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Regeneration of myocardium through regenerative therapy
and tissue engineering is appearing as a prospective treatment
modality for patients with end-stage heart failure. Focusing on
this area, this review highlights the new developments and
challenges in the regeneration of myocardial tissue. The role
of various cell sources, calcium ion and cytokine on the
functional performance of regenerative therapy is discussed.
The evolution of tissue engineering and the role of tissue
matrix/scaffold, cell adhesion and vascularisation on tissue
engineering of cardiac tissue implant are also discussed.

Introduction

The health care cost for millions of people who suffer tissue loss or
end-stage organ failure increases every year. Every day thousands
of people of all ages are admitted to hospitals because of the
malfunction of some vital organ. According to a recent survey, the
US occupies the first place as cardiovascular disease diagnostics
trade.1 Europe occupies the second place and is followed by Japan.
The US National Health expenditures have steeply grown from
2004 to 2009. According to the American Heart Association,
cardiovascular disease (CVD) and death rates are expected to rise
in China by nearly 73% by 2030.1 In India also, myocardial
infarction (MI) is the main cause of death. According to a
projection by the WHO and the ICMR, India will be the heart
attack capital in 2020.

Treatment of patients for end-stage cardiac failure and post-
ischemic complications of cardiac tissue is a challenge. Cardiac
transplantation has been attempted for the treatment of end-stage
cardiac failure. Because of a dearth of transplantable heart, many
of these people will die. Cardiac patients with class III NYHA
(New York Heart Association) heart failure caused by dilated
cardiomyopathy or ischemic heart disease who are deteriorating
despite maximal medical therapy, but still have some cardiac
reserve, have a fair chance of survival. This review highlights
the new developments and challenges in the regeneration of
myocardial tissue.

Progress and Challenges
in Stem Cell Regenerative Therapy

In recent years, stem cell technology is gaining pace in the
management and regenerative therapy of heart failure.2 Research
on cell-based regenerative therapy has focused on identifying
an ideal cellular source. The optimal cell source to create an
engineered myocardial patch should be easy to harvest, proliferate
under controlled conditions, nonimmunogenic and should have
the ability to differentiate into mature, functional cardiomyocyte.
In principle, the natural electrophysiological, structural and
mechanical properties of cardiomyocytes make them the ideal
donor cell type. However, in practice cardiomyocytes are difficult
to obtain and are sensitive to ischemic insults. Its in vitro
maintenance is formidable and is allogenic.

On considering potential cells, options include embryonic
stem cells and multipotent postnatal cells. Embryonic stem cells
can be harvested from the inner cell mass of the blastocyst. These
are well known for their pluripotency and unlimited capacity for
self-renewal.3 The pluripotency of embryonic stem cells makes
them an attractive cellular source. But the susceptibility of these
cells for teratoma formation warns for understanding the mechan-
isms to control the tumorigenic properties.4 Furthermore, the
political and the ethical issues dealing with the use of embryonic
stem cells pose substantial challenges.5,6 Many researchers
succeeded in the isolation of postnatal multipotent stem cells
from various tissue sources which is displayed in Table 1.

The most widely used cell types for cardiac cell therapy in
human patients are skeletal muscle-derived progenitors or myo-
blasts, and crude bone marrow mononuclear cells.7 Such types of
stem cells are easily available, autologous and in vitro expandable.
But the demerit is their inability for differentiation into cardiac or
endothelial cells. In contrast, bone marrow-derived stem cells need
some responses from the target organ due to plasticity and the
possibility of using the patient’s own cells.

The bone marrow-derived stem cells (BNMCs), isolated from
bone marrow aspirates require no need of culture expansion and
can be directly injected through coronary artery or can be
engineered on a suitable scaffold. The presence of BMN stem cell
progenitors in peripheral circulation made the situation more
favorable to opt for these cells for cardiac tissue engineering.
These stem cells are able to differentiate into endothelial cells,
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smooth muscle cells and cardiomyocytes. Consideration of
specific surface markers like CD34+, CD133+, etc., is very
crucial in dealing with these cells. Many authors reported
successful differentiation of transplanted BMNCs to functional
cardiomyocytes in both pre-clinical and clinical arenas.8 Still only
a few recent clinical studies advocate the simple reinjection of
unfractionated bone marrow cells in patients with acute MI. But
such studies have been performed at the early stage after the
ischemic insult. However, their relevance to chronically infarcted
myocardium remains to be studied in detail.

The existence of resident stem cells in the myocardium is a
clear-cut indication of natural regeneration capacity. Beltrami
et al. reported the presence of Lin(-) c-kit(POS) cells in the
myocardium which own the basic features of the stem cells like
self renewal, multipotency and proliferation capacity. These
cells were proved to be effective in the angiogenesis and the
formation of differentiated myocardium at the ischemic injury
site.10 Another group of researchers demonstrated the Sca-1-
positive (Sca-1+) cells from adult murine hearts have stem cell
like characteristics. These cells expressed cardiac-specific trans-
cription factors, contractile proteins, showed sarcomeric arrange-
ments and were able to beat spontaneously.25 But their
mechanism of activation and signaling cascade for differentiation
and their application in cardiac tissue engineering remains to be
elucidated.

