addition to the differential effects
from male and female transmitting parents), that would
no longer be the case. Also note that, in our study, the
penetrance parameters are taken at a single time point
and do not allow for potential age and environmental
effects (e.g., drug exposure).

In our model, we assigned a disease risk of tofmp

homozygous DD children (i.e., children who have re-
ceived a D allele from both parents), where is definedfmp

as . This definition of can be justified byf � f � f f fm p m p mp

a model such as the following: The child receives a “hit”
from the maternal D allele with probability and a hitfm
from the paternal D allele with probability ; if the childfp
receives at least one hit, then the child is affected. Dr.
Gary Chase (personal communication) has pointed out
that, alternatively, one could formulate a regression
model such as this: let and represent the regressionf fm p

coefficients in a binary model, where if the childY p 1
is affected and otherwise; let (or ) representY p 0 f fm p

the lifetime-risk increase associated with maternal (or
paternal) transmission. Thus, our formula for rep-fmp
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Table 6

Observed Type I Error Rates from Simulations of Situation 2, in
Which Nominal Test Size is 0.05

AM ASSUMED

TYPE I ERROR RATE UNDER GM

Complete
Ascertainment Single Ascertainment

f p .9 f p .7 f p .5 f p .9 f p .7 fp .5

Complete
ascertainment .046 .045 .046 .060 .096 .144

Single
ascertainment .041 .045 .046 .041 .045 .046

Random
ascertainment .041 .045 .044 .041 .045 .044

Figure 2 Observed power values from simulations of situation 2, for data sets generated under complete ascertainment (A) and data sets
generated under single ascertainment (B). Mean f is 0.5. Note that the curves for single and random ascertainment are superimposed.

resents one particular type of interaction, but other types
could be modeled as well.

Importance of Ascertainment

It is well known that the ascertainment model plays
a critical role in classical segregation analysis and that,

except when families (i.e., including those families with
no affected members) are sampled completely randomly
from the population, failure to allow for ascertainment
can seriously bias a segregation analysis (Morton 1959;
Stene 1979; Greenberg 1986). However, it may be less
obvious that the ascertainment model would also affect
analyses of parent-of-origin effect. After all, in estimat-
ing d, we are assessing not segregation ratios per se but,
rather, a quantity proportional to the difference between
segregation ratios. Conceivably, biases in the segregation
ratios themselves would be canceled out in the differ-
ence, d. In fact, we have demonstrated that this is what
does happen when families are ascertained under single
ascertainment—both in our simulations (see tables) and
in a proof (see below and Appendix A). However, this
does not happen for other ascertainment models. Thus,
our results are important, because they indicate that, in
general, it is critical to allow for ascertainment when
parent-of-origin effect is being assessed.

Note that we considered only two particular ascer-
tainment models (i.e., those for single and complete as-
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Table 7

Observed Values from Simulations of Situation 3, Generatedd̂

under Complete Ascertainment

AM f

d

.1 .2 .3 .4 .5

Complete ascertainment .9 .060 … … … …
.7 .096 .190 .258 … …
.5 .093 .193 .288 .391 .499

Random ascertainment .9 .056 … … … …
.7 .063 .130 .194 … …
.5 .050 .107 .172 .263 .407

certainment). These correspond to special cases of more-
general ascertainment models (Weinberg 1928; Morton
1959; Ewens and Shute 1986; Greenberg 1986). How-
ever, our finding that ascertainment does matter for anal-
ysis of parent-of-origin effect would presumably also
hold for other cases of those ascertainment models.

We specifically considered differential ascertainment
probabilities for males and females, because one can
readily imagine a scenario in which females, for example,
are more readily ascertained than males. This situation
could arise, for example, if women are more likely to
seek treatment for illnesses—in particular, psychiatric
illnesses—than men are.

Our simulations (tables 3 and 5) reveal that, if data
sets are generated under single ascertainment but are
analyzed as if they had been randomly ascertained, then
the estimates of d appear to be unbiased. If one writes
out the likelihood, , under single ascertainment, oneL(d)
can see why this is so: when the mean disease penetrance
f is known or specified and only d is being estimated,
the correct for single ascertainment is the same asL(d)
the “wrong” likelihood that one would use if the families
had been randomly ascertained. Hence, the two likeli-
hoods yield identical values (for details, see Appendixd̂

A). This result demonstrates yet another way in which
single ascertainment is “special” (Hodge and Vieland
1996). However, note that the result would not hold if
the user were estimating both f and d; in that situation,
one would have to model the single-ascertainment
scheme explicitly, just as with all other ascertainment
schemes.

