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Abstract

In fragment-assembly techniques for protein structure prediction, models of protein structure are 

assembled from fragments of known protein structures. This process is typically guided by a 

knowledge-based energy function and uses a heuristic optimization method. The fragments play 

two important roles in this process: they define the set of structural parameters available, and they 

also assume the role of the main variation operators that are used by the optimiser. Previous 

analysis has typically focused on the first of these roles. In particular, the relationship between 

local amino acid sequence and local protein structure has been studied by a range of authors. The 

correlation between the two has been shown to vary with the window length considered, and the 

results of these analyses have informed directly the choice of fragment length in state-of-the-art 

prediction techniques. Here, we focus on the second role of fragments and aim to determine the 

effect of fragment length from an optimization perspective. We use theoretical analyses to reveal 

how the size and structure of the search space changes as a function of insertion length. 

Furthermore, empirical analyses are used to explore additional ways in which the size of the 

fragment insertion influences the search both in a simulation model and for the fragment-assembly 

technique, Rosetta.
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INTRODUCTION

Fragment-assembly techniques currently present the state-of-the-art for de novo prediction. 

A range of methods exist differing in the fragment size, energy functions, and optimization 

heuristics used. Some of the best-known methods include Fragfold,1 Simfold2 and Rosetta.3
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The key idea behind fragment-assembly techniques is to take advantage of local sequence-

structure correlations that can be observed in the Protein Data Bank (PDB).4 By using 

fragments from such structures as the building blocks during model construction, local 

propensities of the amino-acid chain are accounted for. This reduces the size of the search 

space. It is also thought to render the optimization less sensitive to inaccuracies in the 

energy function used, as local interactions are taken into account by the fragments and the 

energy function can focus, predominantly, on the description of nonlocal interactions.5

Current fragment-assembly techniques do not reliably scale to longer proteins (≥70 residues) 

and/or those with long-range contacts. However, it remains unclear whether the key limiting 

factor is the accuracy of the energy function, the effectiveness of the search heuristics, the 

quality of the fragment libraries used, or a combination of these three factors.6–10 Better 

insight into the working mechanisms and limitations of fragment-assembly techniques will 

be a fundamental prerequisite for resolving this conundrum and for enabling the further 

improvement of these techniques.

THE DUAL ROLE OF FRAGMENTS

The relationship between local amino acid sequence and local protein structure has been 

studied extensively in the structural biology literature. Analysis for a range of different 

fragment lengths has indicated a peak in local sequence-structure correlation for an average 

length of 10 residues,11 and this has motivated the choice of fragment length in some of the 

first fragment-assembly techniques.3,12 It seems reasonable to assume that the assembly of a 

near-native structure from fragments becomes easier as the quality of the fragment libraries 

(i.e., how closely and to what proportion fragments for a given position approximate the 

corresponding segments of the native structure) increases, and prediction accuracy is 

therefore thought to be influenced directly through this route.

A range of alternative fragment-assembly methods have been developed since, and these all 

share core features regarding the use of fragments. Before the optimization, fragments are 

derived for a given window length. The resulting fragment library is then used for the 

construction of models in the actual optimization process, and, typically, an entire fragment 

is inserted at a time. There are some differences between methods regarding the window 

length used, and a few methods make use of several different fragment lengths.4

A common factor in almost all existing methods is that the fragment length(s) used also 

define the size(s) of the moves that are possible during the optimization (an exception to this 

is Profesy13). It is well known from the computational literature that the size and frequency 

with which variation operators are used can have important effects regarding the 

performance of a heuristic optimiser: too large or too frequent perturbation may prevent the 

convergence of such techniques, while too small or infrequent perturbations may impede the 

escape from local optima (see, e.g. Refs. 14–17). In addition to the quality of a given 

fragment library, we would therefore expect the size of the moves used in a fragment-

assembly method to have an important effect on the quality of the models obtained. In 

particular, it is possible that a fragment length that defines a fragment library of reasonable 

quality may be unsuitable for the use in an optimiser due to inadequacies of the move size in 
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the context of effective optimization. Although existing methods have typically used the 

same fragment length during the generation of the fragment library and the actual 

optimization, fragment length and move size need not strictly be identical, and alternative 

setups are possible. Here, we differentiate between these two different roles of fragments 

and explore the effects of independently varying fragment length and move size. Although 

our focus is on the Rosetta method, the key insights are also relevant for other techniques 

based on fragment assembly.

METHODS

We use three different lines of investigation to illustrate the separate effects of fragment 

length and move size. All three of these are described in the following.

Rosetta ab initio

“Rosetta ab initio” is a fragment-assembly technique for de novo structure prediction that 

has performed well in the Critical Assessment of Protein Structure Prediction (CASP) 

experiment.18 Rosetta comprises two key protocols. The first of these is its low-resolution 

protocol during which coarse-grained models of protein structure are built. This is where 

extensive exploration of the conformational search space is taking place. The set of decoys 

obtained in this way are fed on to Rosetta's full-atom protocol, which attempts to refine the 

decoys and to identify the most promising models. Here, we are concerned with Rosetta's 

low resolution protocol, which is the part of the software that uses fragments as building 

blocks during the search.

Rosetta's low resolution protocol uses a simplified representation of a protein: side-chains 

are represented by their centroids and idealized bond lengths and bond angles are used. The 

remaining degrees of freedom are the three backbone torsion angles (φ, ψ, and ω) per amino 

acid. In this low resolution representation, for an amino-acid sequence of length N, a 

candidate structure can be unambiguously described by N angle triplets, or a string of length 

3 × N.