Forte G. et al.26 has cultured human cardiac progenitors
obtained from the auricles of patients as scaffoldless engineered
tissues fabricated using temperature-responsive surfaces. After
engineered tissues were leant on visceral pericardium, a number
of cells migrated into the murine myocardium and in the vas-
cular walls, where they integrated in the respective textures.
The study demonstrated the suitability of engineered tissues
to deliver stem cells to the myocardium. Branco et al. reported
small preclinical studies and suggested that such delivery of BMCs
reach to the infarct site.27

Yu Suk Choi et al.28 have attempted to differentiate human
adipose-derived stem cells in rat models using a tissue engineer-
ing chamber. They assigned an in vivo bioreactor system by
implanting an arteriovenous loop by interposing a femoral vein
graft between the femoral artery and the femoral vein at the
groin region of nude rats. The loop was connected to a poly-
carbonate chamber, which in turn was anchored to the inguinal
ligament. Onto this tissue engineering chamber they co-cultured
human adipose-derived stem cells and rat cardiomyocytes which
led to the effective differentiation of human adipose-derived stem
cells to functional cardiomyocytes.28 Placenta and umbilical cord
form one of the excellent sources of multi potent stem cells. The
presence of comparatively longer telomeric DNA and higher
telomerase activity of these cells is favorable as a precursor for
cardiac tissue regeneration. They possess sufficient passage rate
and express several markers of mesenchymal stem cells (MSCs).29

Attempts were made to use mesenchymal stem cells isolated
from dental pulp. Administration of dental pulp stem cells
(DPSC) in the infarcted area of rat heart aided in the repair and
remodeling of the myocardium by enhancing neo-angiogenesis
and by the suppression of apoptotic pathways. But the cardiac
tissue engineering strategies using the DPSC are yet to emerge
as a more promising route.11 Forced expression of genes like
Gata4, Mef2c, Tbx5, Oct4 and Sox2 differentiate cardiac or
dermal fibroblasts into cardiomyocytes like cells. Such ‘induced
cardiomyocytes’ are able to express cardiac biomarkers and
proteins and exhibit contractile properties. Induced-pluripotent
fibroblasts are also applicable for cardiac tissue engineering.12

Research teams led by Yamanaka and Thompson also opened
yet another avenue for cellular-based regenerative therapies
through their demonstration of induced pluripotency in postnatal
somatic cells.30 They demonstrated that the ectopic expression of
a selected group of genes can dedifferentiate some of the postnatal
human somatic cells to exhibit many of the hallmarks of human
embryonic stem cells. These findings opened new opportunities
for the potential reprogramming of postnatal somatic cells to a
pluripotent state. The skin fibroblasts can be harvested auto-
genously and tailored to specific cell types that may be needed for
tissue/organ regeneration, including heart. These studies remain
only in principle and many studies are needed before the con-
sideration of this approach in the clinical arena. Nevertheless,
these results would direct the explorations for the generation of
patient-tissue and disease-specific stem cells presumably without
much immunological rejection. Bui QT et al.31 have reviewed
potential therapeutic effects of myocardial stem cell and pro-
genitor cell therapy delivered by various delivery modes for the
treatment of infarcted myocardium and challenges in myocardial
delivery and optimization of stem cells.

Role of calcium ions in regenerative therapy. Cardiomyocyte
contractility is determined by the amount of calcium released into
the cytosol and the responsiveness of the contractile apparatus to
calcium. Following an action potential, voltage-dependent L-type
calcium channels are opened to flux the Ca2+ into the cytosol.
This induces the release of calcium stored inside the sarcoplasmic
reticulum (SR) via the ryanodine receptor by a process termed the
calcium-induced calcium release mechanism.32 The molecular

Table 1. Various cell sources used in regenerative therapy

Cell sources

Endothelial progenitor cells7

Bone marrow8,9

Adipose tissue10

Placenta and umbilical cord11

Human amniotic fluid12

Dental pulp13

Skeletal muscle14

Fetal cardiomyocytes15,16

Skeletal myoblasts17,18

Mesenchymal stem cells19

Smooth muscle cells20

Crude bone marrow21

Fibroblasts22,23

Cloned cells24
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interaction between the contractile proteins, actin and myosin,
imparts the contraction of cardiomyocytes which is driven by
ATP hydrolysis which in turn is triggered by the increase in
cytosolic calcium. Calcium binds to the troponin complex,
inducing cardiomyocyte contraction by the formation of cross
bridges between the actin and myosin myofilaments. The detach-
ment of calcium from the troponin complex results in relaxation
of cardiomyocytes; this calcium is effluxed from the cytosol via
the sarcolemmal Na+-Ca2+ exchanger (NCX) and back into the
sarcoplasmic reticulum via the sarcoplasmic reticulum Ca2+-
ATPase (SERCA). The influence of calcium on the functioning
of cardiomyocyte is narrated in Figure 1. The activity of SERCA
is regulated by an associated protein, phospholamban. It is also
reported that although the patients with heart failure have normal
concentrations of SERCA II and phospholamban, the myocardial
calcium uptake and calcium ATPase activity within sarcoplasmic
reticulum are reduced.33,34 This results in a weak contractile force.
In short, the sarcoplasmic reticulum is unable to release enough
calcium during systole as a result of insufficient calcium uptake
during the previous diastole.35 If the decreased sarcoplasmic
reticulum calcium uptake persists, it will result in the accumula-
tion of calcium ions in the cytosol of the cardiomyocytes.