Future Extensions

We outline four possible future extensions of this like-
lihood model: (1) parameterizing the likelihood in terms
of two parental-transmission parameters, rather than one
difference parameter d; (2) modeling differential male and
female disease penetrances; (3) including multigenera-
tional pedigrees; and (4) extending the likelihood to more-
complex models, including linkage analysis.

Two parental-transmission parameters.—In this study,
we have expressed parent-of-origin effect in terms of a

single parameter, d, defined as the deviation, from the
mean disease penetrance f, of the maternal- and paternal-
transmission penetrances. In this way, if the overall av-
erage f is already known, then the model has only one
unknown parameter, d. Note that the chosen value of f
used in the likelihood calculation influences the estimation
of d. For example, when we simulated data by use of

and and then analyzed the data assum-f p 0.7 d p 0.2
ing the wrong f values (e.g., and ), wef p 0.8 f p 0.6
observed the following: When was used, the ˆf p 0.8 d

value was lower than expected ( ). In this case,d̂ p 0.161
the allowed range of d is �0.2, as opposed to �0.3,
which includes the “true” value of . Since thisf p 0.7
value (i.e., ) did not cover the entire true rangef p 0.8
of d, the likelihood maximized at a lower value of d than
expected. However, when was used, was un-ˆf p 0.6 d

biased (i.e., ), because the allowed range ofd̂ p 0.2
spanned the true range. These results illustrated p �0.4

the dependency that the estimated parental effect has on
the value of the disease penetrance, which is an impor-
tant consideration in the study of complex diseases for
which the disease penetrance cannot be reliably deter-
mined. To avoid such a dependency, the likelihood could
be reparameterized with respect to two parameters, cor-
responding to maternal- and paternal-transmission pen-
etrances directly (i.e., maternal, and paternal),f p f pm p

while the computational complexity is increased because
of addition of a second parameter. Given this parame-
terization, to test only for parent-of-origin effect one
would examine the difference between d, expressed as

.(1/2) (f � f )m p

Differential male and female disease penetrances.—
The likelihood can be extended to model differential
male and female disease penetrances. The likelihood is
parameterized with respect to the combinations of dis-
ease penetrance, given the sex of the individual and the
parental origin of the disease gene(s) (i.e., diseasef pg,m

penetrance, given that the individual is a girl and that
the disease is maternally transmitted; disease pen-f pb,m

etrance, given that the individual is a boy and that the
disease is maternally transmitted; and and , sim-f fg,p b,p

ilarly defined). Given this parameterization, the null hy-
potheses are either or , forH :f p f H :f p f0 g,m b,m 0 g,p b,p

testing for sex-based disease liability and either maternal
or paternal effect, respectively.

This approach would be useful for study of sex-based
threshold models that are well known in classical ge-
netics. Threshold models in general have an underlying
liability distribution for the disease; that is, when the
liability threshold is crossed, the disease is expressed.
For a sex-based model, the liability threshold differs,
depending on the sex of the individual. One such disease
is pyloric stenosis, a disorder that is manifested shortly
after birth and that is characterized by a narrowing or
obstruction of the pylorus. The prevalence of the disease
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Figure 3 Observed power values from simulations of situation 3, for data sets generated under complete ascertainment and analyzed
assuming complete ascertainment (A) and data sets generated under complete ascertainment and analyzed assuming random ascertainment (B).
Mean f is 0.5.

is much higher in males than in females, affecting 1/200
males and 1/1,000 females in a sample of individuals of
European descent (Jorde et al. 2000). This implies that
females have a higher liability threshold and that, to
exhibit the disease, must therefore be exposed to more
“disease-causing” factors. Another disease for which this
approach could be useful is panic disorder, in which
there is an established sex-based disease liability and a
potential parental effect. Panic disorder is a psychiatric
disease characterized by spontaneous and repeated panic
attacks often accompanied by agoraphobia. The risk of
developing panic disorder in females has been estimated
to be twice that in males, and this 2:1 (female:male) sex
ratio has been observed cross-culturally (Bland et al.
1988; Robins et al. 1988; Keyl and Eaton 1990; Eaton
et al. 1994). Also, there is suggestive evidence for a ma-
ternal effect in panic disorder, in which a nominally sig-
nificant difference (greater than the expected 2:1) in the

sex ratio has been observed, when the disease is trans-
mitted maternally (Haghighi et al. 1999). The parent-
of-origin analysis conducted by Haghighi et al. (1999),
was based on a simple counting approach. Application
of the full likelihood model developed here to the same
collection of families with panic disorder would make
it possible to test for both sex-based disease penetrance
and parent-of-origin effect.

