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Detection and Integration of Genotyping Errors in Statistical Genetics
Eric Sobel,1 Jeanette C. Papp,1 and Kenneth Lange1,2,3

Departments of 1Human Genetics, 2Biomathematics, and 3Statistics, University of California, Los Angeles

Detection of genotyping errors and integration of such errors in statistical analysis are relatively neglected topics,
given their importance in gene mapping. A few inopportunely placed errors, if ignored, can tremendously affect
evidence for linkage. The present study takes a fresh look at the calculation of pedigree likelihoods in the presence
of genotyping error. To accommodate genotyping error, we present extensions to the Lander-Green-Kruglyak
deterministic algorithm for small pedigrees and to the Markov-chain Monte Carlo stochastic algorithm for large
pedigrees. These extensions can accommodate a variety of error models and refrain from simplifying assumptions,
such as allowing, at most, one error per pedigree. In principle, almost any statistical genetic analysis can be performed
taking errors into account, without actually correcting or deleting suspect genotypes. Three examples illustrate the
possibilities. These examples make use of the full pedigree data, multiple linked markers, and a prior error model.
The first example is the estimation of genotyping error rates from pedigree data. The second—and currently most
useful—example is the computation of posterior mistyping probabilities. These probabilities cover both Mendelian-
consistent and Mendelian-inconsistent errors. The third example is the selection of the true pedigree structure
connecting a group of people from among several competing pedigree structures. Paternity testing and twin zygosity
testing are typical applications.

Introduction

All large genotype data sets have errors. These mistyp-
ings can be due to human oversights, to shortcomings
in genotype scoring software, or simply to biochemical
anomalies. Unfortunately, error rates are likely to in-
crease as laboratories turn to single-nucleotide poly-
morphisms (SNPs) and rush to implement high-through-
put methods. Several authors have shown that even a
small (1%–2%) error rate can have an enormous impact
on linkage results (Buetow 1991; Goldstein et al. 1997;
Douglas et al. 2000; Abecasis et al. 2001). However, it
is rare for linkage studies to catch all errors and even
rarer for statistical geneticists to explicitly account for
errors in analysis.

As a typical example of the confusion caused by ge-
notyping errors, in May 2001 The New York Times
published an article (Angier 2001) describing how a
startling new paradigm for chimpanzee mating behav-
ior, proposed in 1997 and widely accepted in prima-
tology circles, had recently been overturned. The orig-
inal research (Gagneux et al. 1997) concluded that
female chimpanzees frequently engaged in “furtive”
mating outside their social group and that more than
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half the infants born in the group were the issue of
extragroup liaisons. This research was widely reported
by the mainstream press and taken up in the public
imagination (Angier 1997). The conclusions were re-
versed in a later study by another group (Constable et
al. 2001). Dr. Pascal Gagneux, one of the authors of
the original study, was forced to confess in the national
press: “I unfortunately have to agree with them that
there seem to be serious problems with my genotyping
results. I was not being conservative enough in scoring
the genotypes. This is obviously extremely embarrassing
to me” (Angier 2001, p. F3).

We can sympathize with Dr. Gagneux and his col-
leagues, since the problem of identifying genotyping er-
rors is a difficult one. In a large study, it is nearly im-
possible to identify all errors manually. Statistical
geneticists have devised a variety of automatic screening
methods to spot marker errors and their probable
sources (Lincoln and Lander 1992; Brzustowicz et al.
1993; Ott 1993; Ehm et al. 1996; Stringham and
Boehnke 1996; O’Connell and Weeks 1998, 1999;
Douglas et al. 2000). Unfortunately, none of these meth-
ods are complete or general enough to catch all errors.
This is a subtler problem than one might at first assume.
There are two types of errors: those inconsistent with
Mendelian inheritance—commonly known as “Men-
delian errors”—and those consistent with Mendelian
inheritance. Many genotyping laboratories are content
to detect and delete only Mendelian errors. Although
the Mendelian-consistent errors are much harder to de-
tect, they still can have a profound influence on the
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validity of statistical analysis. For example, many of the
observed close double recombinants that lead to unex-
plained map expansions in genome scans are Mendelian
consistent. Such errors usually constitute �25% of all
mistypings in fully typed nuclear family data (Douglas
et al. 2002 [in this issue]). Even overt Mendelian errors
are contextual and can often be attributed to more than
one source within a pedigree. The difficulty of detecting
genotyping error can only intensify with the increased
use of SNPs, since a greater proportion of typing errors
with a biallelic marker is Mendelian consistent (Gordon
et al. 1999a; Gordon and Ott 2001).

