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Congenital long QT syndrome (LQTS) is a genetically heterogenous disorder of myocardial
repolarization that affects an estimated 1:2000 individuals and often manifests clinically as a
prolonged heart rate-corrected QT interval (QTc) on ECG and an increased proclivity for
torsadogenic-mediated syncope, seizures, and sudden death.1 From a genetic perspective,
LQTS has been considered classically an autosomal dominant genetic disorder, with
heterozygous mutations in the three major LQTS-susceptibility genes accounting for
roughly 75% of clinically robust, non-syndromic LQTS cases (KCNQ1/LQT1, 30%–35%;
KCNH2/LQT2, 25%–30%, and SCN5A/LQT3, 5%–10%).2,3 However, since the
identification of the three major LQTS-susceptibility genes in 1995 and 1996, it has become
clear that LQTS, like many other monogenic/Mendelian disorders, is at best described as an
autosomal dominant disorder with marked incomplete penetrance and variable expressivity
whereby related individuals who harbor the same LQTS-causative mutation often assume
vastly different clinical courses in terms of QTc duration and frequency of cardiac events.4

In retrospect, strong evidence for this extensive phenotypic variability in LQTS was
encountered long before the specific ion channel genes were implicated in the pathogenesis
of the disorder. In 1992, four years before KCNQ1 was identified as the culprit, LQT1-
causative gene residing within the chromosome 11p15.5 genetic locus, Vincent et al
described both a significant overlap in the range of QTc values between 11p15.5 locus
carriers (410 to 590 ms; mean 490 ms) and non-carriers (380 to 470 ms; mean 420 ms) and
marked variability in the frequency/severity of cardiac events between carriers of the same
11p genetic marker (63% with syncope; 5% with sudden cardiac arrest).4, 5 Subsequent
studies, including those involving large founder populations such as the South African
KCNQ1-A341V LQT1 kindred, went on to demonstrate that very few LQTS-causative
mutations completely escape the genetic phenomena of incomplete penetrance and variable
expressivity indicating that the observed phenotypic variability in LQTS is not solely
dependent on the relative strength or weakness of discrete LQTS-causative mutations, but
also on the genetic background in which these mutations reside.6
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Naturally, given the strong correlation between the degree of QT interval prolongation and
risk of cardiac events, cardiovascular mortality, and or all cause mortality in LQTS patients7

and otherwise healthy individuals8, 9, the elucidation of the genetic elements that modulate
the phenotypic severity associated with a given LQTS-causative mutation as well as QT
interval duration in otherwise healthy individuals has garnered considerable interest in
recent years. Early genetic modifier studies largely utilized a candidate variant/gene
approach to test the association between common single nucleotide polymorphisms (SNPs)
in genes that encode either cardiac ion channels or proteins known to directly modulate their
function and QTc duration and or risk of cardiac events.4 While these studies demonstrated
that common amino acid-altering SNPs in the known LQTS-susceptibility genes such as
KCNE1-D85N10, KCNH2-K897T11, and SCN5A-H558R12, 13 exert modest
electrophysiologic effects that can modulate the in vivo or in vitro phenotypic expression of
certain LQTS-causative mutations as well as modify QTc duration in LQTS patients and the
general population (summarized in Table 1), these findings collectively account for only a
small fraction of the phenotypic variability observed within many multigenerational LQTS
families.

More recently, genome-wide association studies (GWAS) that assay massive numbers of
common SNPs spread evenly throughout the human genome have provided a systematic and
unbiased means of identifying QT-modulating genetic loci in the general population. In
addition to providing further support for the association of KCNE1-D85N, KCNH2-K897T,
and several non-coding SNPs in established LQTS-susceptibility genes with QTc duration,
these studies and their subsequent meta-analyses have indentified additional novel genetic
loci believed to modulate QTc duration in the general population (Table 1).14, 15

While one might expect that these novel genetic loci would represent a treasure trove for
translational studies in congenital LQTS, thus far only SNPs in the NOS1AP-encoded nitric
oxide synthetase 1 adaptor protein have been shown to modulate LQTS disease severity.
Interestingly, studies from both the aforementioned South African KCNQ1-A341V LQT1
kindred16 as well as a prospective registry of 901 LQT1, LQT2, and LQT3 patients with an
array of LQTS-causative mutations17 have shown that the minor alleles of two non-coding
SNPs (rs4657139 and rs16847548) in NOS1AP are associated with both QTc prolongation
and an increased risk of cardiac events in a patient with congenital LQTS.

