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Statistics for Nonparametric Linkage Analysis of X-Linked Traits
in General Pedigrees
Kyunghee K. Song, Eleanor Feingold, and Daniel E. Weeks
Department of Human Genetics, University of Pittsburgh, Pittsburgh

We have compared the power of several allele-sharing statistics for “nonparametric” linkage analysis of X-linked
traits in nuclear families and extended pedigrees. Our rationale was that, although several of these statistics have
been implemented in popular software packages, there has been no formal evaluation of their relative power. Here,
we evaluate the relative performance of five test statistics, including two new test statistics. We considered sibships
of sizes two through four, four different extended pedigrees, 15 different genetic models (12 single-locus models
and 3 two-locus models), and varying recombination fractions between the marker and the trait locus. We ana-
lytically estimated the sample sizes required for 80% power at a significance level of .001 and also used simulation
methods to estimate power for a sample size of 10 families. We tried to identify statistics whose power was robust
over a wide variety of models, with the idea that such statistics would be particularly useful for detection of X-
linked loci associated with complex traits. We found that a commonly used statistic, Sall, generally performed well
under various conditions and had close to the optimal sample sizes in most cases but that there were certain cases
in which it performed quite poorly. Our two new statistics did not perform any better than those already in the
literature. We also note that, under dominant and additive models, regardless of the statistic used, pedigrees with
all-female siblings have very little power to detect X-linked loci.

Introduction

Statistical methods for linkage analysis are usually di-
vided into “parametric” and “nonparametric” methods.
Although there is ongoing debate about the appropri-
ateness of this division and about which methods are
best under what circumstances (e.g., see Abreu et al.
1999; Sham et al. 2000), it seems fair to say that the
nonparametric, or “allele-sharing,” statistics have been
particularly important in mapping studies of complex
traits. In this article, we consider some of the issues in-
volved in applying allele-sharing statistics to detect X-
linked loci involved in complex traits.

Although parametric methods have been used exten-
sively for X-chromosomal linkage analysis (e.g., see Ny-
holt et al. 1998; Vallada et al. 1998; Xu et al. 1998),
there has been limited development and use of nonpara-
metric methods for detection of X linkage. Weeks et al.
(1995) developed an X-linked version of the affected-
pedigree-member method, based on identity-by-state
sharing. Cordell et al. (1995) extended the sib-pair
method of Risch (1990a, 1990b, 1990c) and Holmans
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(1993) to the X chromosome, and Dupuis and Van Eer-
dewegh (2000) developed a similar theory for the pseu-
doautosomal region. Two of the most popular software
packages for nonparametric linkage analysis—GENE-
HUNTER (Kruglyak et al. 1996) and Allegro (Gud-
bjartsson et al. 2000)—have implemented X-chromo-
some statistics. However, these statistics are not actually
defined or described in the literature, and GENEHUNT-
ER dropped the X-linkage option after version 1.3.
Since there is certainly evidence suggesting the involve-
ment of X-chromosome loci in complex traits (e.g., see
Hamer et al. 1993; Nyholt et al. 1998; DeLisi et al.
2000; Liu et al. 2001), we saw a clear need for a more
complete study of allele-sharing statistics for X linkage
in general pedigrees.

In this article, we first describe the X-chromosome
allele-sharing statistics implemented in Allegro and in
GENEHUNTER version 1.3. We then use analytic
methods and simulation to compare the power of those
statistics, as well as that of two new statistics that we
propose. We consider a number of different pedigree
types and genetic models. Our goal is to find a statistic
whose power is robust over a wide variety of situations,
since one does not expect to know much, in advance,
about the trait model when studying a complex trait.
Our methodological approach is very similar to that
used in our recent study of autosomal allele-sharing sta-
tistics (Sengul et al. 2001).
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Figure 1 MMT pedigree (A) and NMMT pedigree (B). The
numbers denote unique founder alleles; unshaded symbols denote un-
known phenotypes.

Figure 2 CSFF pedigree (A) and CSMF pedigree (B). Notation
is as in figure 1.

Subjects and Methods

Pedigrees

We studied both nuclear families and extended pedi-
grees. The nuclear families consisted of parents with un-
known trait phenotypes and two to four affected siblings
of all possible sex combinations. We considered four dif-
ferent extended-pedigree structures, which obviously does
not account for all possibilities but which allowed us to
investigate the effects of several important pedigree fea-
tures. The extended pedigrees consisted of affected indi-
viduals (shaded symbols in figs. 1 and 2) and individuals
with unknown trait phenotypes (unshaded symbols in
figs. 1 and 2). The first extended pedigree, which we call
the “MMT” pedigree (fig. 1A), would normally be con-
sidered inconsistent with X-linked inheritance, since it
contains a male-to-male transmission, in which there are
affected males in two consecutive generations. However,
this pedigree is perfectly compatible with a model that
includes X linkage along with phenocopies and/or het-
erogeneity. The second extended pedigree, which we call
“NMMT,” is similar, except that it does not include male-
to-male transmission (fig. 1B). We also considered two
different pedigrees involving affected sibships that are
first cousins through sisters; pedigree “CSFF” contains
only female affected individuals (fig. 1A), and pedigree
“CSMF” contains both male and female affected individ-
uals (fig. 1B). Figures 1 and 2 show unique numerical
labels for each founder allele at a hypothetical marker;
we use these in discussing identity-by-descent (IBD)–
sharing configurations below.