The Na+/Ca2+ exchanger (NCX) is a transmembrane protein
antiport system, expressed in the membrane of almost every cell
types. In cardiomyocytes it functions in the homeostasis of
intracellular Ca2+ by the electrogenic exchange of Na+ and Ca2+

across the plasma membrane with a stoichiometry of 3 Na+ per
each Ca2+. NCX operates on two modes. In the forward mode

(Ca2+ extrusion mode) it will induce an inward current by the
extrusion of 1 Ca2+ and the influx of 3 Na+. In the reverse mode
(Ca2+ influx mode) it will generate an outward current by the
extrusion of 3 Na+ and the influx of 1 Ca2+.36 The elevation of
intracellular Ca2+ concentration and the deviation from normal
NCX function during myocardial ischemia and reperfusion can
be significantly correlated with the function and viability of
cardiomyocytes.37 Oxidative stress and the activation of the
Na+/Ca2+ exchanger in the reverse mode (due to the accumula-
tion of H+ formed as a result of anaerobic glycolysis), would also
produce intracellular Ca2+ overload.38 The degree of oxidative
stress and the magnitude of intracellular Ca2+ overload in cardio-
myocytes seem to be dependent upon the duration of ischemia.
In fact, both oxidative stress and intracellular Ca2+ overload are
considered to be the major mechanisms for the development of
ischemic injury. The reperfusion appears to exacerbate the
impact of these pathological processes. The pathological effects
induced by intracellular Ca2+ overload are mediated by Ca2+-
induced activation of membrane phospholipases and proteases
and the associated molecular biosignaling pathways. The increases
in intracellular Ca2+ are also associated with increases in L-type
Ca2+ channel activity39 and a decrease in sarcoplasmic reticulum
Ca2+ ATPase function.40 A recent report revealed that deficiency
in nitric oxide synthase (NOS) leads to spontaneous Ca2+ fluc-
tuations due to deficient nitrosylation of ryanodine receptors.41

Moreover, the intracellular Ca2+ overload also influences the
opening of mitochondrial KATP channels and mitochondrial per-
meability transition pores, which activate apoptotic pathways.42

Figure 1. Influence of calcium on the functioning of cardiomyocyte.
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The therapeutic management of calcium overload in the
post-infarcted cardiac tissue is mainly accomplished with the
administration of calcium-channel blockers (CCBs) individually
or in combination with other drugs like β-blockers. CCBs inhibit
the L-type calcium channels of cardiomyocytes and cardiac nodal
tissue (sinoatrial and atrioventricular nodes). In cardiac nodal
tissue, L-type calcium channels mediate the pacemaker currents.
By blocking calcium release into the cell, CCBs decrease the
contraction (negative inotropy), heart rate (negative chronotropy)
and conduction velocity within the heart (negative dromotropy).
CCBs are used in treating hypertension, angina and arrhythmias.
CCBs are of mainly three types. The first class of CCBs is
phenylalkylamines (e.g., verapamil) which mainly target the heart
to reduce the response to extra load. The second class, the
dihydropyridines (amlodipine and nifedipine), mainly enlarge
the arteries to lower the blood pressure. The third class, the
benzothiazepines (diltiazem) target both the heart and the arteries.
The mechanisms of action of these drugs are different and so these
are administrated depending on the condition and severity of the
infarction. The literatures on the tissue engineering approaches
relating the post-MI calcium management are limited.

Cytokine-mediated regenerative therapy. Cytokine elaboration
is one of the inherent components of the host response to tissue
injury. The cytokines, released by the host myocardium plays
an active role after myocardial infarction to modulate tissue
repair, remodeling and adaptation after injury. They generally
activate matrix metalloproteinase and collagen formation, regu-
lation of integrins and angiogenesis. Besides, they also mediate the
recruitment and mobilization of bone-marrow-derived primitive
stem cells which differentiate into endothelial cells.43 The effect
of cytokines can also lead to adverse conditions like acute
cardiac rupture or chronic dilatation, paving the way for heart
failure.44 Cytokines such as granulocyte colony-stimulating factor
(G-CSF),45 stromal-derived growth factor (SDF-1),46 leukemia
inhibitory factor (LIF),47 insulin-like growth factor (IGF-1),48

erythropoietin (EPO),49 etc., have critical roles in myocardial-
protective effects. Hypoxia, resulted after MI stimulates the
expression of hypoxia-inducible factor (HIF) which in turn
induce several signaling factors.50 Moreover, the cytokines like
TNF-a, IL-1β and IL-6 are also associated with the remodeling
process post-myocardial infarction.51