Rosetta starts its search from the linear chain. During the optimization, Rosetta attempts to 

replace individual segments of the solution string by the angles of structural fragments from 

the PDB. A suitable library of fragments for each amino-acid position is selected before the 

run based on sequence profiles and secondary structure predictions for the input sequence 

(see Refs. 5 and 19 for more detail).

Here, the fragment library size F refers to the number of fragments available for insertion at 

a given position in the protein chain. The fragment length L ≤ N refers to the actual window 

length used for the generation of the fragment library.

The selection of insertion points is possible at any (but the last few) amino-acid position in 

the chain and fragments are allowed to overlap. In other words, the triplet of torsion angles 

for a given amino-acid position presents an entity, that is the three torsion angles can only 

take values that derive from the same fragment. In contrast, neighboring triplets may derive 
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from completely different fragments (see Fig. 1). The only way in which continuity between 

neighboring residues is encouraged is through the use of fixed length fragment insertions.

In the following, we will use the term, angle triplet, to refer to any set of parameters {φ,ψ,ω} 

that derives from a specific fragment for a given position in the chain. Angle triplets are 

further classified into starting triplets, end triplets and central triplets, dependent on whether 

they derive from the first, last, or a middle position of an individual fragment.

Rosetta uses a knowledge-based energy function to score the quality of a candidate 

conformation. This function consists of a linear-weighted sum of 10 energy terms, which 

reflect different aspects of protein structures, including steric repulsion, amino-acid 

propensities (statistical potential), packing, and secondary structure terms. Rosetta's low 

resolution protocol proceeds through four different stages, as illustrated in Fig. 2. These 

stages differ in the weights of the energy components and the size of the fragments used.

Rosetta only attempts a single fragment insertion at a time. Acceptance of a given insertion 

is decided based on the Boltzmann criterion20 using a fixed temperature of T = 2. Only 

when Rosetta repeatedly fails to find a successful insertion (after 150 successive failed 

attempts), the temperature is increased temporarily, until an acceptable move has been 

identified.

Empirical study using a modified version of Rosetta

We define the move size M ≤ L as the size of the insertion (move operator) used during the 

optimization. In our experiments, M can be different from the fragment length L and we 

make the simplifying assumption that M ≤ L. For a given move of size M ≤ L, an actual 

insertion is then defined as follows (see Fig. 3).

1. A random position i in the chain is picked uniformly at random with 1 ≤ i ≤ N − L 
+ 1.

2. A random fragment fij for position i is picked with 1 ≤ j ≤ F.

3. Within this fragment, an offset δ for the insertion is selected uniformly at random 

with 0 ≤ δ ≤ L − M.

4. For all positions k with i + δ ≤ k ≤ i + δ + M − 1, the corresponding angle triplets 

from the fragment fij are inserted. Hence, the length of the insertion is M.

We conduct experiments within Rosetta that are targeted at assessing directly the individual 

impact of move size versus that of fragment size. For this purpose, experiments are run on a 

benchmark set of 49 proteins (see Supporting Information). For each target protein, 

fragment libraries of lengths L ∈ {3,6,9,12,15,18} are generated (with homologues 

excluced). For a given choice of fragment library size L, we then consider different move 

lengths M with 3 ≤ M ≤ L. F is set to its standard value of 25. In other words, a specific 

fragment length L and move size M are fixed for a given run of Rosetta. For each setting of 

fragment length and move operator, the first two stages of Rosetta's low-resolution protocol 

(stage 1 and stage 2) are run 100 times and the distribution of final energies and RMSD 

values (across all backbone atoms) are compared using box-plots. We also relate these 

results to the quality of the fragment libraries. The measure used to assess the quality of 
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individual fragments is the Euclidean distance (in torsion space) between a fragment and the 

corresponding section of the native structure. Boxplots are used to show the overall 

distribution of distances for a given fragment library where F = 25.

Markov chain analysis

Theoretical analysis is used to determine the influence of various parameters on the size and 

the structure of the search space. In particular, we focus on the influence of the length of a 

protein N, the fragment length L, the fragment library size F, and the move size M. A naive 

upper bound of the size of the search space can be derived using the first three parameters 

only: given a fragment length of L and a fragment library size of F, the number of available 

angle triplets at each position 1 ≤ i ≤ N is at most LF. Assuming free recombination of the 

triplets in these positions, a bound on the overall size of the search space is then given as S = 

(LF)N. There are several reasons why this presents a very loose upper bound on the size of 

the search space only.

In fragment-assembly, as implemented in Rosetta, the number of available triplets decreases 

at both ends of the chain, due to the smaller number of fragment insertions that can affect 

these positions. For a fragment length L and a fragment library size F, the number of 

available angle triplets for position 1 ≤ i ≤ N is given as A(i) = min(L,N − L + 1,d(i)) × F, 

where d(i) = min(N − i + 1,i) is the distance from either end of the chain. Taking this into 

account, the upper bound on the size of the search space reduces from S to .

Furthermore, fragments for neighboring positions are likely to be derived from the same 

structures, and so fragment libraries contain some redundancy, which increases for larger 

fragment sizes. Thus, on real data, A(i) provides an upper bound on the number of distinct 

angle triplets available per position. However, as the corresponding reduction in the size of 

the search space is protein-specific, we do not consider it here. We do find that for real 

fragment libraries the number of unique angle triplets available per position does, generally, 

increase with L and F (despite a simultaneous increase in the proportion of redundant 

triplets), but at a rate much slower than A(i) (results not shown).