Genetic Models

We considered single-locus two-allele dominant, ad-
ditive, and recessive models with full and reduced pen-
etrance and with varying levels of phenocopies. Table 1
lists all of the single-locus models, with the female pen-
etrances denoted by f0, f1, and f2 and with the male

penetrances denoted by g0 and g1. In all cases, the phe-
nocopy rate is the same for males and females (g0 p f0

for dominant and additive models; g0 p f0 p f1 for
recessive models). All models have allele frequency, q,
equal to 0.1. The population trait frequencies vary be-
tween ∼5% and ∼10% for males (Kmale) and between
∼0.5% and ∼20% for females (Kfemale). Table 1 also pre-
sents the relative risks to sibs of a proband, for male-
male pairs (lmm), male-female pairs (lmf), and female-
female pairs (lff), computed by the formulae presented
by Cordell et al. (1995).

The phenocopy rates in the single-locus models can
be interpreted as including heterogeneity effects, and the
single-locus models are also good approximations to cer-
tain interaction models that produce small marginal ef-
fects. However, we also did a limited investigation of
explicit two-locus models. Model “H-rare” is a rare-
allele dominant heterogeneity model. At each locus, the
disease allele has frequency 0.01; penetrance is 0 for
anyone with no disease alleles and is 1.0 for anyone with
one or more disease alleles. Model “H-common” is a
common-allele dominant heterogeneity model; it has the
same penetrance matrices as does model “H-rare”, but
the disease-allele frequency at each locus is 0.07. Finally,
model “Additive” is an additive model. The disease-al-
lele frequency at each locus is 0.05, there is a phenocopy
rate of 0.2 for females and males, and each disease allele
at either locus adds an additional 0.2 to the penetrance,
so that, for example, a female who is homozygous for
the disease allele at both loci has penetrance 1.0.

Allele-Sharing Statistics

We considered five different allele-sharing statistics for
testing X linkage. All of the statistics can be applied to
any pedigree type. Each statistic measures IBD among
affected relatives, but somewhat differently. Our notation
for the IBD-sharing configurations is that used by Whit-
temore and Halpern (1994); founder alleles are given
unique numbers (as in figs. 1 and 2), and then the IBD-
sharing configurations of family members are described
in terms of which founder alleles are inherited by each



Song et al.: Power of X-Linked Statistics 183

Table 1

Single-Locus Genetic Models

Model q f0 f1 f2 g0 g1 Kmale Kfemale lmm lmf lff Description

Dominant:
1 .1 0 .5 .5 0 .5 .050 .095 5.5 3.1 4.1 No phenocopies, reduced penetrance
2 .1 .005 1 1 .005 1 .105 .194 5.1 3.0 4.0 5% of cases are phenocopies, full penetrance
3 .1 .005 .5 .5 .005 .5 .055 .099 4.7 2.8 3.8 5% of cases are phenocopies, reduced penetrance
4 .1 .05 .5 .5 .05 .5 .095 .136 2.0 1.6 2.3 Half of cases are phenocopies, reduced penetrance

Additive:
5 .1 0 .25 .5 0 .5 .050 .050 5.5 3.3 4.4 No phenocopies, reduced penetrance
6 .1 .005 .5 1 .005 1 .105 .104 5.1 3.0 4.1 5% of cases are phenocopies, full penetrance
7 .1 .005 .25 .5 .005 .5 .055 .054 4.7 2.9 3.8 5% of cases are phenocopies, reduced penetrance
8 .1 .05 .25 .5 .05 .5 .095 .091 2.0 1.5 1.7 Half of cases are phenocopies, reduced penetrance

Recessive:
9 .1 0 0 .5 0 .5 .050 .005 5.5 5.5 55.0 No phenocopies, reduced penetrance
10 .1 .005 .005 1 .005 1 .105 .015 5.1 3.9 24.9 5% of cases are phenocopies, full penetrance
11 .1 .005 .005 .5 .005 .5 .055 .010 4.7 3.0 14.4 5% of cases are phenocopies, reduced penetrance
12 .1 .05 .05 .5 .05 .5 .095 .055 2.0 1.2 1.4 Half of cases are phenocopies, reduced penetrance

Table 2

Pairwise Allele-Sharing Scores Used by
Different Statistics

Relative Pair
and Configuration

ASpairs
GHSpairs SX75 SX50

Female-female:
(13 13) 2 1 1 1
(13 23) 1 .5 .5 .5
(13 24) 0 0 0 0

Male-male:
(1 1) 1 2 1 1
(1 2) 0 0 0 0

Male-female:
(1 13) 1 1 .75 .5
(2 13) 0 0 0 0

person. Configurations are understood to include inher-
itance patterns that are equivalent up to permutation of
the founder-allele labels; for example, if we have a mother
and father with genotypes labeled 12 and 34 at an au-
tosomal marker, then the IBD-sharing configurations
among two offspring may be either (13 13), (13 14), or
(13 24), and it is understood that the (13 13) configuration
also includes (14 14), (23 23), and (24 24).

One of the allele-sharing statistics that we considered
is the commonly used autosomal statistic Sall (Whitte-
more and Halpern 1994). For autosomal loci, Sall is cal-
culated by forming all possible sets consisting of one
allele from each affected individual and then summing
the numbers of nontrivial permutations of those sets.
This definition can be extended straightforwardly to the
X chromosome; for example, if we have two females
and a male, with alleles (by descent) labeled 12, 13, and
1, we can form the sets (1 1 1), (1 3 1), (2 1 1), and (2
3 1). Alternatively, males can be treated as homozygous,
which has some minor computational advantages and
which results in exactly the same statistic. Both Allegro
and GENEHUNTER version 1.3 implement Sall for the
X chromosome.