G-CSF plays a critical role in regulation of proliferation,
differentiation and survival of myeloid progenitor cells, mobiliza-
tion of hemopoietic stem cells to the peripheral circulation
and also stimulates healing and repair.52 EPO is important for
erythrocyte survival and differentiation, vascular auto regulation
and attenuation of apoptotic and inflammatory causes of cell
death.53 The trafficking and survival of hematopoietic, endo-
thelial progenitors and mesenchymal stem cells, augmentation
of vasculogenesis, neovascularization in the ischemic tissues by
the recruitment of endothelial progenitor cell (EPC), etc., are the
major responsibilities of SDF-1.54 The local functions of various
cytokines are given in Table 2. Hyun-Jae Kang et al. conducted
clinical studies on 116 human subjects with acute myocardial
infarction with a combination of cell and cytokine therapy using
erythropoietin analog, darbepoetin and G-CSF. Though these

attempts are promising, more studies are needed to correlate the
effect of cytokines onto the conventional therapeutic platforms.55

IGF-1 is responsible for nuclear phospho-Akt and telomerase
activity and the delaying of cardiomyocyte aging and death.56

TNF-a and IL-6 can attenuate myocyte contractility by the
immediate reduction of systolic cytosolic (Ca2+) via alterations in
sarcoplasmic reticulum function and is reversible by the removal
of the cytokine signal.57 However, TNF-a can also downregulate
myocyte contractility indirectly through nitric oxide-dependent
attenuation of myofilament Ca2+ sensitivity.58 The remodeling
signals mediated by cytokines and progenitor cells in the infarcted
myocardium can also initiate the repair process which includes
phagocytosis and resorption of the necrotic tissue, survival of
the regenerating myocytes, degradation and synthesis of matrix,
proliferation of the myofibroblasts, vasculogenesis and progenitor
cell proliferation.59 Taken together, cytokine-mediated therapy
is emerging to be a novel strategy for the management of end
stage MI.

The anti-cytokine therapeutic agents viz. p75 TNF receptor
(Fc construct, etanercept, infliximab and adalimumab) are found
to reduce the inflammatory risks of MI. Certolizumab pegol is a
novel TNF inhibitor which is having a comparatively high
half life, since it is coupled to polyethylene glycol (PEG).60 Anti-
TNF therapy was not fully successful. The main drawbacks
found during clinical trials are toxicity, racial variations, poly-
morphism of TNF gene, adverse effects with other medications,
etc. Moreover, patients with (NYHA) class III or IV heart failure
are not advised to treat with anti-TNF-a medications. The same
effect will occur with other cytokines also.61

Relevance and application of growth factor in regenerative
therapy. Growth factors are signaling polypeptides capable of
provoking specific cellular responses in a biological environment.
These can facilitate cell chemotaxis, proliferation, matrix synthe-
sis, cell differentiation and regeneration and so on.62 After their
release from platelets, polymorphonuclear leukocytes and macro-
phages in the injury site, growth factors bind to cell surface
receptors to determine the intracellular changes to DNA synthe-
sis and expression which result in tissue repair and regenera-
tion.63,64 Regenerating tissues must have an ordered orchestra
of several growth factors. The epidermal growth factor (EGF)
confine signaling to only a short distance65 and the insulin-like

Table 2. Local functions of various cytokine-mediated therapy

Cytokine Local Function

G-CSF Stimulation of myeloid progenitor cells
Mobilization of hemopoietic stem cells

Healing and repair

EPO Erythrocyte survival and differentiation
Vascular auto regulation

Prevention of apoptosis and inflammation

SDF-1 Stimulates hematopoietic and endothelial progenitors
Activates mesenchymal stem cells

Neovascularization

TNF-a Downregulate myocyte contractility

IL-6 Reduction of systolic cytosolic [Ca2+]
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growth factor-1 (IGF-1) may act at great distances66 along with
vascular endothelial growth factor (VEGF).67 Insulin-like growth
factor (IGF) and its isoforms exerts its role in various tissue
regeneration processes by stimulating protein synthesis, cell
proliferation, collagen synthesis and other biological responses.
These anabolic effects of IGF have attracted the attention of
many researchers.68,69 The nature and role of various growth
factors are narrated in Figure 2. The transforming growth factor
β (TGF-β) is a multipotent growth factor involved in wound
healing and scar formation. During wound healing, TGF-β is
released from degranulating platelets and is also secreted by
lymphocytes, macrophages, endothelial cells, smooth muscle
cells, epithelial cells and/or fibroblasts.70 PDGF is a mitogen
and chemotactic agent of fibroblasts and smooth muscle cells
which stimulate macrophages to secrete other growth factors
important for various stages of the regenerative processes. PDGF
also stimulates the production of several ECM molecules,
including collagen and fibronectin.71

The growth factors can be delivered as genetic material, which
may be a gene or a plasmid, to the target site where it expresses
the encoded growth factor. Another promising approach is the
direct application of growth factors along with a carrier. The
choice of the carrier is very crucial because the delivery kinetics
of the growth factor strongly depends on the carrier molecule as
it is immobilized in the carrier. Usually environmentally sensitive
smart polymeric biomaterials are used for this purpose. But the
demerit is that constant, sustained and controlled release could

not be achieved in vivo.72 More studies are needed to bring these
tissue engineering strategies for human application.