Finally, the use of fixed length fragment insertions M as the only move operator means that 

the size of the accessible search space is smaller than the product of possible values per 

position. This holds for the special case of M = L (as used in standard Rosetta), but also if 1 

< M < L. In particular, certain combinations of triplets are impossible to obtain. Let us 

consider the case of L = M = 9. If we move from position 1 to position N along the solution 

string, a central triplet derived from fragment f1 can never be succeeded by a central triplet 

from fragment f2 with f1 ≠ f2; we can say that this represents an invalid transition. In 

contrast, a change of fragment becomes possible if and only if the triplet from f1 is an end 

triplet or the triplet from f2 is a starting triplet. These correspond to valid transitions.

This concept of valid and invalid transitions may be generalized to the case of arbitrary M 
and L with M ≤ L. In particular, we represent the process of “reading” a given solution 

string (as we are traversing the constructed chain from position 1 to position N) as a time-

inhomogeneous Markov chain. Our aim is to use this Markov chain to assess what fraction 
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of solution strings leads to valid transitions only; the size of the accessible search space is 

then obtained by multiplying this fraction by S☆.

In our Markov chain model, invalid transitions lead to immediate absorption in a single 

absorbing state X. In contrast, the remaining states define the different states that can be 

reached through a succession of valid transitions. Each of these states is labeled uniquely by 

two different properties of the angle triplet that has last been read: its position l within the 

original fragment of length L, and an upper bound m on its position within the current 

insertion. From the definition of the insertion model, it follows that the set of states is given 

as {l.m|1 ≤ l ≤ L ∧ l − (L − M) ≤ m ≤ l}. The total number of states of the Markov chain is 

then given as LM − (M − 1)M + 1.

Next, we proceed to define formally the transition probabilities between these states. 

Specifically, we can identify three different types of valid transitions between angle triplets 

that can be described as transitions between pairs of states l.m.

• If the end of an insertion has not been reached, we can always proceed to the next 

angle triplet within the same fragment. The number of available angle triplets at 

position i is given as A(i), and, intuitively, only one of these will be the triplet that 

derives from the current fragment. Formally, for the set of M − 1 states {l.m} with 

m < M (and, by definition, l < L), the probability of a transition to the state (l + 1).

(m + 1) is therefore given as .

• If the end of an insertion has not been reached, the only alternative valid move is a 

transition to the start of a new insertion. Formally, for the set of M − 1 states {l.m} 

with m < M, the probability of a transition to each of the L − M + 1 states in the set 

{k.1} with k ≤ L − M + 1 is defined by

• If the end of an insertion has been reached, we can proceed to any of the angle 

triplets available at the next position. Formally, for the set of L − M + 1 states 

{l.M}, the probability of a transition to each of the L − M + 1 states {k.M} with M 
≤ k ≤ L is given as

The probability of a transition to each of the M − 1 states in the set {k.k} with 1 ≤ k < M is 

given as
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From the above, the probabilities of invalid transitions (i.e., absorption in the state X) can be 

derived directly. If the end of an insertion has not yet been reached (i.e., for the set of states 

{l.m} with m < M) the probability of direct transition to X is given as pl.m→X(i) = 1 − 

pl.m→k.1(i) − pl.m→(l+1).(m+1)(i). If, the end of an insertion has been reached (i.e., for the set 

of states {l.M}), the probability of direct transition to X is zero: pl.M → X(i) = 0.

Note from the above definitions that the Markov chain is time-inhomogeneous as transition 

probabilities do not depend on the current state of the process only, but also on the number 

of transitions that have previously been observed (i.e., the position i in the chain assumes the 

role of time). In particular, the probabilities change as a function of position i at the 

beginning and at the end of the solution string, due to the more restricted set of fragment 

insertions available for these positions [see the definition of A(i)]. For L ≤ i ≤ N − L + 1, the 

transition probabilities remain constant.

In Figure 4, we show the Markov chain for the simple case of M = L = 3, which has L + 1 

states only. This describes the transitions that may be obtained using Rosetta's standard 

insertion model and a fragment length of three residues, as used in Stage 4 of Rosetta.

Note that the number of states depends on the size of the fragment L and the move operator 

M only, whereas transition probabilities are affected by M, L, F, and i. The Markov process 

always starts in state S = 1, as, by definition of the fragment insertion process, the first angle 

triplet in the chain is always a starting triplet and any triplet available for this position can be 

accepted.

For the special case of M = 1, all triplet combinations are accessible (the probability of 

transition to state X is 0) and the size of the search space equals S☆ above. For M ≥ 2, the 

portion of the accessible search space for a string of size N corresponds to , where 

 is the probability of absorption in state X after N − 1 transitions, starting in state 1.1. 

Given the set of transition matrices P(i) for this Markov chain (the entries of which can be 

derived directly from the above definitions),  is obtained from , 

which gives the probabilities of moving between any pairs of states after N − 1 transitions. 

The size of the accessible search space for a string of size N is then given as 

. An implementation using the GNU multiple precision arithmetic library 

was used to calculate the size of the accessible space for different choices of L, M, F, and N. 

The correctness of the model was verified through comparison to the number of unique 

strings obtained through multiple insertions (only feasible for small L, M, F, and N, results 

not shown).
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Empirical study using a simulation model

A simple simulation model is derived to study the influence of fragment quality on optimal 

move size, in a controlled manner. The simulation model uses a randomly generated target 

string consisting of N integers with values in the interval [0,9]. A fragment of length L for 

each position 1 ≤ a ≤ N is then generated by copying the corresponding section [a,a + L − 1] 

of the target string. During this process, noise is randomly introduced, that is each position is 

replaced by a different integer (chosen uniformly at random within [0,9])] with a probability 

of n. This process is repeated F times, resulting in a fragment library of size F for each 

position.