All of the other statistics that we consider in this article
are “pairs” statistics, formed by scoring allele sharing
between each pair of affected individuals in the pedigree
and then adding that score over all pairs. The commonly
used autosomal statistic Spairs (e.g., see McPeek 1999) is
of this type; it defines the pairwise allele-sharing score
for each pair simply as the number of alleles (zero, one,
or two) shared IBD. GENEHUNTER version 1.3 and
Allegro both implement X-chromosome statistics called
“Spairs,” but we found that the two statistics are not the
same: GENEHUNTER treats males as homozygous on
the X chromosome, and Allegro treats them as hemi-
zygous, which results in pairwise allele-sharing scores
(and, thus, versions of Spairs) that are not equivalent; for

example, if a male-male pair shares an allele IBD, Allegro
treats the sharing configuration as (1 1) and gives it a
score of 1, whereas GENEHUNTER treats the sharing
configuration as (11 11) and gives it a score of 2. Table
2 shows all of the pairwise allele-sharing scores used by
each version of Spairs: the Allegro statistic ( ), theASpairs

GENEHUNTER statistic ( ), and our two new sta-GHSpairs

tistics, SX50 and SX75 (which are defined below). If we
assume that there is no inbreeding, male-male and male-
female pairs can share only zero alleles or one allele IBD.
Female-female pairs can share zero, one, or two alleles
IBD, although a female-female sibling pair can share
only either one allele or two alleles. The rationale for
our new statistics, SX50 and SX75, is as follows: Allegro
and GENEHUNTER assign very different relative scores
to complete sharing between females (13 13) versus com-
plete sharing between males (1 1): Allegro gives much
greater weight to female-female sharing, and GENE-
HUNTER gives much greater weight to male-male shar-
ing. Our two new statistics give equal scores to male-
male and female-female sharing, but the two differ in
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Table 3

Normalized Sibship Statistics for Three Affected Siblings

IBD
CONFIGURATIONa

NORMALIZED

COEFFICIENT FOR STATISTIC

ASpairs
GHSpairs Sall SX75 SX50

Three males:
(1 1 1) 1.73 1.73 1.73 1.73 1.73
(1 1 2) �.58 �.58 �.58 �.58 �.58

Two males–one female:
(1 1 13) 1.73 1.63 1.70 1.71 1.63
(2 2 13) �.58 .00 �.24 �.34 .00
(1 2 13) �.58 �.82 �.73 �.69 �.82

One male–two females:
(1 13 13) 1.73 1.67 1.71 1.71 1.73
(1 13 23) �.58 �.33 �.43 �.43 �.58
(2 13 13) �.58 �1.00 �.85 �.85 �.58

Three females:
(13 13 13) 1.73 1.73 1.73 1.73 1.73
(13 13 23) �.58 �.58 �.58 �.58 �.58

a The mother’s allele labels are 1/2, and the father’s allele label is 3.

Table 4

Normalized Sibship Statistics for Four Affected Siblings

IBD
CONFIGURATIONa

NORMALIZED

COEFFICIENT FOR STATISTIC

ASpairs
GHSpairs Sall SX75 SX50

Four males:
(1 1 1 1) 2.45 2.45 2.62 2.45 2.45
(1 1 1 2) .00 .00 �.24 .00 .00
(1 1 2 2) �.82 �.82 �.56 �.82 �.82

Three males–one female:
(1 1 1 13) 2.45 2.32 2.57 2.42 2.32
(2 2 2 13) .00 .77 .20 .35 .77
(1 1 2 13) .00 �.26 �.33 �.12 �.26
(1 2 2 13) �.82 �.77 �.59 �.81 �.77

Two males–two females:
(1 1 13 13) 2.45 2.26 2.51 2.41 2.33
(1 1 13 23) .00 .52 .16 .27 .33
(1 2 13 13) .00 �.52 �.48 �.27 �.33
(2 2 13 13) �.82 �.52 �.48 �.80 �.33
(1 2 13 23) �.82 �.87 �.69 �.80 �1.00

One male–three females:
(1 13 13 13) 2.45 2.32 2.50 2.40 2.45
(1 13 13 23) .00 .26 .04 .16 .00
(2 13 13 13) .00 �.77 �.66 �.48 .00
(2 13 13 23) �.82 �.77 �.66 �.80 �.82

Four females:
(13 13 13 13) 2.45 2.45 2.55 2.45 2.45
(13 13 13 23) .00 .00 �.11 .00 .00
(13 13 23 23) �.82 �.82 �.70 �.82 �.82

a The mother’s allele labels are 1/2, and the father’s allele label is 3.

the scores (0.5 vs. 0.75) that they give to male-female
(1 13) sharing.

As an alternative to the definitions above, all of the
statistics that we considered can be described as scoring
functions that assign a score, S, to each possible IBD-
sharing configuration, f, that the entire pedigree takes
on (Whittemore and Halpern 1994). Thus, for a single
pedigree, the statistic is written as

( ) ( )P fFmarker data S f , (1)�
f

where the conditional probabilities of the IBD-sharing
configurations, P(fFmarker data), can be computed by
whatever method is desired (e.g., by software such as
GENEHUNTER). To construct a linkage test, the statistic
for each pedigree is normalized by subtracting the null
hypothesis mean and dividing by the null hypothesis SD.
The normalized statistics are summed over pedigrees, and
the sum is asymptotically normally distributed under rea-
sonable regularity conditions. The scores for different
pedigrees can also be weighted before they are summed,
to reflect different amounts of information contained in
pedigrees of different sizes and types. Because of the nor-
malization, additive and multiplicative constants are ir-
relevant to the definitions of the statistics—that is, any
statistics that result in identical normalized coefficients
would have identical power; for example, Kruglyak et al.
(1996) gave an alternative definition of Sall that is equiv-
alent to Whittemore and Halpern’s definition to a linear
transformation.