Evolution of Cardiac Tissue Engineering

Dynamic cardiomyoplasty, a novel surgical procedure for the
treatment of end-stage heart failure was introduced by Carpentier,
Magovern, Stevenson and others in 1985.

This therapy has been applied in more than 600 patients
worldwide since its clinical introduction. In cardiomyoplasty, the
patient's own latissimus dorsi muscle is mobilized as a pedicle
graft, wrapped around the heart, and then stimulated in syn-
chrony with cardiac systole. The key principle behind muscle-
powered cardiac assistance is that with chronic electrical
stimulation, skeletal muscle can be converted from fatiguing
muscle to fatigue-resistant muscle. However the operative
mortality in this procedure has been significant. Grafts made
of materials such as expanded poly tetrafluoroethylene or
glutaraldehyde-treated xeno pericardiums are used as experi-
mental implants by some investigators as an alternate to patient's
own latissimus dorsi muscle for repair of cardiac defects. However,
these attempts were not successful because these grafts lack
growth potential and are non-contractile.

The term “tissue engineering” was introduced in 1987 US
National Science Foundation (NSF) in Washington, DC. A
definition for tissue engineering was introduced in the NSF
organized conference on tissue engineering in Lake Tahoe, CA,

Figure 2. Nature and role of various growth factors in regenerative therapy.
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“application of principles and methods of engineering and life
sciences toward fundamental understanding of structure-function
relationship in normal and pathological mammalian tissues and
the development of biological substitutes to restore, maintain or
improve functions.”73

Tissue engineering enables the creation of man-made implan-
table biological substitutes known as neo-organs to restore,
maintain or improve tissue functions.74 In the cardiac tissue
engineering approach, the patient receives a functional living
tissue fabricated using living cardiomyocytes and associated cells
that are incorporated into three-dimensional scaffolds of bio-
degradable polymeric material in cell culture. The three-
dimensional scaffolds morphology guides the tissue development
in the matrix. Tissue engineering is more advantageous over
cell transplantation since a functional three-dimensional tissue
could be developed. The scaffold initially acts as an adhesive
and physical support for the cells.75-77 The entire functional

living tissue is transplanted into the wound site, where further
remodeling can occur. At the same time, the artificial polymeric
material breaks down, leaving only a completely natural final
product in the body, a neo-organ. Thus the damaged cardiac
tissue can be rejuvenated with a newly grown tissue engineered
implant, which will alleviate post ischemic complications.

The general procedure for cardiac tissue engineering is
portrayed in Figure 3. Researchers have attempted to assemble
the organ parts in vitro conditions.78,79 In the late 1950s,
Moscona cultivated freshly isolated cells from fetal chicken heart
in an Erlenmeyer flask under proper conditions. He obtained
an aggregate of cells which resemble the intact heart tissue.80

Similar explorations showed that the isolated cells from immature
hearts retain the potency to reform heart-like tissues under
favorable cell culture conditions.81 This approach was also
applicable to most tissues other than heart. Years later, free-
floating monolayer sheets that generate exogenous matrix-free

Figure 3. The general procedure for cardiac tissue engineering.
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cardiac tissue constructs were developed.82 Simpson and collea-
gues observed that neonatal rat cardiac myocytes can associate
themselves to adopt a tissue-like organization.83

In the late 1980s, Vandenburgh and Terracio and their
coworkers introduced computer-controlled instrumentation to
study the mechanical stimulation on the heart. They also
demonstrated cell orientation and differentiation.84,85 Based on
the studies from embryonic fibroblasts, researchers developed an
improved in vitro heart model. This model enables the measure-
ment of contractile force and genetic, pharmacological and
mechanical properties.86

The introduction of material sciences to the principles of
tissue engineering by the researchers from MIT, Cambridge paved
new ways to cardiac tissue engineering. They used polyglycolic
acid as a scaffold in bioreactor cultures.87 Li et al. cultured fetal
rat ventricular cells onto gelatin scaffolds in vitro and tailored
them to infarcted rat hearts. Even though they obtained
spontaneous contractile activity, they met with poor sarcomere
development. The presence of many unknown cells was another
demerit.88 Leor (the first to report cardiomyocytes tissue
engineering) and colleagues succeeded in generating vasculariza-
tion in alginate scaffolds seeded with fetal cardiac cells. But these
cells failed to integrate with the host myocardium.89 Vunjak-
Novakovic and team combined preformed collagen foam with
neonatal rat heart cells suspended in Matrigel. With electrical
stimulation for extended times they could generate cardiac muscle
constructs with improved morphology, contractile function and
molecular marker content.90

Cardiac tissue engineering is based on the premise that suit-
able matrices transmit appropriate signals for cardiac progenitor’s
cells to proliferate and form new cardiac tissue. Various
techniques have been developed for the engineering of beating
3D cardiac tissues. Many authors reported many advantageous
variations from classical methods which guaranteed long-term
effects due to biocompatibility and biodegradability of the
biomaterial.

Role of tissue matrix/scaffold in tissue engineering. Regenera-
tion of soft tissues like myocardial tissues under in vitro con-
dition needs an appropriate scaffold in the form of a soft and
pliable material. The 3D polymeric scaffolds have roles in several
aspects of tissue engineering—as a platform for the regeneration
of remaining healthy tissues, formation of tissue from seeded
cells, modulation of tissue ingrowths from the surroundings and
thereby satisfying the physiological and metabolic need of the
regenerating tissues. Recent advances in materials science and
bioengineering have resulted in a multitude of scaffold options.