This setup is used to obtain random target strings and the corresponding fragment libraries 

for N = 100, n ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, L ∈ {1, 3, 6, 9, 12, 15, 18}, 

and F ∈ {1, 5, 10, 25, 50, 100, 200}. A simple optimiser is then used to minimize the mean 

squared error (MSE) between the model and the target string. The optimization starts with a 

random solution (generated uniformly at random). In each iteration, a single insertion (of 

length M ≤ L) is applied to perturb the current solution. The resulting mutant solution 

replaces the current solution, if and only if it decreases the MSE. Fragment insertions are 

implemented analogously to those in Rosetta, with the difference that sampling probabilities 

are maintained uniformly along the entire string.

We should underline that this model makes a number of simplifying assumptions that reduce 

its complexity compared to an actual method for protein structure prediction. First, the 

objective function used is much simpler than the knowledge-based energy functions used in 

protein structure prediction (in particular, it is decomposable). Second, we use a discrete 

representation, with a maximum of 10 different values per position (whereas each position 

in Rosetta corresponds to a torsion angle triplet that exhibits a continuous range of values). 

Third, we use a very basic model of noise where all fragments are of similar quality (as they 

are obtained for the same incidence of noise) and the noise of neighboring fragments is 

uncorrelated. As a direct consequence of our noise model the fragment length L no longer 

affects the quality of the fragments. In other words, in our simulation model, the role of L is 

reduced to providing an upper bound on M and determining the size of the search space 

(whereas L has important implications regarding the quality of the fragment library in a real 

prediction scenario21). Although these assumptions are clearly overly simplistic for the 

fragment libraries encountered in protein structure prediction, the simulator does allow us to 

isolate the relationship between fragment quality and optimal move size.

RESULTS

Our key aim in this article is to differentiate between two core parameters of fragment-

assembly approaches, which have traditionally been treated as one: the fragment length L 
and the move size M. Both parameters influence the size and structure of the search space, 

and we aim to better understand these individual effects, and how the choice of these 

parameters may impact on the performance of heuristic optimization techniques, as used in 

state-of-the-art prediction methods. In the following, we first consider the impact of 

fragment length and move size from a theoretical perspective. We then discuss how these 
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theoretical results relate to observations from empirical analyses using different fragment 

lengths/moves sizes in Rosetta and in our simulation model.

Size of the search space

In the section on “Markov chain analysis”, we have derived a Markov chain model to 

calculate the size of the search space for a given choice of fragment length L, move size M, 

fragment library size F, and protein length N. Selected results obtained from this theoretical 

analysis are given in Figure 5. Specifically, panels (a) – (d) show how the size of the search 

changes as a function of protein length N for a number of different settings of L, F, and M. It 

is clear that, as protein length increases, the search spaces grows exponentially for all 

choices of L, M, and F, and that all three of these parameters contribute to determining the 

asymptotic growth of the search space. For example, Figure 5(a) shows that, for a fixed 

fragment length L and move size M, the size of the search space increases with increasing F. 

Similarly, for a fixed fragment library size F and move size M the search space increases 

more quickly with increasing L [see Fig. 5(b)].

Figure 5(c,d) provide the most interesting insight. Figure 5(c) isolates the effect of varying 

the move size M only. Given a fixed fragment length L and fragment library size F, the rate 

of growth of the search space increases rapidly with decreasing M. Figure 5(d) shows the 

effect of varying L and M together using Rosetta's standard restriction of L = M. Our model 

shows that, for this setting, the effects of L and M [see Fig. 5b,c] counter-balance each other, 

and that the rate of growth remains identical for different choices of L = M. Large choices of 

L = M do result in a slightly reduced size of the search space, and this trend is opposite to 

what would be derived from the naive upper bound S☆, which does not consider the effect 

of the move size M.

The reduction of the search space through the use of fragments has commonly been cited as 

one of the reasons behind the success of fragment-assembly techniques (see Ref. 5 and 

references therein). Our mathematical analysis shows that, for standard methods of 

fragment-assembly (where L = M), an increase in fragment length results in a net reduction 

in the size of the search space. However, as the relative change in the size of the search 

space is surprisingly small, we expect this aspect of fragment length to have little impact 

regarding the actual performance of the search. Conversely, our analysis shows that 

independent variation of L or M leads to dramatic differences in the size and the asymptotic 

growth of the search space. In the following empirical sections, we will establish to what 

extent performance differences observed for different choices of L and M in Rosetta and our 

simulation model can be related back to differences in the size of the search space.

Influence of fragment quality

The section on “the dual role of fragments” discussed that, the choice of the move size M 
can be expected to affect the convergence of heuristic optimisers. These effects arise in 

addition to the changes in the size of the search space and are not captured by our Markov 

chain analysis. We thus proceed with an empirical investigation aimed at exploring how 

optimal move length changes as a function of the difficulty of the optimization task.

Handl et al. Page 9

Proteins. Author manuscript; available in PMC 2013 December 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



We argue that the difficulty of constructing accurate models by fragment assembly increases 

as the quality of the individual fragments decreases. For example, if all fragments provide 

exact or very good matches to the corresponding regions of the target protein, they can 

simply be “strung together” to obtain accurate models. The optimization of an energy 

function is not strictly necessary in this simplistic setting. Evidently, this situation changes if 

individual fragments provide poor approximations to the target protein only. We might then 

still be able to obtain accurate models from the thorough reassembly of the original 

fragments. However, the identification of these solutions will require the use of an accurate 

energy function and an effective optimization method that is able to identify the minima of 

this function. It is at this level that we expect move size to become important, in line with 

previous research: careful consideration of move size in the optimization literature (see e.g. 