Table 3 lists the IBD-sharing configurations and scor-
ing functions of all the statistics for an affected sib trio.
The scoring functions are normalized as described
above, which allows them to be compared directly. Note

that a positive normalized score for a given IBD-sharing
configuration means that the configuration is considered
to be evidence in favor of linkage, whereas a negative
normalized score means that the configuration is con-
sidered to be evidence against linkage. Table 4 gives the
configurations and scoring functions for a family of four
affected siblings. We do not present a table for sibling
pairs; since each type of sibling pair (male-male, male-
female, and female-female) has only two possible IBD-
sharing configurations, all of the statistics are equivalent
to each other for sibling pairs. Tables 5–8 give the nor-
malized scoring functions for the extended pedigrees that
we considered. For each pedigree, the order of the in-
dividuals in the IBD-sharing configuration is from first
generation to last and from left to right, in each gen-
eration (see figs. 1 and 2). The IBD-sharing configura-
tions in each table are ordered from greatest sharing to
least, although this ordering is not necessarily well de-
fined, since different ways of quantifying IBD sharing
are possible.

Power Computations

We computed power for a test of a single marker,
assuming perfect IBD information, with varying recom-
bination fractions (v p 0.0, 0.05, 0.10, and 0.20) be-
tween the marker and the trait locus. (The effect that
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Table 5

IBD Configurations and Normalized Coefficients for the
MMT Pedigree

IBD
CONFIGURATION

NORMALIZED

COEFFICIENT FOR STATISTIC

, SX50
ASpairs

GHSpairs Sall SX75

(3 13 1 4 14) 1.34 1.39 1.45 1.37
(3 13 1 4 15) .45 .28 .23 .34
(3 13 2 4 24) �.45 �.28 �.38 �.34
(3 13 2 4 25) �1.34 �1.39 �1.30 �1.37

Table 6

IBD Configurations and Normalized Coefficients for the NMMT
Pedigree

IBD
CONFIGURATION

NORMALIZED

COEFFICIENT FOR STATISTIC

ASpairs
GHSpairs Sall SX75 SX50

(3 13 13 3 34) 1.58 1.61 1.75 1.63 1.60
(3 13 23 3 34) .95 1.30 1.62 1.18 1.07
(3 13 13 3 14) .32 .38 �.17 .28 .53
(3 13 13 1 14) .32 �.23 �.49 .06 .00
(3 13 13 1 34) .32 �.23 �.49 .06 .00
(3 13 23 3 24) �.95 �.23 �.42 �.62 �.53
(3 13 23 2 34) �.95 �1.15 �.81 �1.07 �1.07
(3 13 23 2 24) �1.58 �1.45 �1.00 �1.52 �1.60

increasing the recombination fraction has on power is
very similar to the effect that is produced by reducing
the marker informativeness.) For the two-locus models,
we used only v p 0.0. We used analytic methods to
calculate power for all the recombination fractions and,
in addition, simulation methods for v p 0.0. The ana-
lytic calculations assume normality and thus fail to ac-
count for the fact that some statistics have skewed dis-
tributions for small sample sizes and, therefore, higher
power; however, since that higher power is accompanied
by higher false-positive rates, the analytic calculation
provides a “fairer” comparison among the statistics, at
least asymptotically. We report results primarily from
our analytic comparison, but we also comment on what
our simulation studies found about increased power and
false-positive rates for the more skewed statistics.

For our analytic calculation, we first calculated the
probability of each IBD-sharing configuration under each
alternative hypothesis, conditional on the set of affected
relatives. For the single-locus models, this was done by
MENDEL (Lange et al. 1988); for the two-locus models,
we wrote a program to simulate families, selected those
with the right set of affected individuals, and scored the
IBD-sharing configurations. We then used these IBD-shar-
ing–configuration probabilities to compute the mean and
variance of each statistic, on the basis of the normalized
coefficients. This procedure is discussed in more detail by
Sengul et al. (2001). The sample size (number of families)
needed to obtain 80% power with a significance level of
.001 by a Z-test was computed as follows: sample size p
(zaj0 � zbja )2/(ma� m0 )2, where za p 3.0902, zb p 0.8416,
and where m0 (j0) and ma (ja) are, respectively, the means
(SDs) under the null and the alternative hypotheses. This
approach assumes normality of the statistics but allows
them to have different variances under the null and al-
ternative hypotheses.

For our simulation studies of the power for small
sample sizes, we simulated 10,000 data sets of 10 ped-
igrees. For the single-locus models, this was done by
FASTSLINK (Ott 1989; Weeks et al. 1990), and, for
the two-locus models, this was done by our simulation
program (described briefly in the preceding paragraph).
These simulations were done conditional on the giv-

en disease phenotypes. We simulated one marker with
distinct founder alleles (perfect IBD information), in
complete linkage with the trait locus. We then com-
puted the empirical power and false-positive rate, using
the .001 nominal significance cutoff from the normal
distribution.

For each genetic model and each pedigree type, we
also derived the optimal statistic, by using a grid search
to numerically maximize the aforementioned sample-size
formula over all possible statistics of the form shown in
equation (1). We included these optimal statistics in all
of our analytic power studies. This allowed us to po-
tentially identify models and/or pedigrees for which none
of the statistics that we evaluated performed well.