Although often ignored in practice, the impact of ge-
notyping errors on statistical results has been recognized
since the 1930s (Smith 1937). Several recent articles have
described these effects in some detail (Daw et al. 1998;
Gordon et al. 1999a, 1999b; Göring and Terwilliger
2000a; Akey et al. 2001). Mistyping affects two areas of
genetic analysis: (1) the accuracy of the marker map (Ter-
williger et al. 1990; Lunetta et al. 1995; Goldstein et al.
1997) and (2) the localization of traits (Terwilliger et al.
1990; Buetow 1991; Heath 1998; Abecasis et al. 2001).
Several methods of compensating for these errors have
been proposed (Ott 1977; Brzustowicz et al. 1993; Gör-
ing and Terwilliger 2000b, 2000c, 2000d; Gordon and
Ott 2001), but such methods are not in common use. In
the present study, we propose a straightforward solution
that integrates realistic error models with likelihood-
based pedigree analysis.

Likelihood algorithms are the “engines” for much of
modern statistical genetics. If these algorithms can be
extended to accommodate mistyping, then statistical
analysis can be performed without the need to detect
and then manually correct or delete genotyping errors.
Gordon et al. (2001) discuss a method for doing exactly
this, in the limited context of the transmission/disequi-
librium test on SNP data. Clearly, some strategy of this
kind will be necessary for genetic analysis to keep pace
with advances in high-throughput genotyping. Cur-
rently, a single technician can generate as many as
10,000 genotypes per day. Here we present extensions
to two widely used likelihood algorithms, namely the
Lander-Green-Kruglyak deterministic algorithm, de-
signed for small pedigrees (Lander and Green 1987;
Kruglyak et al. 1996; Kruglyak and Lander 1998), and
the Markov-chain Monte Carlo (MCMC) stochastic al-
gorithm, designed for large pedigrees (Lange and Mat-
thysse 1989; Lange and Sobel 1991; Guo and Thomp-
son 1992; Sobel and Lange 1993; Thompson 1994,
1996). Almost any pedigree can be analyzed by one of
these two techniques.

In the first section below (Error Models), we discuss
the error models required by the extended likelihood
algorithms. Genotyping error is random—not in the
sense that it is uniformly distributed, but in the sense

that it is uncertain. One of the challenges of statistical
genetics is to model how errors occur. Once a model is
constructed, it can be used in likelihood analysis to re-
late observed genotypes to hidden true genotypes. In the
past, barriers of computational complexity have limited
the application and generality of these error models.
One method of avoiding some of the complications has
been to allow, at most, one error per pedigree (Ehm et
al. 1996). In the present article, we argue that such
compromises are unnecessary and that implementation
of realistic error models is feasible. After discussing er-
ror models, we take up the algorithmic adjustments nec-
essary to incorporate these models into pedigree like-
lihood calculations.

Most of the remainder of the article considers three
specific examples where error models can be integrated
in statistical analysis. The first example involves esti-
mation of mistyping rates from genotype data. It is pos-
sible to estimate either global error rates or locus-spe-
cific error rates by using data on all loci simultaneously.
Estimated error rates are good measures of quality and
can provide useful feedback to improve the genotyping
process.

Our second—and currently most important—ex-
ample is the detection of genotyping errors. We have
alluded to the difficulty of this problem and the many
past efforts in the automation of mistyping detection.
Our approach is to employ an a priori error model to
calculate, at each observed genotype, a posterior prob-
ability of mistyping. Although this natural and powerful
method has certainly been suggested previously, the
computational baggage it carries has restricted previous
applications to simple error models, specific pedigree
structures, or single-locus computations (Ehm et al.
1996; Stringham and Boehnke 1996; Douglas et al.
2000, 2002 [in this issue]). Recently, for example, Doug-
las et al. (2000) implemented this strategy for sibling
data, in their program SIBMED. We show that it is now
feasible to compute posterior mistyping probabilities for
multilocus data on general pedigrees while using general
error models.