Refs. 14–17) suggests that large move sizes may be detrimental for effective optimization.

The results from our simulation model are summarized in Figure 6 and confirm these initial 

hypotheses. Specifically, Figure 6 summarizes the results for two different settings of 

fragment library size F and six different settings of L, using the standard restriction that 

fragment length and move size are identical (i.e., M = L). The figures also include data for 

selected additional runs, where M and L differ (L = 18 and M = 3). Considering the graphs 

obtained for different settings with L = M, the results confirm that large moves are only 

effective for very high quality fragments. For example, the setting of L = M = 18 is optimal 

for a noise level below 10%. As noise increases in our simulation model, the best 

performance is observed for increasingly smaller insertions. For example, the setting of L = 

M = 9 appears to be optimal for noise levels around 20% and a setting of L = M = 6 

performs best for noise levels around 30%. For F = 25, the smallest possible move size of M 
= L = 1 becomes optimal, once a noise level of 70% has been reached. These results suggest 

that the effectiveness of different move sizes changes with the quality of the fragment set 

used.

One could argue that differences in the size of the search space may also contribute to the 

performance differences observed. To reject the null hypothesis that performance 

differences arise due to changes in the size of the search space only, we therefore consider 

runs with identical settings of M, but different choices of L. As established previously, the 

only factor differentiating such runs (in our simulation model) is a change in the size of the 

search space (see the section on the “empirical study using a simulation model”). In Figure 

6, comparison of the results obtained for L = 18, M = 3 and L = M = 3 provides evidence of 

some performance differences that result directly from changes in the size of the search 

space. Specifically, Figure 6(a) shows that, for F = 5 and a noise level above 40%, the 

setting of L = 18, M = 3 outperforms the setting of L = M = 3. It appears that, under these 

conditions, the optimization directly benefits from the access to the larger parameter space 

available for the setting L = 18, M = 3. However, Figure 6(b) illustrates that this difference 

between runs with identical M, but different L, becomes negligible when considering 

fragment libraries of sufficient size: for F = 25, there is almost no difference between the 

results obtained for L = 18, M = 3, and L = M = 3. This allows us to conclude that the 

performance differences observed in Figure 6(b) arise primarily as a consequence of the 

optimiser's ability to converge, given a specific choice of the move size. However, it is 

worth pointing out that, in a real prediction scenario, the number of values available per 
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position is less limited (not discrete) than in our simulation model. In Rosetta, performance 

differences arising from differences in the size of the search space may therefore continue to 

have some impact on performance for library sizes of F = 25 and beyond.

The effect of move size and fragment length in Rosetta

The experimental results obtained for Rosetta are more complex to interpret than our 

simulation results above. This is because the software consists of a number of different 

components whose interplay is crucial in obtaining good prediction performance. The 

dependencies between these different algorithm components can make it difficult to isolate 

and analyse the effect of individual changes. For example, the temperature and weight 

settings in Rosetta are optimized for the current energy terms, and the rigorous evaluation of 

a new energy term might require changes to these parameters. Similarly, it is likely that 

optimal temperature or weight settings may vary with fragment size.

In the following subsections, we will aim to illustrate and summarize the key trends 

observed in Rosetta for the use of different fragment lengths and move sizes. Complete 

results across the entire test set of 49 proteins are provided in Supporting Information.

RMSD to the native—Significant variations in performance are observed for small- to 

medium-sized beta and alpha-beta proteins. Figures 7 and 8 show the distribution of the 

RMSD to the native for four such proteins. The figure illustrates that, for these proteins, 

both fragment length and move size contribute to the performance of the algorithm, albeit in 

different ways.

First, we consider the difference between runs of Rosetta with the same (fixed) move length 

(displayed in the same color in Figs. 7 and 8), but where insertions have been derived using 

a different fragment length. This should allows us to assess the influence of fragment length 

L: recall that, in Rosetta, both the size of the search space and the identity of the fragments 

will vary as a function of L. For a number of proteins, we observe distinct differences that 

arise due to the fragment length L used. For example, for 1ctf, a move size of nine works 

significantly better in combination with a fragment length of 18 than with a traditional 

fragment length of nine (compare the yellow boxes in Fig. 7). This is despite the expected 

increase in the size of the search space for L = 18 [see Fig. 5(b)] and appears to indicate that 

the fragment library for L = 18 captures additional structural information that is not captured 

by the library with L = 9.

Overall, the results present no clear evidence favoring a single setting of L, as the “optimal” 

fragment length appears to vary for different proteins. However, overall, large choices of L 
(the maximum considered here was L = 18) show a surprisingly robust performance. For the 

majority of proteins, they perform no worse than shorter fragments when used in 

combination with a suitable (usually smaller) choice of move size M. One possible reason 

for this emerges from the analysis of fragment quality (see Fig. 9 and Supporting 

Information), which indicates that, for the fragment libraries considered, the median of 

fragment quality tends to remain quite similar for fragment lengths L ∈ [9,18].
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Second, we consider differences between runs of Rosetta with the same (fixed) fragment 

length, but different move sizes (grouped together in Figs. 7 and 8). This should provide 

information about the impact of move size on the optimization. We observe clear differences 

in RMSD distribution that arise as a result of changes in move size only, and this confirms 

our initial hypothesis that move size should be considered as a separate parameter. For 

example, in Figure 8, a fragment length of L = 18 works best in combination with a small 

move size of M = 6 for PDB code 1tit (a beta protein), whereas it works best in combination 

with large move sizes for PDB code 1fna (a beta protein of comparable size). Our simulation 

results from the previous section suggests that such opposite trends may be caused by 

differences in the quality of the underlying fragment libraries. Analysis of the libraries for 

these proteins confirms that the fragment library for PDB code 1fna contains a larger 

proportion of high quality fragments for all fragment lengths considered (see Fig. 9).