Natural and synthetic materials are explored as scaffold mater-
ial to grow the cardiac cells, the cardiomyocytes. To allow the
development of myocardial tissue, the scaffold should be com-
patible to cell growth. The scaffold should be produced into
three-dimensional porous structures that are dimensionally
stable under physiological conditions. Furthermore, the mech-
anical properties of the scaffolding material should be adequate
to provide the correct micro-stress-environment for the cells to
develop the required phenotype and adaptation. Therefore the
scaffold should be flexible enough to allow the contraction of

the growing tissue and to withstand the back up pressure of the
surrounding myocardium after implantation.

Biodegradable polymeric materials form an attractive choice
because of the ease of preparation with required microstructure,
bio-mechano-electrical properties and degradation profile. Bio-
degradable polymer could be designed to degrade in vivo in a
controlled manner over a predetermined period. The advantages
of biodegradable materials are (1) they do not have to be removed
after use by secondary surgery because degradation products
formed can be excreted from the body via natural pathways and
(2) progressive loss of degradable implant material will lead to
regeneration of heart tissue. Because of this convenience, synthesis
of various medical devices such as sutures, orthopedic fixation
devices, temporary vascular grafts, stents, tissue scaffolds, and
drug delivery devices rely on the polymeric materials.91 The
commonly used natural and synthetic biomaterials for soft tissue
engineering applications are listed in Table 3.

Poly (propylene fumarate) coploymer has also been prepared
and studied for the tissue engineering of bones.107-110 Biodegrad-
able hydrogels based on poly (caprolactone diol-co-propylene
fumarate-co-ethylene glycol) with poly (ethylene glycol) and poly
(caprolactone diol) chain ends and alginate have been reported for
tissue engineering.111,112

Jayabalan et al. have studied the carboxy terminated-poly
(propylene fumarate)-co-ethylene glycol)-acrylamide and poly-
ethylene glycol terminated poly(propylene fumarate)/acrylamide
hydrogel scaffolds for cardiac applications. These hydrogels favor
adhesion and proliferation of cardiac fibroblast cells of new born
rat (Wistar) due to the formation of synergistic hydrophilic-
hydrophobic surface-by-surface reorganization.113,114 Apart from
the mentioned facts, a typical scaffold for implantation should
meet several stringent criteria. The essential characteristics of an
ideal tissue engineering scaffold are displayed on Figure 4.

The scaffold should be interconnected with a porous
(50 microns) network to enable the migration of nutrients,
accommodation of large number of cells inside the pores and
their organization into a functioning tissue and removal of
waste materials which all are essential for starting vascularization.
The porous scaffolds were fabricated by fiber bonding, solvent
casting/particulate leaching, gas foaming, freeze drying, phase
separation, etc.115-117 Moreover, the scaffold should be able to
release the growth factors, biosignals and other bioactive com-
ponents in a regulated fashion.118 Several cardiomyocyte 3D in

Table 3. Scaffolds materials used in tissue engineering

Synthetic scaffolds materials Natural scaffold materials

Poly lactic acid92 Fibrin glue96,97

Poly glycolic acid92 Gelatin98

Hydroxyethyl methacrylate (HEMA)93 Collagen99,100

Methyl methacrylate (MMA)93 Alginate101,102

Poly propylene fumarate (PPF)94 Chitosan103

Poly(dioxanone)95 Hyaluronoc acid104

Poly(e-caprolactone)95 Mussel proteins105

Poly(trimethylene carbonate) copolymers96 Elastin106
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components as the underlying matrix. Li and associates have
shown that cardiac cells can attach to scaffolds to form contractile
cell polymer constructs. They constructed a viable cardiac graft
that contracted spontaneously in culture conditions.119 Bursac
and coworkers made electrophysiologic studies and comparison of
the constructs in a cell-polymer bioreactor model system with
native cardiac tissue.120 A research team led by Eschenhagen
successfully induced a long-term stretch to cultured cardiomyo-
cytes. These studies were able to focus on the important features
of cardiac diseases (such as myocardial hypertrophy) associated
with heart failure.121-123

Some investigators have attempted to seed and grow cardio-
myocytes in a three-dimensional scaffold material to develop an
implant for implantation onto the scar tissue. Kofidis et al. and
Zhao et al.124,125 have used a commercially available collagen
scaffold and studied the growth of cardiomyocytes to develop
a contractile bioartificial myocardial tissue. Gonen-Wadmany
et al.126 studied the cellular organization of cardiomyocytes within
a three-dimensional hydrogel scaffold. Naito et al.127 studied the
growth of fetal rat cardiac cells in thermo responsive artificial
extra cellular matrix, poly (N-isopropyl acrylamide)-grafted gelatin
(PNIPAM-gelatin) scaffold. Sakai et al.128 have studied the growth
of cardiomyocytes in vitro in gelatin sponge and observed potent
inflammatory reaction after 4 weeks of implantation due to
dissolution of the sponge. McDevitt et al.129 examined spatially
organized cardiomyocyte cultures on biodegradable, elastomeric
polyurethane films patterned by micro contact printing of
laminin lanes.