Our third and final example deals with the problem
of choosing among competing pedigree structures con-
necting a group of people. Several authors address this
problem for pairs of relatives (Thompson 1975, 1986;
Boehnke and Cox 1997; Ehm and Wagner 1998;
McPeak and Sun 2000). Some authors even allow for
genotyping errors in their pedigree error analyses (La-
throp et al. 1983; Broman and Weber 1998; Kumm et
al. 1999; Sieberts et al. 2001). To our knowledge, how-
ever, no current implementation successfully handles
general pedigrees and general error models. Our Bay-
esian approach does and is worth discussing for that
reason.

These three sample analyses have been implemented
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in the program MENDEL, version 4 (Lange et al. 1988),
using the Lander-Green-Kruglyak algorithm. The esti-
mation of posterior mistyping probabilities has been
implemented in the program SimWalk2, version 2.82
(Sobel and Lange 1996), using the MCMC algorithm.

Error Models

One of the difficulties in dealing with genotyping er-
ror is that previously simple codominant markers be-
come complex. Each observed genotype must now be
treated as a phenotype, since any underlying geno-
type is, in principle, consistent with any observed ge-
notype. In the shift from codominant genotypes to less
definite phenotypes, pedigree likelihood computa-
tions need to sum—or, in the case of MCMC, to sample
from—all genotypes rather than a limited range of geno-
types. In addition, a penetrance-weighting factor must
be incorporated in the likelihood as the computa-
tions visit each of the possible underlying genotypes.
This penetrance factor is just the conditional probabil-
ity . If onePr (observed genotypeFunderlying genotype)
ignores mistyping, each marker penetrance term is either
one or zero, depending on whether a possible underlying
genotype equals an observed genotype or not. When
mistyping is taken into account, penetrances lie some-
where between these extreme values. The penetrance
function embodies an error model for purposes of like-
lihood calculation.

In discussing genotyping errors, several authors have
posited a uniform distribution of errors over the avail-
able genotypes at a single locus (Lincoln and Lander
1992; Ott 1993; Ehm et al. 1996). We can according-
ly define the penetrance of an observedf(g /g Ft /t )1 2 1 2

marker genotype , given a possible underlyingg /g1 2

marker genotype , ast /t1 2

1 � e {g /g } p {t /t }1 2 1 2

f(g /g Ft /t ) p ,1 2 1 2 e
{g /g } ( {t /t }{ 1 2 1 2(m � 1)

where e is the error rate per genotype, both genotypes
are unordered, and there are m genotypes in all. Another
simple model distributes errors over alternative geno-
types in proportion to their population frequencies. In
other words,

1 � e {g /g } p {t /t }1 2 1 2

f(g /g Ft /t ) p .1 2 1 2 e Pr (g /g )1 2 {g /g } ( {t /t }{ 1 2 1 21 � Pr (t /t )1 2

Both of these models are biologically unrealistic. Per-
haps more importantly, both models involve the kind
of fuzzy phenotypes that lead to long computation

times. One can circumvent the computational bottle-
necks by lumping all alleles not seen in a pedigree into
a single alternative super allele. The small inaccuracies
this action creates in estimating posterior probabilities
under the uniform model are compensated for by huge
savings in computation times. When errors are made in
proportion to genotype frequencies, posterior proba-
bilities are unaffected by allele lumping.

As an alternative to these straightforward error mod-
els, one can develop empirical models. In our experience
of checking more than a million genotypes, errors are
not uniformly distributed, and certain types of error
predominate. For example, when automated software
or trained technicians genotype by scoring bands on a
gel, the most common error is false homozygosity. An
error occurs in this case when an allele amplifies insuf-
ficiently or a band falls outside a prescribed range. A
second type of error, common in heterozygotes, involves
misreading an allele. For example, one might incorrectly
call one of the neighboring “stutter” bands rather than
the true peak on a gel. Although one may independently
misread both alleles of a genotype, correlated errors that
cause both alleles to be mistyped are more frequent,
even in homozygotes. Jointly misreading both alleles is
our third type of error. For example, in a “gel-shift,”
the sample DNA does not pass through the gel at the
same rate as the DNA standards; this causes both alleles
to be misinterpreted. A fourth type of error involves
adding an allele because of a false band—for example,
misinterpreting a stutter band as a second allele. For
slab-based gels, this kind of false heterozygosity also
happens because of spillover from adjacent lanes or
spectral bleed-through of a dye to another wavelength.
Capillary-based gels are not subject to spillover, but
bleed-through can still occur. Finally, there are pre-gel
errors, such as sample swap or pipetting mistakes, that
may have any effect. The pre-gel category provides a
lower bound on the error rates in the specific classifi-
cation of errors discussed below.