Results

Tables 9–11 show the results of our analytic sample-size
calculations for the single-locus models, and table 12
shows the results for the two-locus models. For each
pedigree type, statistics that are equivalent (i.e., have the
same normalized coefficients) are grouped together.

Single-Locus Models

Extended pedigrees.—For the MMT pedigree, Sall was
the best statistic overall (table 9). It gave sample sizes
close to optimal for the additive and recessive models,
and it was reasonably good for the dominant models as
well. Dominant models required very large sample sizes
for this pedigree, regardless of the statistic used, because
the observed male-to-male transmission becomes in-
creasingly unlikely as the model becomes more dominant
and more penetrant. and SX50 generally performedASpairs

poorly for this pedigree. For the recessive models, the
simulation results basically agreed with the analytical
results, showing that Sall had the best power (and also
had the correct false-positive rate). For the additive and
dominant models, the simulated sample size of 10 had
low power, regardless of the statistic.
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Table 7

IBD Configurations and Normalized
Coefficients for the CSFF Pedigree

IBD
CONFIGURATION

NORMALIZED

COEFFICIENT FOR STATISTIC

, , SX75, SX50
A GHS Spairs pairs Sall

(14 14 15 15) 2.56 2.86
(14 14 15 35) .37 .15
(14 14 35 35) �.37 �.33
(14 34 15 35) �.37 �.49
(14 14 25 35) �1.10 �.81
(14 34 25 35) �1.10 �.89

Table 8

IBD Configurations and Normalized Coefficients for the CSMF
Pedigree

IBD
CONFIGURATION

NORMALIZED

COEFFICIENT FOR STATISTIC

ASpairs
GHSpairs Sall SX75 SX50

(1 14 1 15) 2.56 2.41 2.88 2.52 2.49
(1 14 1 35) .37 .83 .37 .60 .66
(1 14 3 15) .37 �.12 �.20 .12 .06
(1 34 1 35) �.37 �.12 �.31 �.36 .06
(1 14 3 35) �.37 �.44 �.43 �.36 �.55
(3 14 3 25) �1.10 �.44 �.54 �.84 �.55
(1 14 2 35) �1.10 �1.07 �.77 �1.08 �1.16
(1 34 2 35) �1.10 �1.38 �.88 �1.32 �1.16

For the NMMT pedigree, Sall was the best, with close
to optimal sample sizes under the dominant and additive
models, whereas was the worst (table 9). In con-ASpairs

trast, the situation was reversed under the recessive mod-
els; Sall was the worst, with quite large sample sizes (1600
families), whereas was the best. The sample sizesASpairs

for Sall were very close to optimal for the dominant and
additive models. However, for the recessive models, we
observed large sample-size differences between the op-
timal tests and the best statistic, . The simulationASpairs

results for the NMMT pedigree were consistent with the
analytical results. All statistics except Sall had the ex-
pected false-positive rate, whereas Sall’s false-positive rate
was elevated by a factor of 3–4.

For the CSFF pedigree, Sall was the best statistic for
all models and had nearly optimal sample-size require-
ments (table 9), whereas the other four statistics were
equivalent to each other. The simulation results also in-
dicated that Sall was the best statistic, although Sall had
an elevated false-positive rate of 0.004–0.007, whereas
the other statistics had a less elevated false-positive rate,
0.002–0.004.

For the CSMF pedigree, Sall had consistently smaller
sample-size requirements than did the other statistics
(table 9), except under recessive model 12, which has
reduced penetrance and a high phenocopy rate. For
model 12, was the best, whereas was the worst.GH AS Spairs pairs

However, the simulation results showed that, for reces-
sive model 12, Sall was the best, closely followed by

, whereas was the worst. This difference mayGH AS Spairs pairs

have been due to the false-positive rates in the simula-
tion; Sall had an elevated false-positive rate in the range
0.005–0.006, whereas the other statistics had false-pos-
itive rates in the range 0.002–0.004.

Nuclear families.—For the nuclear families, the sam-
ple-size differences between the best and worst statistics
within a given sex configuration were quite small (tables
10 and 11)—often the two sample sizes differed by only
one (except for the four-female sibships, under certain
models). For nuclear families with only two affected sib-
lings, all statistics have identical sample-size require-

ments within any model, because all statistics produce
the same normalized coefficients.

Table 10 shows the sample sizes for three-sibling fam-
ilies, for four different sex combinations. All five statistics
are identical to each other for three-female and three-male
combinations, since there are only two possible IBD-shar-
ing configurations (table 3). The best statistics for each
sex combination performed the same as did the optimal
test, except for recessive model 12. All statistics performed
almost identically, in most conditions, for two-males–one-
female and one-male–two-females combinations. For the
two-males–one-female combination, and SX50 per-GHSpairs

formed best for model 12, whereas performed worst.ASpairs

For the one-male–two-females combination, was theGHSpairs

worst statistic more often than were the other statistics.
Our simulations indicated that Sall had the lowest power
for the two-males–one-female combination (for a sample
size of 10), in most models. For the one-male–two-females
combination, and SX50 were the best in most models,ASpairs

whereas was the worst; however, as in the analyticalGHSpairs

results, there were no dramatic power differences within
each family type. Across all sex combinations, all statistics
had similar elevated false-positive rates of ∼0.003 or
∼0.004, with a range of 0.002–0.005.