Multigenerational pedigrees.—The existing likelihood
models for parent-of-origin effects are limited to nuclear
families or small- to moderate-size multigenerational
pedigrees (Strauch et al. 2000). However, since we have
derived the exact likelihoods for all possible parental
MTs (table 1), these likelihood calculations can be ex-
tended straightforwardly to general pedigree structures,
by application of the clipping algorithm (Elston and
Stewart 1971; Ott 1974). Here, all the information con-
cerning the pattern of disease transmission across suc-
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cessive generations is captured for testing for parent-of-
origin effect. This approach would be more robust than
the existing methods, since it would handle pedigrees of
arbitrary size and structure. The likelihood model with
ascertainment cannot in general be extended to general
pedigree structures, because of the inherent intractability
of incorporating the general ascertainment model in the
likelihood for extended pedigrees (Vieland and Hodge
1995), except in the special case of single ascertainment
(Hodge and Vieland 1996).

More-complex models.—Although we have adopted
a single-locus dominant genetic model with reduced pen-
etrance, the likelihood model can be extended to allow
for more-complex models that approximate the genetic
etiology of complex diseases. For example, these models
may allow for phenocopies, genetic heterogeneity (i.e.,
locus or allelic heterogeneity), epistasis (i.e., interaction
among multiple genes), and/or a variety of environmen-
tal factors.

Of particular interest will be the attempt to extend
the likelihood formulation to two (or more) loci, with
recombination fraction, so as to be able to perform link-
age studies. Investigators have attempted to model par-
ent-of-origin effect in linkage analysis by maximizing the
LOD score over separate male and female recombination
fractions. The difference in the estimates of the male and
female recombination fractions was used as an indicator
of potential parental effect. For modeling of genomic
imprinting, the male and female recombination fractions
were maximized separately, when depending on the sex
of the assumed imprinted parent, the corresponding re-
combination fraction was fixed at 1/2 (Smalley 1993;
Strauch et al. 2000). This means that, in the likelihood
calculation, the nonpenetrant children of an imprinting
parent are considered to be recombinants. However, this
approach does not account for the situation in which,
in successive generations, these nonpenetrant children
can be disease carriers and may have affected children
(Strauch et al. 2000). Another approach at modeling of

parental effect could involve assigning of liability classes
for maternal- and paternal-transmission penetrances
separately, depending on the observed parental mating
phenotypes. However, the liability classes cannot be ac-
curately assigned when the MT is ambiguous with re-
spect to maternal or paternal transmission (i.e., both
parents either are affected or are unaffected). An ad-
vantage of the likelihood formulation derived here is that
it allows for all those combinations and possibilities ac-
curately, weighting their probabilities appropriately.

Strauch et al. (2000) have modeled parent-of-origin
effect (specifically genomic imprinting) in parametric
linkage analysis, by replacing the single-heterozygous
penetrance parameter with two penetrance parameters
corresponding to maternal- and paternal-transmission
penetrances. Although this approach has been parame-
terized in the context of genomic imprinting, it is in
principle equivalent to our likelihood formulation of the
parent-of-origin–effect model without ascertainment
(model I). This method has been incorporated as an
extension to the GENEHUNTER program (Kruglyak
et al. 1995, 1996), referred to as “GENEHUNTER-
IMPRINTING.” Also note that that program was tested
on a single real data set in which the underlying genetic
model was unknown. One of the strengths of our study
is that we tested our program with extensive simulations,
in which the underlying genetic model is known.

Acknowledgments

We would like to thank Drs. Daniel Rabinowitz, David
Greenberg, Conrad Gilliam, and Dorothy Warburton for their
invaluable comments and suggestions. Special thanks to Dr.
David Greenberg for his guidance in designing the simulations.
We would also like to thank Justin Weinstein for his editorial
contributions to this project. This work was supported in part
by National Institutes of Health (NIH) training grant HG-
00170 and Alfred P. Sloan/Department of Energy training
grant DE-FG02-00ERG2970, as well as by NIH grants DK-
31813, MH-48858, and DK-31775.