The five types of errors—missing an allele, misreading
an allele, jointly misreading both alleles, adding an al-
lele, and pre-gel errors—have independent sources and,
in our experience, different rates, which we denote by
e1 through e5, respectively. For a locus with n alleles,
the penetrance can be approximated byf(g /g Ft /t )1 2 1 2

the simple algorithm shown in figure 1. If , thenn ! 4
several of the penetrances in figure 1 revert to 0. For
example, if , then the last penetrance term listedn p 3
in figure 1 becomes 0, since one cannot have two com-
pletely distinct heterozygous genotypes with only three
alleles. Accordingly, the second “no errors” penetrance
reduces to . In the various penetrance1 � (e � e � e )1 2 5

expressions with a denominator, the denominator rep-
resents the number of possible observed genotypes in
the corresponding class.
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Figure 1 Empirical penetrance model

All of these error models are simple to implement in
analysis and provide users with several options. The
optimal values for the error rates will vary with the
genotyping hardware and software, the marker loci, and
the expertise of the responsible technicians. Our default
error rate for the uniform model is . For thee p 0.025
empirical model, our default rates are ,e p 0.01251

, , , ande p 0.0075 e p 0.0050 e p 0.0100 e p2 3 4 5

. These translate into an overall error rate of0.0025
when the true genotype is ho-e � e � e p 0.01753 4 5

mozygous and to when it ise � e � e � e p 0.02751 2 3 5

heterozygous. The fact that true heterozygotes have a
higher rate of mistyping seems intuitive, given the more
numerous sources of error. An error model based only
on the homozygote/heterozygote dichotomy would be
another option. For inexperienced genotypers or an un-
optimized marker set, all these rates should be scaled
up, perhaps by a factor of two or three. As discussed
below, one can also estimate error rates given an error
model and fairly small pedigrees. These estimates can
provide a useful reality check on the error model.

Deterministic Algorithms on Small Pedigrees

Our deterministic descent-graph method of analysis re-
lies on an extension of the Lander-Green-Kruglyak al-
gorithm for likelihood calculation. This extension allows
the algorithm to handle noncodominant loci, such as
marker loci with genotyping errors. Although the pro-
gram GENEHUNTER, implementing the Lander-Green-
Kruglyak algorithm, does have the capacity to handle a
specific type of noncodominant locus, namely, recessive
traits in homozygosity mapping, the underlying pene-
trance algorithms are poorly documented (Lander and
Green 1987; Kruglyak et al. 1995, 1996; Kruglyak and
Lander 1998). Here we discuss an algorithm that can
accommodate arbitrary penetrance functions at either
trait or marker loci. This innovation in likelihood eval-
uation makes the descent-graph method fully equivalent
to the Elston-Stewart method (Elston and Stewart 1971)
under the conditions of (a) Hardy-Weinberg and linkage
equilibrium; (b) Haldane’s Poisson model of recombi-
nation—namely, no interference; and (c) phenotypically
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Figure 2 Construction of a founder gene graph. a, Descent
graph. b, Connected founder genes.

noninteracting loci—namely, no epistasis. Such equiva-
lence facilitates closer integration of the two methods
and selection of the faster method for any given pedigree.

As part of its overall hidden Markov-chain strategy,
the deterministic descent-graph method proceeds se-
quentially from one locus to the next. Here we ignore
how the method accounts for transitions between loci,
and we focus on how penetrances and priors are in-
corporated at a single locus, given assumptions a, b,
and c above. Readers interested in other details of the
algorithm can consult the original articles cited above.
Descent graphs determine gene flow patterns within a
pedigree but do not specify which alleles flow along a
given path. (The terminology of descent graphs used
here was introduced by Sobel and Lange [1996] and is
covered in detail by Lange [1997]. Other authors prefer
the term “inheritance vector.”) The crux of the matter
is to compute the likelihood of the phenotypes at the
locus, conditional on a given descent graph. Figure 2a
depicts a typical descent graph and results of partial
typing at the locus. Figure 2b shows a second graph
constructed by connecting some of the founder genes.
Two founder genes are connected by an edge in figure
2b if they flow through some common typed person.
For example, founder genes F and H are connected be-
cause they both pass to the grandchild with phenotype
2/4.