For four siblings, Sall was the best statistic more often
than were the other statistics (table 11). For the three-
males–one-female combination, recessive model 12 was
again the exception, with and SX50 being the bestGHSpairs

statistics under model 12. , , SX75, and SX50 wereA GHS Spairs pairs

equivalent to each other for four-female and four-male
sibships, since they produced the same normalized co-
efficients (table 4). The best statistics in each sex com-
bination performed very closely to the optimal test in
most cases, except for the dominant models for four-fe-
male sibships. The simulation results show that Sall was
the best in most models, and was the worst moreGHSpairs

often than were the other statistics; however, for the three-
males–one-female combination, was the best underGHSpairs

model 12, whereas was the worst, a finding that isASpairs
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Table 9

Estimated Sample Sizes for the Extended Pedigrees under Single-Locus Models

PEDIGREE AND STATISTIC(S)a

ESTIMATED SAMPLE SIZEb

Dominant Model Additive Model Recessive Model

1 2 3 4 5 6 7 8 9 10 11 12

MMT:
Optimal test � 21,975 6,334 351 89 89 89 120 8 8 9 27
Sall � 23,008 6,587 358 93 93 92 120 9 10 10 29

, SX50
ASpairs � 24,075 6,855 353 100 99 98 122 11 11 11 31
GHSpairs � 22,666b 6,489 354 94 93 93 120 10 10 11 30

SX75 � 23,106 6,602 352 96 95 94 120 10 11 11 30
NMMT:

Optimal test 13 14 14 23 31 32 33 52 19 20 20 40
Sall 13 14 14 24 32 33 33 53 982 974 963 615

ASpairs 23 24 24 37 40 41 42 64 51 52 52 78
SX50 20 20 21 32 37 38 39 58 73 74 75 101

GHSpairs 16 17 17 28 35 35 36 54 146 147 149 169
SX75 18 19 19 30 35 36 37 56 81 82 83 110

CSFF:
Optimal test 32 32 33 51 31 32 33 74 7 7 8 40
Sall 35 35 36 53 31 32 33 74 7 8 8 41

, SX50, , SX75
A GHS Spairs pairs 39 39 40 57 34 34 35 75 8 8 8 43

CSMF:
Optimal test 9 9 9 16 9 9 9 19 7 8 9 33
Sall 9 9 10 16 9 9 9 19 7 8 9 40

ASpairs 10 10 10 17 10 10 10 20 8 9 10 45
SX50 10 10 10 17 10 10 10 20 8 9 10 37

GHSpairs 10 10 10 17 10 10 10 20 9 9 10 35
SX75 10 10 10 17 9 10 10 20 8 9 10 39

a Statistics are grouped together when they have identical normalized coefficients.
b A sample size that is the unique maximum among statistics (excluding optimal test) is in boldface italic; a sample

size that is the unique minimum among statistics (excluding optimal test) is underlined.

consistent with the analytical sample-size estimates.
Across all sex combinations, all statistics had similar el-
evated false-positive rates, of ∼0.004 or ∼0.005, with a
range of 0.002–0.006.

Note that, under dominant and additive models, all-
female sibships (of sizes two to four) had relatively large
sample-size requirements for all statistics (as compared
to the sample-size estimates for the other sex combi-
nations). In contrast, all-female sibships under recessive
models had low sample-size requirements, similar to
those of the other sex combinations. In addition, the
sample-size requirements increase as the number of fe-
males in the sibship increases, under the dominant and
additive models, for all five statistics.

Two-Locus Models

Under the two-locus models, only the NMMT, CSFF,
and CSMF pedigrees were studied (table 12). For the
NMMT pedigree, Sall was consistently the best statistic,
and was the worst, just as for the single-locus mod-ASpairs

els. For the CSFF pedigree also, the two-locus results
mirrored the single-locus results. For the CSMF pedigree,

Sall was again the best for the heterogeneity models, but
it did not perform as well for the additive models.

Discussion

In an attempt to find a robust allele-sharing statistic for
X-linked traits that performs well across a variety of
genetic models and pedigree structures, we have com-
pared the relative sample-size requirements of five dif-
ferent allele-sharing statistics for X-linked traits. We
have considered four different extended pedigrees, as
well as all possible sex combinations in nuclear families
with two, three, and four affected siblings. As might be
expected, we have found that which statistic is best de-
pends on both the true underlying mode of inheritance
and the sex and distribution of the affected individuals
within the pedigree.

For the extended pedigrees, Sall was found to be the
most powerful and the closest to optimal for the ma-
jority of the genetic models (whether single locus or two
locus). Similarly, for autosomal traits, Sall performs quite
well across a large number of models (Feingold et al.
2000). However, this result does depend on the pedigree
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Table 10

Estimated Sample Sizes for Three Affected Siblings under Single-Locus Models

PEDIGREE AND STATISTIC(S)

ESTIMATED SAMPLE SIZE

Dominant Model Additive Model Recessive Model

1 2 3 4 5 6 7 8 9 10 11 12

Three males:
All statistics 11 11 11 22 11 11 11 22 11 11 11 22

Two males–one female:
Optimal test 13 14 14 28 13 13 14 32 11 12 14 48
Sall 13 14 14 28 13 14 14 32 11 12 14 54
SX75 13 14 14 28 13 13 14 32 11 12 14 56

ASpairs 13 14 14 29 13 14 14 34 11 12 14 64
SX50,

GHSpairs 14 14 15 29 13 14 15 33 12 13 14 50
One male–two females:

Optimal test 20 21 22 52 24 25 26 72 11 11 12 46
Sall, SX75 21 22 23 54 24 25 26 72 11 11 12 47