Role of cell adhesion in tissue engineering. An ideal tissue
engineering scaffold should provide a substrate for transplanted
cell adhesion. This will favor the localization of the cells in vivo,
and serves as a stage for the formation of new tissue masses by
the integration of transplanted cells and the corresponding host
cells in the niche.130 Within the adhesion molecules, a defined
spectrum of bioactive molecules, such as ligands for adhesion
receptors, functional parts of natural growth factors, cytoskeletal
elements, hormones and enzymes or synthetic regulators of cell
exist. These are incorporated in defined concentrations and
spatial distribution against a bioinert matrix. It would inspire the
cells to orchestrate the host response toward the transplanted cells
to initiate vascularization, to prevent anoikis, to improve their
survival and proper functioning in the host environment.131

One of the two main strategies for the design of biocompatible
artificial implants modulating the cell-material interactions is to
create an inert surface hindering the adsorption of proteins
and adhesion of cells. And this can prevent the activation of the
immune system, blood coagulation, thrombosis, extracellular
matrix deposition and other biochemical interactions. This appro-
ach is exploited for the engineering of blood-contacting devices
including heart valves, smooth bioinert vascular prostheses,
catheters for hemodialysis, myocardial implants, vesicles for thera-
peutic drug delivery and so on.132,133 The second and the more
general and advanced strategy aims at generation of materials
promoting attachment, migration, proliferation, differentiation,
long-term viability and desired functions in a controlled
fashion. These materials can be constructed “two-dimensionally
or three-dimensionally” with their surfaces colonized by cells of

Figure 4. Essential characteristics of an ideal tissue engineering scaffold.
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interest for the designing of a hybrid bioartificial organ. In the
long run the artificial support would be reorganized and resorbed
gradually by growing cells and subsequently replaced by the
newly formed extracellular matrix and differentiated cells to
restore fully functional native tissue existing in the organ prior
to damage.134-136

Several research groups have generated scaffold materials
having better adhesive properties composed of natural polymers
such as collagen.137 Promising results in the development of
collagen-based matrix seeded with beating cardiomyocytes having
improved adhesive property, morphology and contractile func-
tion, were developed. These patches were studied extensively in
animal models by Zimmermann et al. The patch could survive
with beating cells for eight weeks after engraftment on the heart
of immunosuppressed rats.138-140 Similar approaches and results
were obtained using alginate, a negatively charged polysaccharide
from seaweed, based scaffolds by Cohen et al. They observed
an intense neovascularization when compared with the control
group.141

A wide variety of naturally derived or synthetic polymers, to
which adhesion is regulated by adsorbed proteins, are currently
being used as cell vehicles due to their intrinsic cell binding
capabilities.142 Synthetic peptides mediating adhesion can also be
presented to cells as self-assembling hydrogels coupled with their
side chains to polymer backbones or as components of synthetic
proteins consisting of the cell interactive domains.143 The utility
of cell adhesion approaches should be highly specific; otherwise
it can dramatically alter the cell response and enhance or diminish
processes such as proliferation or differentiation. Besides the
chemistry of the cell-material interface, its mechanics are also
recognized to play a key role in the cell response. The stiffness of
the adhesion substrate in vitro can control the differentiation of
adult tissue-derived progenitor populations.144,145 However, the
features of the types of cell population (primitive or committed
cell populations) is unobvious.146

Controlling the adhesive cues presented to transplanted cells
has an impact on their survival and the formation of new tissue
structures or regeneration of damaged tissues. Introduction of
hydrogel into the injured site presents specific adhesive molecules
of desirable patterns for promoting the formation of complex
tissue-specific structures.147 Local angiogenesis in implantable
matrices also can be improved by accelerating the homing of
progenitor cells via covalent fixation of adhesion molecules that
interact with the cell membrane protein. The molecule L-selectin,
was proposed recently to be an excellent candidate for improving
local angiogenesis.148 The attachment of mesenchymal cells to
artificial scaffolds can be achieved by the modification of the
scaffold with adhesion molecules or associated with growth
factors.149

For obtaining endothelial cell-specific adhesion, covalent
bonding of synthetic peptides based on the receptor-binding
domains of the cell adhesion proteins on to the graft material is
required. For example integrins synthesized and expressed on the
surface of the endothelial cell will recognize and bind to the
tripeptide Arg-Gly-Asp (RGD).150 In vitro endothelial cell adhe-
sion, spreading, and growth on RGD attached to starch-coated

polystyrene and a fibronectin-coated surface was studied by
Holland et al.151 A similar approach was made by Hubbell. They
immobilized a synthetic tetrapeptide containing the sequence
Arg-Glu-Asp-Val (REDV) on the nonadhesive glycophase glass
and polyethylene terephthalate modified with polyethylene glycol
and observed the attachment and uniform spreading of the
endothelial cells. It was found to be nonthrombogenic also.
Fibroblasts, vascular smooth muscle cells and platelets failed to
do the same.152,153