For large proteins, Rosetta often fails to generate good quality predictions, and this is likely 

to be due to problems with the energy function and the sampling protocol used. For these 

proteins, we see little evidence of differences (in terms of RMSD) between the use of 

fragments of different length or of different move sizes (see Supporting Information).

Optimization of energy terms—In addition to RMSD to the native, it is instructive to 

consider also the overall energy scores obtained. Based on our simulation results from the 

section on the “Influence of fragment quality”, we expect small or medium-sized insertions 

to lead to the lowest energy scores, as optimization is at its most effective.

For alpha-helical proteins and alpha-beta proteins with predominantly nonlocal strand-

pairing (see, e.g., the energy distributions obtained for PDB code 1ail, 1ctf, 1a19 in 

Supporting Information), the analysis confirms this expectation: large moves appear to 

prevent convergence and the lowest energy results are usually obtained for small move sizes 

of M = 3 or M = 6. This is likely to indicate that these move sizes provide the most effective 

trade-off between escaping local optima in the protein energy landscape and ensuring timely 

convergence to energy minima.

For beta proteins and alpha-beta proteins with predominantly local strand-pairing (see, e.g., 

energy distributions obtained for PDB code 1acf and 1c8c in Supporting Information) a 

different result is observed, which appears to be counter-intuitive at first sight: the lowest 

energy values are obtained for the use of large fragment in combination with medium to 

large move sets. To understand this phenomenon better, we analyzed individual subscores 

obtained from summing up the statistical potential, the secondary structure terms, or the 

compactness terms individually. We observe that the choice of fragment and move size 

introduces a bias toward specific categories of subscores (see Figs. 10 and 11). In particular, 

large fragments and moves bias the search toward lower scores in the secondary structure 

terms. We believe that the reason for this is that large insertions are more likely to span 

super-secondary structure elements (especially beta-hairpins), resulting in “ready-made” 

building blocks for the search that, individually, lead to good scores, and are easily retained. 

On the downside, their retention, and, more generally, the use of large moves, appears to 

prevent the effective optimization of the statistical potential. There are exceptions to this 

trend, such as the results for PDB code 1hz6 (see Fig. 10) for which the statistical potential 
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and the secondary structure terms are strongly correlated. However, overall, those decoys 

that were generated using small moves tend to score better in terms of the statistical 

potential, which confirms that, as predicted from our simulations, effective optimization/

reassembly of fragments is taking place for these small move sizes. The weaker performance 

of small moves at optimizing the secondary structure terms indicates that the identification 

of high-scoring secondary structure elements “from scratch” remains one of the current 

bottlenecks in Rosetta's sampling process.

Correlation between low energy and RMSD—Regarding the correlation between low 

energies and low RMSDs, we observe the following trends. For alpha-beta and beta proteins 

with local strand-pairing, moves derived from large fragments tend to lead to better 

solutions (see, e.g., PDB code 1ew4 and 1gvp in Supporting Information). This is 

accompanied by low scores in the secondary structure terms (and overall energies) and is 

likely due to the direct use of correct super-secondary motifs, as mentioned earlier. In 

contrast, for beta and alpha-beta proteins with predominantly nonlocal strand-pairing, 

medium sized moves and fragments tend to fare better in terms of the RMSD (see, e.g., PDB 

code 1aiu and 1tul in Supporting Information). For these proteins, the effective optimization 

of the statistical potential appears to translate into an advantage in terms of the RMSD 

distribution.

For alpha-helical proteins, the lower energies obtained for smaller move sizes do not 

necessarily correspond to improvements in the RMSD distribution. In contrast, there is a 

(small) tendency for large move sizes to perform better in terms of the RMSD (see, e.g., 

RMSD distributions for PDB code 1ail and 1cg5 in Supporting Information) and this also 

agrees with previous observations in the literature.18 This is likely to be due to inaccuracies 

in the energy function. As discussed previously, it is our hypothesis that a small move size 

facilitates the thorough re-assembly of fragments, which is of course desirable if the energy 

function is informative. However, it also makes the method more susceptible to deficiencies 

in the energy function.

CONCLUSION

Fragment insertions are one of the key components of fragment-assembly approaches, which 

present the state-of-the-art for de novo structure prediction. We have aimed to disentangle 

and better understand the different ways in which fragment insertions may influence the 

performance of these techniques. Toward this end, we have defined the separate concepts of 

fragment length and move size, and have used theoretical and empirical analyses to 

understand their individual impact.