In this example with codominant alleles and no typing
error, the conditional likelihood of the pedigree splits
into three independent factors corresponding to the
three connected components of the graph shown in fig-
ure 2b. Consider the component containing founder
genes A, C, and E. If we assign allele gA to founder gene
A, allele gC to founder gene C, and allele gE to founder
gene E, then the conditional likelihood associated with
the component is the product of the corre-p p pg g gA C E

sponding population allele frequencies, provided that
the assigned alleles are compatible with all of the in-
dividuals through whom they pass. In generalizing this
representative computation to more complicated mod-
els involving noncodominant loci, we must multiply the
prior by the penetrances of all relevant peoplep p pg g gA C E

and then sum over all possible assignments of the allele
vector .(g , g , g )A C E

If there are n alleles at the locus under consideration,
then there are n3 possible assignments to the allele vector

. For the simple either/or penetrance functions(g , g , g )A C E

encountered with perfectly typed markers, many values
for the allele vectors can be eliminated as incompatible
with observed phenotypes. For instance, with codomi-
nant alleles, the only compatible assignments here are

and . This(g , g , g ) p (1, 2, 1) (g , g , g ) p (2, 1, 2)A C E A C E

observation tremendously simplifies matters and makes
it clear that quick elimination of most incompatible allele

vectors is key to fast computation, as has been highlighted
elsewhere (Kruglyak et al. 1996; Sobel and Lange 1996).

To extend these arguments to more-complicated pen-
etrance models, we now suggest a backtracking scheme
for systematic examination of allele vectors and quick
elimination of incompatible vectors (Nijenhuis and Wilf
1978). In backtracking, one attempts to grow a com-
patible allele vector from partial vectors that are com-
patible. In the codominant case of our example, we start
with the assignment , which is consistent with(g ) p (1)A

the phenotypes in the pedigree; grow it to (g , g ) pA C

, which is inconsistent; discard all vectors beginning(1,1)
with ; move on to ,(g , g ) p (1,1) (g , g ) p (1,2)A C A C

which is consistent; grow this to ,(g , g , g ) p (1,2,1)A C E

which is consistent; move on to ,(g , g , g ) p (1,2,2)A C E

, and , which(g , g , g ) p (1,2,3) (g , g , g ) p (1,2,4)A C E A C E

are inconsistent; backtrack to , which is(g , g ) p (1,3)A C

inconsistent; and so forth. The primary virtue of back-
tracking is that it eliminates large numbers of incom-
patible vectors without actually visiting each of them.

For loci with recessive alleles, we can also perform
backtracking by repeatedly checking for consistency
among those people whose genotypes are impacted by
a partial allele vector. Again, many of these partial vec-
tors can be rejected. In the extreme situation presented
by error models where every genotype is consistent with
every phenotype, the backtracking method has little to
offer beyond a systematic way of enumerating allele
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vectors. The computational complexity of penetrance
evaluation in the extreme case is n2f per descent graph
at a locus with n alleles in a pedigree with f founders.
When symmetries are counted, the number of descent
graphs per locus is when the pedigree contains c2c�f2
children. When the Walsh transform is used (Keener
1988), it takes on the order of arithmetic2c�f(2c � f )2
operations for the Lander-Green-Kruglyak algorithm to
proceed from one locus to the next (Kruglyak and
Lander 1998). Thus, the overall computational com-
plexity for l loci is on the order of

2f 2c�fO[l(2c � f � n )2 ] . (1)

This figure can balloon out of control if n is large; how-
ever, when the allele-lumping strategy discussed above
is used, n stays small in small pedigrees, and the com-
putation load remains reasonable.