Role of vascularization in tissue engineering. The tissue
engineering enables delivery of associated growth factors to the
specific site of injury mostly from the impregnated scaffolds or
matrices. Still, matrix degradation and subsequent diffusion-based
delivery systems with pre-programmed kinetics are appealing
for growth factor delivery. These can provide controlled and
sustained release for tunable times.154,155 However, in certain
situations there is a need for delivery systems that respond to local
environmental signals or externally applied cues in order for
controlled release. This discharge on demand can be offered by
the introduction of stimuli-responsive components into the
delivery systems or scaffold. Various biotic and abiotic factors
like pH, temperature, enzymes and ionic strength that can cleave
a cross-linker were adopted to immobilize growth factor, drugs
or ions or other signals. These factors will trigger the cleavage
of an engineered substrate. Light, electric or magnetic fields,
ultrasound, etc., can also regulate the release of growth factors.156

One of the most significant requirements for a tissue engineer-
ing scaffold is its vulnerability to induce vascular infiltration.157

Once implanted, the engineered heart muscle has to survive the
ischemic period until a few new vessels invade the graft to
maintain viability, integrity and function. Implanted cardiomyo-
cytes are very sensitive to ischemia and this may lead to necrosis
and apoptosis. For proper regeneration a myocardial tissue
engineered graft requires persistent and consistent neovasculariza-
tion or angiogenesis.

The molecular signals released by the grafted cells and the
host cells will determine the extent of angiogenesis at the site of
implantation. The process of vasculogenesis can occur through
either sprouting or nonsprouting mechanisms. The sprouting
angiogenesis involves the branching of new capillaries from
preexisting vessels. The nonsprouting mechanism results from
the hematopoietic precursor cells incorporated into the growing
vascular bed. The signaling factors like vascular epithelial growth
factor (VEGF), basic fibroblast growth factor (bFGF) and platelet-
derived growth factor (PDGF) are the key players of the scene
to stimulate endothelial cell proliferation, migration and blood
vessel formation.158,159 Therefore, it is preferable to incorporate
various angiogenic factors into the bioengineered tissues to
promote blood vessel growth.

Basic fibroblast growth factor (bFGF)-2 is a member of the
FGF families of heparin-binding growth factors. FGF-2 exerts
its neovasculogenic function through the interactions with
various endothelial cell surface receptors, including tyrosine
kinase receptors and integrins. A diverse array of free and
extracellular matrix-associated molecules including MAPK via
Pritein Kinase C and p21, p53 and other cell cycle regulators are
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also involved.160,161 In addition, FGF-2 associates with VEGF
and cytokines to modulate blood vessel growth in post-infarcted
heart.162

VEGF expression is mediated through HIF-1 in ischemic
tissues163 and in turn is a regulator of SDF-1 and other major
growth factor signals involved in neovascularisation.164 VEGF
signaling aids in the retention of progenitor cells in a prevascular
niche of the ischemic tissue, which is necessary for the proper
development of blood vessels.165 VEGF family of proteins is also
thought to stimulate platelet-derived growth factor receptors
(PDGF) and thus regulate endothelial tip cell and pericyte
recruitment to ischemic sites, which plays a crucial part in
vascular permeability and stabilization.166 Pre-vascularization of
the implanted scaffold prior to cell seeding167 and growing of
endothelial cells can enhance myocyte survival rate and induce
a spatial organization in 3D configuration into the bioengineered
tissues.168

Summary and Future Directions

Regeneration of myocardium using regenerative therapy involving
various cells is promising. Still, encountering challenges and risks
like cardiac arrythmias, calcifications, scarring, teratoma and other
associated complications have to be rectified. Development of
an efficient and reproducible method to control and direct
differentiation of stem cells to the desired cell type in vitro is more
relevant and needed. A tissue engineering approach on the proper

handling of the cytosolic calcium ions on the infarcted
cardiomyocyte has to be initiated. Cytokines and growth factors
have an important role in the remodeling process of infarcted
myocardium. But the short half-life of growth factors is a major
challenge. So the sustained release of growth factors is appreciated
since the tissue healing mechanism persists for weeks to months.
It is also essential to have spatially and temporally orchestrated
distributions of several growth factors for the regenerating tissues.

For the cardiac tissue engineering, the ideal cardiac tissue
construct should display functional and morphological properties
of native heart muscle and remain viable after implantation.
Mechanical, electrical and functional integration into the host
organ should result in improved contractile function of diseased
myocardium. So the construct should maintain its contractibi-
lity, electrophysiology, mechanical strength, flexibility and should
meet several stringent criteria like biocompatibility, resistance to
stress and strain, sterilizablity and maintain the biomechanical
properties and dimensional stability until the functionally active
extra cellular matrix is regenerated. Unfortunately, such an ideal
biomaterial fulfilling all these qualities has not been developed
yet. Novel biochemical and molecular concepts and approaches
for the betterment of cell adhesion-based strategies from natural or
artificial or the combination of both on cardiac tissue engineering
have to be evolved. Recent advances in biochemistry and material
science have shown improved cell-matrix interactions by coupling
adhesive molecules and growth factors to achieve efficiency in the
tissue engineering of the heart.
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