Appendix A

Demonstration That, When d Is the Only Parameter of Interest, d Estimated under Single Ascertainment Is Identical
to d Estimated under Random Ascertainment

We consider nuclear families with s children, and to begin we consider the special case of a rare dominant disease,
so that there are only three phenotypic MTs: affected mother # unaffected father ( ); unaffected mother #MT p 1
affected father ( ); and both parents unaffected ( ). Let r denote the number of affected children,MT p 2 MT p 3

. As in the text, f denotes the mean penetrance (and, thus, the penetrance that applies to the parents,r p 1, … , s
since the sexes of their respective transmitting parents are not known). Let and denote maternal- and paternal-f f1 2

transmission penetrances, respectively, and , as in the text. For convenience, we also defined { (1/2)(f � f )1 2

as the segregation ratio for the mother or father, respectively.p { (1/2)fi i
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Probabilities under Single Ascertainment

We define as the probability that a family of , with r affected children, is in the data set—that is,u MT p ii,r

u p P(MT p i,r affFfamily is ascertained) .i,r

Under single ascertainment, these probabilities are as follows:

1 s r s�ru p f p (1 � p ) # rp /D , for i p 1,2 ,i,r i i( )[ ]r2

1 s sr s�r r s�ru p (1 � f ) p (1 � p ) � p (1 � p ) # rp /D , (A1)3,r 1 1 2 2( ) ( )[ ]{ }r r2

where p represents the probability ( under single ascertainment) that an affected child becomes a proband,p r 0
and where D, the denominator, represents the sum of the numerators of all the , summed over andu i p 1,2,3i,r

over . (The “1/2” is an indication that, a priori, the transmitting parent is equally likely to be the motherr p 1, … , s
or the father in this model.) Algebraic manipulation reveals that . On the basis of the aboveD p (1/2)ps(p � p )1 2

definitions, and , so the denominator becomes . Thus, in the prob-p p (1/2)(f � d) p p (1/2)(f � d) D p (1/2)psf1 2

abilities , the parameter of interest, d, appears only in the terms in the numerators. We now rewrite theu pi,r i

probabilities in equation (A1), to explicitly show the role played by d:

s�r1ru p A (f � d) 1 � (f � d) ,1,r 1 [ ]{ }2
s�r1ru p A (f � d) 1 � (f � d) ,2,r 2 [ ]{ }2
s�r s�r1 1r ru p A (f � d) 1 � (f � d) � (f � d) 1 � (f � d) , (A2)3,r 3 [ ] [ ]{ }2 2

where , , and represent “constant” terms that do not contain d.A A A1 2 3

Probabilities under “Wrong” Ascertainment Model

Let represent the “wrong” probability that a family of , with r affected children, is in the datat MT p ii,r

set—that is,

t { P(MT p i,r affFfamily is randomly ascertained) .i,r

We derive these probabilities:

1 s r s�rt p f p (1 � p ) , for i p 1,2 ,i,r i i( )r2

1 s sr s�r r s�rt p (1 � f ) p (1 � p ) � p (1 � p ) .3,r 1 1 2 2( ) ( )[ ]r r2
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Again, we rewrite these probabilities as functions of d:

s�r1rt p B (f � d) 1 � (f � d) ,1,r 1 [ ]{ }2
s�r1rt p B (f � d) 1 � (f � d) ,2,r 2 [ ]{ }2
s�r s�r1 1r rt p B (f � d) 1 � (f � d) � (f � d) 1 � (f � d) , (A3)3,r 3 [ ] [ ]{ }2 2

where , , and represent constant terms that do not contain d.B B B1 2 3

Equivalence of the Two Likelihoods

Let represent the number of families in the data set of , with r affected children. The log-likelihoodn MT p ii,r

for the data set under single ascertainment is given by

s

log L (d) p n log u , (A4)��correct i,r i,r
i rp1

whereas under the wrong ascertainment model it is

s

log L (d) p n log t . (A5)��wrong i,r i,r
i rp0

There are two differences between equations (A4) and (A5), but neither difference affects . The first difference isd̂

that equation (A4) uses , whereas equation (A5) uses . However, equations (A2) and (A3) reveal that, althoughu ti,r i,r

the probabilities and are not respectively equal, they are proportional in d. Hence, equations (A4) and (A5)u ti,r i,r

will both maximize at the same value of d. The other difference is that the sum in equation (A5) includes the case
, whereas the sum in equation (A4) does not. However, for all i, so that difference is immaterial.r p 0 n p 0i,0

More General Result

Above, we have derived the explicit probabilities for nuclear families with only three possible MTs, so as to
show the algebra. However, the more general reasoning is that, under single ascertainment, the “denominator” in
equation (A1) is always proportional to the prevalence of a proband (Hodge and Vieland 1996), and this prevalence
is not a function of d. Hence, as long as we are maximizing only with respect to d, the “wrong” likelihood based
on random ascertainment will yield the same as the correct likelihood based on single ascertainment.d̂
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