Recent work has observed that optimal fragment length tends to vary as a function of 

secondary structure type with larger fragments performing better for alpha-helical proteins, 

while beta proteins require smaller fragments. It has been argued that this correlates with the 

relative length of those secondary structure motifs.18 Our combined results suggest that 

there are additional reasons behind this phenomenon.
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First, we argue that differences in fragment quality will lead to preferences regarding the 

best move size. The fragments for alpha-helical regions tend to be of significantly higher 

quality than those for beta sheets3 and this may explain the differences observed in optimal 

fragment length. As shown in our simulation model, assembly of large fragments can be 

expected to quickly lead to good solutions if they provide a very good match to the target 

solution. In the case of alpha-helical proteins, it further appears that the accuracy of the 

energy function becomes a limiting factor and that, therefore, the lack of convergence in 

runs that use large move sizes becomes a desirable side-effect. In contrast, it appears that 

rigorous re-assembly of different fragments and optimization of the energy function is 

required to obtain accurate models of beta sheet regions and particularly those with nonlocal 

contacts. In this setting, small- to medium-sized insertions usually display a better 

performance. This shows that the improved convergence afforded by small move sizes can 

outweigh the disadvantages incurred by the increase in the search space. In fact, among 

equally sized moves, we often observe an advantage for moves that derive from larger 

fragments, which indicates that the models may indeed benefit from the availability of a 

larger (and different) parameter space.

Second, for proteins that include beta sheets, we observe evidence of direct interactions 

between fragment length, move size and the optimization of individual energy sub scores. 

Fragment length and move size strongly bias the search toward particular trade-offs between 

the energy subscores. Interestingly, the variations observed are more pronounced than those 

obtained when adjusting the weights in the energy function directly (results not shown). This 

reveals a strong dependency between these two separate algorithmic components of 

fragment-assembly methods for protein structure prediction.

Our analysis reveals some overall trends that can be useful in informing the setup of Rosetta. 

In particular, large fragment lengths with L > 9 show some promise when used in 

combination with suitable move sizes. For alpha-helical proteins, a choice of a large L (e.g., 

L = 15 or L = 18) in combination with M = L is usually a robust choice, as this avoids 

convergence to false local minima of the potential energy landscape. In contrast, the optimal 

choice of M varies significantly for different alpha-beta and beta proteins. Our advice for 

such proteins would therefore be to use a large fragment length (e.g., L = 15 or L = 18), but 

choose different values of M ∈ [6, L] for different runs. The visualization of individual 

energy scores (as used in Figs. 10 and 11) can be a useful tool in the interpretation of the 

resulting data, as it helps in identifying those settings for which both the statistical potential 

and the secondary structure terms are optimized simultaneously. Because of the interactions 

between fragment/move size and energy subscores, the successful use of different move size 

may require the adjustment of existing scoring functions. For example, the weight settings 

typically used in the third and fourth stage of Rosetta's low-resolution protocol heavily bias 

the search toward secondary structure terms, which (especially for beta proteins) can 

become problematic in combination with large fragment/move sizes.

As a caveat, we would like to add that our results were obtained for fragment libraries that 

were generated with homologues excluded. This factor may contribute to the small 

difference in median fragment quality that we observed for libraries with L ∈ [9,18]. It is 

possible that, in applications where fragment quality varies strongly as a function of L (e.g., 
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due to the inclusion of homologues), the resulting performance advantages for specific L 
will dominate the effects discussed in this article.

Suggestions for future developments

Our results are of particular relevance regarding three key areas of future algorithm design 

in fragment-assembly: (i) the design of improved fragment libraries, (ii) the design of 

effective variation operators, and (iii) the derivation of weights in knowledge-based energy 

functions.

Regarding (i) our results indicate that large fragment lengths (in combination with a suitable 

move size) perform surprisingly well for most proteins. Although further analysis is needed 

to fully understand this result and to reconciliate it with previous work, our results suggest 

that a fragment length L of nine or more residues works best for the large majority of 

proteins considered. Although there is evidence that moves with a size smaller than nine are 

useful during the optimization, these moves appear to be most effective if they are derived 

from larger fragments. There may thus be scope to improve existing techniques by 

maintaining their current move size but moving to larger fragment libraries.

Regarding (ii) our empirical results show that optimal move size varies as a function of 

fragment quality. Fragment quality is known to vary along the protein chain, and the current, 

restrictive use of fixed move sizes is therefore bound to be suboptimal. We find that the use 

of variable moves sizes (deriving from a single fragment length only) shows some promise 

(results not shown). Furthermore, it may be useful to develop methods that attempt to 

estimate automatically the quality of a given fragment library, and use such estimates to 

identify a suitable move size.

Regarding (iii) our results indicate that the move sizes used in fragment-assembly introduce 

strong biases toward particular energy terms. In the past, this dependency may have 

contributed to the difficulty of defining general, accurate weight settings, and our improved 

understanding may help in obtaining more robust parameter settings. Furthermore, move 

size may be used as an additional means of achieving a consistent optimization of all energy 

subscores and of driving the search toward the energy trade-offs desired.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of a short stretch arising from fragment assembly using fragments of nine 

residues. Here, each “block” represents an angle triplet consisting of the three backbone 

torsions φ, ψ, and ω for a given residue. (a) Gives a temporal perspective that shows the 

consecutive insertion of different fragments. (b) Provides a more compact view of the 

relevant information. This memory-less view is adopted within most fragment-assembly 

techniques, that is, information about the origin and the order of insertion of given values is 

discarded. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 2. 
Basic structure of Rosetta's low-resolution protocol (see Ref. 5 for full details). The search 

progresses through four stages, which use different scoring functions. The knowledge-based 

scoring function combines 10 different terms, which are progressively activated (and up-

weighted) as the search progresses. Stages 1–3 use fragments covering nine residues, while 

the last stage uses fragments covering three residues. The term vdw captures steric 

repulsion. The statistical potential consists of the terms env and pair, which capture the 

residue environment and residue pair interactions, respectively. Furthermore, there are four 

terms that describe interactions between secondary structure elements (ss_pair, hs_pair, 
sheet, and rsigma) and three terms related to the density and compactness of structures 