Stochastic Algorithms on Large Pedigrees

As the size of a pedigree increases, enumerating all de-
scent graphs becomes computationally impossible. For
large pedigrees, we must turn to stochastic methods. In
the past, we and other researchers have developed two
types of stochastic algorithms for pedigree analysis. One
of these relies on descent graphs; the other relies on
descent states, which are simply descent graphs with all
founder alleles specified. Descent graphs are preferable
in the sense that there are fewer of them and that they
normally present less rigidity in Markov-chain sampling.
However, descent graphs require the kind of complicated
enumeration of allele vectors discussed above. Descent
states avoid this complication, so we have elected to use
them for stochastic computation of pedigree likelihoods
in the presence of genotyping errors. The normally poor
communication between descent states is mitigated by
the incorporation of genotyping error, since this allows
any genotype at any locus.

Regardless of the specific error model used, all pos-
terior error probabilities reduce to simple conditional
probabilities. Let M denote the collection of observed
genotypes in a pedigree and Aij the event that the true
genotype and observed genotype match at locus j of
individual i. The posterior probability of no error at this
locus and individual is just the conditional probability

. Given the correct penetrance functionPr (M ∩ A F M)ij

implementing the genotyping error model in the Mar-
kov chain, one can approximate this conditional prob-
ability stochastically as the proportion of time in the
Markov-chain simulation that the sampled and ob-
served genotypes match. In addition to obviating the
need for a time-consuming backtrack scheme, the use
of descent states, rather than descent graphs, simplifies

the determination of when theoretical genotypes match
observed genotypes.

When one proceeds deterministically on small pedi-
grees, it is easiest to evaluate andPr (M ∩ A ) Pr (M)ij

separately and divide. A trivial adjustment of the ge-
notyping penetrance function accounts for the differ-
ence between these probabilities. As previously men-
tioned, it helps in the deterministic computations to
reduce the set of possible alleles at each locus to those
actually seen in the pedigree. This is also helpful in the
stochastic computation, since reducing the number of
alleles reduces the descent-state space and thus permits
more-thorough sampling in a shorter time. In either
case, allele lumping may change posterior probabilities
slightly, but the decrease in computing time easily jus-
tifies the shortcut.

Descent-state MCMC methods allow analysis of al-
most any realistic pedigree. Of course, the usual caveats
apply. On small pedigrees, results from the deterministic
method are preferred, even though our tests show ex-
cellent agreement between the two methods. For truly
large pedigrees, lengthy—and, perhaps, repeated—
MCMC runs are recommended.

Example 1: Estimation of Error Rates

Genotyping methods vary from laboratory to laboratory
around the world, and accuracy can differ even within
a laboratory, from technician to technician. Clearly, it
is important to judge the quality of data sets before
merging them. Any method for gauging quality has the
collateral benefit of allowing a laboratory to improve
and refine its typing protocols. Many laboratories use
the proportion of Mendelian inconsistencies in their data
as their primary measure of genotyping quality. Unfor-
tunately, this fails to account for the errors that are Men-
delian consistent—errors that are likely to be particularly
abundant in biallelic markers. Duplicate typing is a good
method of estimating error rates, even though it captures
consistency rather than accuracy. The expense of dupli-
cate typing argues in favor of statistical procedures for
checking error rates.

Here we discuss an example of maximum-likelihood
estimation of error rates under the uniform error model.
The data were taken from a genome scan of seven nu-
clear families with �10 members each. Genotypes were
generated on the ABI PRISM 377 DNA Sequencer, using
the ABI PRISM Linkage Mapping Set–MD10 markers.
In our example, we started with 28 markers on chro-
mosome 1, 17 markers on chromosome 9, and 5 mark-
ers on chromosome 21, with an average distance of ∼10
cM between adjacent markers. Maximum-likelihood es-
timation of the error rates was conducted on three ver-
sions of the genotypes: (a) the gels were run through
the ABI PRISM Genotyper 2.5 software, and the gen-
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Table 1

Estimated Error Rates on Three Chromosomes for Genotypes
Generated by Three Different Procedures, All without Access
to Pedigree Structure

CHROMOSOME

ERROR RATE (NO. OF OBSERVED

GENOTYPES) FOR SCORING METHOD

Genotypera Manual Scoring Quality Controlb

1 .0436 (821) .0209 (744) .0001 (601)
9 .0555 (511) .0004 (399) .0001 (211)
21 .1272 (151) .0831 (103) .0715 (90)

NOTE.—A lower bound of .0001 on error rates was enforced during
maximum-likelihood estimation.

a Data scored by Genotyper software, with no manual scoring.
b Data cleaned by our quality-control procedures.

otypes were taken directly as assigned by the program,
with no manual scoring; (b) the gels that were first
scored by Genotyper software were then manually
scored by a technician with 12 years of experience read-
ing ABI gels; and (c) the manually scored genotype data
were cleaned using a variety of quality-control checks
developed in our laboratory (Papp et al. 2000).