It is in this greater context, that the study by Guicheney et al in the current issue of
Circulation: Cardiovascular Genetics tested 112 matched symptomatic-asymptomatic
LQT1/LQT2 patient duos derived from French, Italian, and Japanese LQTS cohorts for an
association between LQTS disease phenotype and the presence of 25 high pre-test
probability SNPs that had been associated previously with either an increased risk of cardiac
events in LQTS patients or modulation of QTc duration in the general population.18 Briefly,
using this novel approach, Guicheney et al demonstrate for the first time that the minor
allele of an intronic SNP (rs2074238) in KCNQ1, previously associated with shorter QTc
intervals in the general population14,15, confers a protective effect against cardiac events in
LQTS patients.18 Importantly, this finding was validated in a replication cohort consisting of
336 LQT1 patients from South African KCNQ1-A341V and Finnish KCNQ1-G589D
founder populations, suggesting that at the very least the KCNQ1 rs2074238 SNP attenuates
the LQT1 disease phenotype in multiple genetic backgrounds.

While Guicheney et al show a clear and substantiated protective role for KCNQ1 rs2074238
in LQT1 and possibly LQT2, perhaps surprisingly, the KCNQ1 rs2074238 SNP represents
one of only 2 LQTS modifying SNPs. The other SNP with a positive association in both the
patient duos and the replication cohort was NOS1AP rs12029454, which interestingly is not
one of the two the NOS1AP SNPs shown to modulate LQTS disease severity in previous
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studies. The other 23 QT-modifying/disease-modifying SNPs (Table 1) failed to modify the
disease phenotype of the subjects investigated.

As the authors mention, given the modest modifying effect (i.e. +/− 1 to 5 ms) of most
genetic loci/SNPs found to modulate the QTc duration in the general population, it is not
unexpected that the isolated effect of these genetic loci on cardiac repolarization would be
completely “washed out” by the predominant QTc-prolonging effect of the primary LQTS-
causative mutation. However, statistical power arguments aside the failure to replicate the
findings of previous studies, particularly the association of NOS1AP rs4657139 and
rs16847548 with an increased risk of cardiac events, highlights the fact that genetic modifier
studies in relatively rare disorders such as LQTS are often subject to unavoidable biases
introduced by 1) the comparison of unrelated individuals with LQTS-causative mutations of
variable strength from heterogeneous genetic backgrounds, 2) the isolated study of related
individuals with the same LQTS-causative mutation from relatively homogenous genetic
backgrounds, 3) the study of individual genetic variants in complete isolation, and/or 4) the
use of variable methodological approaches that limit the generalization of results to LQTS
individuals and populations not included in the initial study cohort(s).

That said, the novel approach employed by Guicheney et al to couple modifier discovery in
a matched case-control cohort with subsequent replication in established founder
populations represents an earnest attempt to eliminate or at least balance some of these
unavoidable biases and certainly has the potential to advance the discovery of “modifier
genes” in LQTS in the future. However, the precise clinical utility of this study’s findings
remains unknown and, as the authors acknowledge, will depend ultimately on elucidating
the precise mechanism(s) by which KCNQ1 rs2074238 is anti-arrhythmic in LQTS.
Assuming that the KCNQ1 rs2074238 SNP is not simply a tag SNP for an unknown
protective mechanism buried within a larger haplotype block in tight linkage disequilibrium,
the cited in silico evidence suggests that KCNQ1 rs2074238 most likely exerts it modifying
effect in an allele-specific fashion via the modulation of KCNQ1 expression similar to
recently described SNPs in the 3′ untranslated region (3′UTR) of KCNQ1.18, 19 If this is
indeed the case, the protective effect of KCNQ1 rs2074238 might become even more
pronounced once the genomic context between the SNP and LQTS-causative mutation (e.g.
whether rs2074238 resides on the wild-type allele or the mutated KCNQ1 allele) is
accounted for properly.

While candidate-based approaches to modifier discovery have yielded a number of
important genetic determinants of LQTS disease severity in recent years, including the
discovery of modifying SNPs in NOS1AP16,17, the 3′UTR of KCNQ119, and now the
intronic KCNQ1 rs207423818, the study of the effects of these SNPs in relative isolation (i.e.
interaction of a single candidate SNP with a single LQTS-causative mutation) fails to take
into account that the genome of each individual hosts a unique combination of common and
rare genetic variants that could theoretically act in synergy or opposition to collectively
modulate the phenotypic expression of a distinct primary LQTS-causative mutation.
Furthermore, the genomic context of these modifying variants in relation to each other as
well as to the primary LQTS-causative mutation adds an additional dimension to the already
complex interplay between genetic and environmental determinants of LQTS disease
severity. As one begins to ponder the various combinations of variants in transcriptional,
translational, biosynthetic, and signaling pathways that could in theory modify cardiac ion
channel function, it becomes apparent that the reductionistic, one-at-a-time candidate
modifier approaches may need to be supplanted or at least complimented by unbiased
genome-wide and systems biology approaches if we truly wish to understand the complex
genetic architecture underlying congenital LQTS and begin to translate this knowledge in
meaningful ways that might enhance how patients with this potentially lethal, yet highly
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treatable genetic disorder are diagnosed, risk-stratified, and clinically managed in the post-
genomic era.
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