, SX50
ASpairs 20 21 22 52 24 25 27 74 11 11 12 46
GHSpairs 22 23 24 56 24 26 27 73 11 12 12 49

Three females:
All statistics 220 224 227 309 237 243 248 429 11 11 11 34

NOTE.—Notation is as described in the footnotes to table 9.

structure and genetic model, since, under recessive mod-
els for the NMMT pedigree, Sall has dramatically less
power than do the other statistics (table 9). Sall is most
powerful when there is sharing of alleles in common
among the whole group of affected individuals, which
is unlikely under recessive models for the NMMT ped-
igree. Similarly, for autosomal traits, Davis et al. (1997)
found that, in situations in which the disease allele is
likely to have entered the pedigree more than once (i.e.,
a recessive disease with a fairly common allele), Sall is
much worse than Spairs. However, we did not, as we
might have expected, observe this effect when Sall was
applied under the two-locus models; for example, in
our simulations of the CSFF pedigree under the “H-
common” model, 49% of families were segregating dis-
ease alleles at both loci, and yet Sall was still the most
powerful statistic. On the basis of this observation, we
suggest that further exploration of the behavior of Sall

is warranted in both the autosomal and the X-linked
contexts. We also have seen that Sall is not the best sta-
tistic under dominant models for the MMT pedigree
(table 9), but in this situation the sample-size require-
ments become extremely large as the genetic models
become “stronger” and more inconsistent with the ob-
served male-to-male transmission in this pedigree. For
the recessive models for the NMMT pedigree, the op-
timal sample sizes were much smaller than the sample
sizes obtained when any of the five statistics were used,
which indicates that there is room for improved statis-
tics for recessive models (table 9). This is not surprising,
since previous studies have shown that most standard
statistics do not have good power for autosomal reces-

sive traits and that special recessively oriented statistics
do much better (e.g., see Feingold and Siegmund 1997;
Feingold et al. 2000; Sengul et al. 2001).

For the nuclear families, we observed only minor
power differences among the five statistics, within any
given sex configuration (tables 10 and 11); however,
under dominant and additive models, the all-female sib-
ships had quite low power, no matter which statistic we
used. This result has been observed before, since Cordell
et al. (1995) have shown that, under genetic models in
which the female dominance variance is small, the
power for full sisters is much less than that for other
pairs of relatives. Clearly, any two female sibs share
either one or two alleles IBD, since they always share
the father’s allele in common. If the disease allele has
entered the sibship only once through the father, then
the female sibship will contain no information for link-
age. This effect is pronounced under the dominant and
additive models, since one disease allele is enough to
induce elevated penetrance. We do not observe such a
dramatic effect when there is a least one male in the
sibship, since the presence of at least one affected male
makes it much more likely that the disease allele has
entered the family through the mother rather than
through the father. Under the recessive models, no mat-
ter which sex combinations the sibships have, all sta-
tistics result in comparably high power, since they are
all based on the same information: the alleles that have
been passed on from the mother. Similar but less-pro-
nounced effects help explain the results for the CSFF
pedigree (table 9), in which the sample sizes under the
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Table 11

Estimated Sample Sizes for Four Affected Siblings under Single-Locus Models

PEDIGREE AND STATISTIC(S)

ESTIMATED SAMPLE SIZE

Dominant Model Additive Model Recessive Model

1 2 3 4 5 6 7 8 9 10 11 12

Four males:
Optimal test 10 10 10 17 10 10 10 17 10 10 10 17
Sall 10 10 10 17 10 10 10 17 10 10 10 17

, SX50, , SX75
A GHS Spairs pairs 11 11 11 18 11 11 11 18 11 11 11 18

Three males–one female:
Optimal test 11 11 11 19 11 11 11 20 10 11 11 23
Sall 11 11 12 19 11 11 12 20 10 11 11 26

ASpairs 12 12 13 20 12 12 13 21 11 12 12 29
SX50,

GHSpairs 12 12 13 20 12 12 13 21 12 12 13 24
SX75 12 12 12 20 12 12 12 21 11 12 12 26

Two males–two females:
Optimal test 14 14 14 25 15 15 16 29 10 10 10 23
Sall 14 15 15 25 15 15 16 29 10 11 11 24

ASpairs 16 16 16 26 17 17 17 32 11 11 11 25
SX50 15 15 16 26 16 16 16 30 12 12 12 25

GHSpairs 16 16 16 27 16 16 17 29 12 13 13 26
SX75 15 16 16 26 16 16 17 30 11 11 12 25

One male–three females:
Optimal test 22 24 25 53 32 33 34 65 10 10 10 19
Sall 25 26 27 55 32 33 34 66 11 11 11 20

, SX50
ASpairs 25 26 28 55 35 36 37 70 11 11 11 20
GHSpairs 28 29 30 60 33 34 35 66 12 12 12 22

SX75 26 27 29 57 33 34 35 66 11 11 12 21
Four females:

Optimal test 334 337 340 404 280 282 284 347 10 10 10 18
Sall 358 360 362 412 282 284 286 348 10 10 11 18

, SX50, , SX75
A GHS Spairs pairs 384 385 386 429 291 292 293 349 11 11 11 19

NOTE.—Notation is as described in the footnotes to table 9.

dominant and additive models are quite a bit larger than
those under most of the recessive models.