(cbeta, cenpack, and rg). See Table I in Ref. 5 for more details. [Color figure can be viewed 

in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 3. 
Illustration of the three key steps in performing a fragment insertion with a move size of M 
and a fragment size of L.(1) Select the location of the starting triplet; (2) Select the fragment 

from the library for that location; (3) Select the offset and insert the corresponding M angle 

triplets from the selected fragment. [Color figure can be viewed in the online issue, which is 

available at wileyonlinelibrary.com.]
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Figure 4. 
Markov chain describing valid and invalid transitions for M = L = 3 (as used in Stage 4 of 

Rosetta). A solution string (of N angle triplets) can only be generated by Rosetta if, when 

read from left to right, it does not lead to absorption in the invalid state X. The probabilities 

attached to the individual arcs indicate what proportion of A(i) (the number of angle triplets 

available for position i in the string) will lead to a given transition. Note that state 1.1 is the 

only possible starting state and that state 3.3 plays a special role in being the only state from 

which the invalid state cannot be reached directly.
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Figure 5. 
Asymptotic growth of the search space as a function of protein length N (on a log–linear 

plot). The search spaces grow exponentially with N, for all choices of L, M, and F. The rate 

of growth increases with increases in fragment library size F and fragment length L (a and 

b), but decreases for larger move sizes M (c). If M and L are varied together, the trends 

observed for L and M cancel out and we observe an identical rate of growth (with different 

offsets) for all choices of L = M (d). [Color figure can be viewed in the online issue, which 

is available at wileyonlinelibrary.com.]
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Figure 6. 
Performance of a simple optimiser using different fragment lengths L and move sizes M as a 

function of noise for (a) F = 5 and (b) F = 25. We mainly consider settings where L = M (as 

used in standard Rosetta), but the graph for L = 18, M = 3 is used to illustrate an additional 

effect of search space size. Performance is assessed using the mean number of iterations 

required to identify a solution with MSE (≤ 9, over 100 runs). The results demonstrate 

clearly that optimal move size decreases, as noise levels increase. [Color figure can be 

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 7. 
Alpha-beta proteins. Selected results showing the distribution in RMSD to the native 

obtained as a function of fragment library size and move size (over 100 runs of stage 1 and 2 

of Rosetta). Top to bottom: PDB code 1ctf, 1pgx. Results are grouped by fragment length L, 

and shading is used to identify results that correspond to the same choice of move size M. 

The distributions are shown in the form of box-and-whisker plots (as implemented in R). 

The center, top, and bottom of the box correspond to the median, top, and bottom quartile of 

the distribution, respectively, with the whiskers indicating the minimum and maximum 

value reached (outliers are indicated by circles). The notation L.M is used to label the results 

for a fragment length of L and a move length of M and the results appear in lexicographic 

order. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 8. 
Beta proteins. Selected results showing the distribution in RMSD to the native obtained as a 

function of fragment library size and move size (over 100 runs of stage 1 and 2 of Rosetta). 

Top to bottom: PDB code 1tit, 1fna. Results are grouped by fragment length L, and shading 

is used to identify results that correspond to the same choice of move size M. The 

distributions are shown in the form of box-and-whisker plots (as implemented in R). The 

center, top, and bottom of the box correspond to the median, top, and bottom quartile of the 

distribution, respectively, with the whiskers indicating the minimum and maximum value 

reached (outliers are indicated by circles). The notation L.M is used to label the results for a 

fragment length of L and a move length of M and the results appear in lexicographic order. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 9. 
Quality of the fragment libraries. Comparison for PDB code 1fna (dark) and 1tit (white) for 

F = 25. For each of the fragments, we compute its Euclidean distance (in torsion space) to 

the corresponding segment of the native structure. The distribution of distances is shown in 

the form of box-and-whisker plots (as implemented in R). The center, top, and bottom of the 

box correspond to the median, top, and bottom quartile of the distribution, respectively, with 

the whiskers indicating the minimum and maximum value reached. [Color figure can be 

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 10. 
Alpha-beta proteins. Two-dimensional visualization of the solutions returned by Rosetta for 

different choices of fragment length L and move size M. Top to bottom: PDB code 1hz6, 

1tig. The size of the circle indicates the quality of the model with larger circles indicating 

those with a lower RMSD. The position of the circles is determined by the energy subscores 

corresponding to the statistical potential and the secondary structure terms (both to be 

minimized). The figure illustrates that the fragment length L and the move size M influence 

how well these individual subscores are optimized. For PDB code 1tig, variation of L and M 
results in different trade-offs between the subscores with small moves favoring the statistical 

potential and large moves biasing the search toward solutions with low secondary structure 

terms. For PDB code 1hz6, the pattern is different, as the two subscores are correlated, 

resulting in an overall advantage of runs with large L.
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Figure 11. 
Beta proteins. Two-dimensional visualization of the solutions returned by Rosetta for 

different choices of fragment length L and move size M. Top to bottom: PDB code 1bq9, 

1c9o. The size of the circle indicates the quality of the model with larger circles indicating 

those with a lower RMSD. The position of the circles is determined by the energy subscores 

corresponding to the statistical potential and the secondary structure terms (both to be 

minimized). The figure illustrates that the fragment length L and the move size M influence 

how well these individual sub-scores are optimized. Variation of L and M results in different 

trade-offs between the sub-scores with small moves favoring the statistical potential and 

large moves biasing the search toward solutions with low secondary structure terms.
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