Even though, in most cases, is the worst statistic,GHSpairs

it is the most powerful statistic when male siblings out-
number female siblings (such as in the two-males–one-
female and the three-males–one-female combinations)
under the recessive model with a high phenocopy rate
and reduced penetrance (model 12; see tables 10 and
11). Similarly, we also have observed that, in the CSMF
pedigree, is the best statistic for model 12 (tableGHSpairs

9). Under recessive models with high phenocopy rates,
most female cases are phenocopies. Therefore, for such
models, a statistic that scores female sharing less and
that scores male sharing more would perform the best.

performs well because it assigns to alleles sharedGHSpairs

between males a score higher than that assigned by any
of the other statistics (table 2).

To complement and verify our analytical power com-
putations, we also performed simulation-based power
studies. Although the analytical power computations
assume normality and a fixed type I–error rate, 0.001,

the simulation studies do not make such assumptions
and also permit us to generate empirical type I–error
rates. Our simulation results indicate that, for the
NMMT, CSFF, and CSMF pedigrees, Sall always has a
larger type I–error rate than do the other statistics. This
means that the simulation results showing that Sall gen-
erally has high power should be interpreted with some
caution. This issue has been discussed in more detail by
other authors (e.g., McPeek 1999). In the present study,
however, the analytical results also show Sall to be the
best statistic in most cases, so we can be fairly confident
about this general qualitative result.

Sengul et al. (2001) examined the effect of increasing
the distance between the marker and the trait locus in
their study of linkage statistics for autosomal traits, and
they found that the relative power of the statistics
changed as v increased. Therefore, in addition to our
results, which assumed a fully informative marker per-
fectly linked (v p 0.0) to the trait locus, we also com-
puted estimated sample sizes at several different larger
values of v (i.e., 0.05, 0.10, and 0.20). We found no
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Table 12

Estimated Sample Sizes for Selected Pedigrees under Two-Locus
Disease Models

PEDIGREE AND STATISTIC(S)

ESTIMATED SAMPLE SIZE

H-Rare
Model

H-Common
Model

Additive
Model

NMMT pedigree:
Optimal test 27 64 1,927
Sall 28 67 2,175

ASpairs 47 102 2,772
SX50 42 92 2,421

GHSpairs 36 82 2,249
SX75 38 86 2,380

CSFF pedigree:
Optimal test 20 170 596
Sall 22 192 617

, SX50, , SX75
A GHS Spairs pairs 26 222 620

CSMF pedigree:
Optimal test 12 45 2,691
Sall 13 45 2,910

ASpairs 15 50 2,819
SX50 16 51 2,905

GHSpairs 16 51 3,085
SX75 15 49 2,888

NOTE.—Notation is as described in the footnotes to table 9.

change in the relative ranking of the statistics for X-
linked traits. Also, note that our results are based on a
fully informative marker, but, if the marker is not fully
informative, the result is very similar to that caused by
an increase in v. This issue is discussed in more detail
by Sengul et al. (2000).

Cordell et al. (1995) investigated the power to detect
X linkage in various types of affected relative pairs, as
functions of the relative risks (l’s). The l’s for sibling
pairs for the models that we considered are given in
table 1. Our general results regarding which types of
pedigrees are most powerful are consistent with those
reported by Cordell et al. (1995). Those authors found
that, when the female dominance variance is small (as
in our additive and dominant models), sister-sister pairs
have much lower power than do other types of relative
pairs. We found, as discussed above, that this result is
also true for larger sibships that consist entirely of fe-
males. When there is substantial dominance variance
(as in our recessive models), sibships of sisters become
roughly as useful as sibships that include brothers. This
is because the sister-sister relative risk, lff, includes com-
ponents due to both additive and dominance variances,
whereas both the sister-brother relative risk, lmf, and
the brother-brother relative risk, lmm, are functions of
the additive variance only. A similar effect is seen in
comparisons of the power that siblings and unilineal
relatives have for the mapping of autosomal loci (e.g.,
see Feingold and Siegmund 1997). Comparing, across
sex groups, first-cousin pairs whose parents are sisters,

they found that male-male first-cousin pairs are more
powerful than female-female first-cousin pairs. This
would lead us to the prediction that the CSMF pedigree
should have more power to detect linkage than does the
CSFF pedigree, because the CSMF pedigree contains
both male-male and female-female first-cousin pairs,
whereas the CSFF pedigree contains only female-female
first-cousin pairs. Our results (table 9) are consistent
with this prediction.

It is important to note that affected relatives of the
same general relationship (e.g., full siblings) can provide
very different power to detect linkage, depending on
their sex. This suggests that, for optimal power, one
should pay close attention to proper weighting when
combining statistics across families with different sex
combinations. One could obtain an overall statistic by
combining statistics after assigning appropriate weights
to different sex pairs and/or pedigree configurations.
The optimal weights depend on the genetic model. Al-
though it is not difficult to derive the weights for any
given model, the real challenge is to find weights that
have robust power—that is, that have reasonably high
power for a variety of models. We hope to explore such
weighting issues in the future, building on the frame-
work already developed for autosomal traits (e.g., see
Sham et al. 1997; Teng and Siegmund 1997). One way
to circumvent the weighting problem is to do parametric
linkage analysis instead, which essentially imposes a
particular set of weights based on the specified model.
There have been some reports of good power obtained
by parametric analysis of the autosomes for complex
traits, by use of either fairly simple genetic models or
“best of several models” approaches (e.g., see Abreu et
al. 1999; Sham et al. 2000). It will be important to study
how these approaches compare to nonparametric meth-
ods for X-linked loci.

Finally, this study has used a limited set of trait mod-
els and a limited set of pedigrees. Since the actual num-
ber of trait models and pedigrees that might be of in-
terest is enormous, we cannot claim to have considered
all important possibilities. Future work to study more
pedigree types and more models would be useful.
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