Some of the quality-control checks, such as thresholds
for acceptable allele sizes, intensity, and morphology,
are applied to single genotypes. Other checks use char-
acteristics such as homozygosity, allele frequencies, and
overall success rates that are calculated across entire
data sets. Once these preliminary checks are done, data
are grouped in a variety of ways—for example, by study,
by gel, or by date—and examined for anomalous pat-
terns and outliers. All of these checks flag questionable
genotypes, which are then rechecked by inspecting the
raw data from the gel image. All genotyping, including
the quality-control checking, was done blind to the ped-
igree structure, and, hence, without checking for Men-
delian errors. Pedigree information was only incorpo-
rated at the time of error-rate estimation. The number
of markers that were considered to be of acceptable
quality for typing decreased when moving from the au-
tomated software to the manual scoring to the quality-
control stages.

Table 1 displays the estimated error rates for the three
chromosomes noted above. These results are represen-
tative of the different patterns we have seen. The esti-
mates in table 1 track the decline in the overall mistyping
rate as the data proceed through the different steps of
the genotyping process. Obvious differences in the results
from these three chromosomes reflect the characteristics
of different markers. Chromosome 1 shows a steady de-
cline in error rate from automated genotyping to manual
scoring to quality-control stages. This is by far the most
common pattern we have seen. Chromosome 9 markers
were scored quite successfully by the genotyping tech-
nician on the manual pass, leaving little room for further
improvement by the quality-control procedures. Chro-

mosome 21 shows a high overall error rate that declines
only slightly through the quality-control process. Further
investigation found that, at the quality-control stage, the
locus-specific error rate was 0.2860 for one of the mark-
ers on chromosome 21. Clearly, this marker was not
genotyping well and should be either reoptimized or re-
placed. After deleting this bad marker, the estimated
global error rate fell to 0.0001 (with 64 observed geno-
types) at the quality-control stage.

It may seem from the results in table 1 that by ap-
plying rigorous error checking, one is discarding large
amounts of data that represent weeks of work in the
laboratory. However, clinging to questionable data is
penny-wise but pound-foolish. At the worst, rejecting
data may be cause for repeating some runs. This extra
effort must be balanced against the unattractive alter-
natives of having linkage evidence masked by genotyp-
ing errors or declaring linkage where none exists.

False positives can be nearly as detrimental as false
negatives. A colleague of ours obtained a LOD score of
2.98 linking a trait to a single marker, although sur-
rounding markers all gave low LOD scores. The data
were checked for Mendelian errors prior to statistical
analysis but were not subjected to the quality-control
process mentioned above. When we computed posterior
error probabilities, as discussed in the next section, the
results sent her back to the gels to re-evaluate their
scoring. She then verified and corrected a series of ge-
notyping errors on a single gel and repeated her linkage
analysis. The maximum LOD score at the suggested
marker went down to 0.55. If she had not run the mis-
typing analysis, she would have spent a great deal of
time and money in fine mapping a region with no real
evidence for linkage.

Finally, it is worth noting that the computational
complexity of the deterministic likelihood algorithm
limits error-rate estimation to fairly small pedigrees. As
a rough guide, the bound should hold,2c � f � 14
where c is the number of children (nonfounders) and f
is the number of founders in the pedigree.

Example 2: Posterior Probability of Mistyping

Checking for Mendelian errors in genotype data is cur-
rently standard practice, since these errors must be re-
moved before almost any statistical analysis package will
run. Some researchers proceed a step further and use
haplotyping programs, including our own, to detect ap-
parent double recombinants in small regions and to infer
the locations of the responsible Mendelian-consistent
mistypings. Although the application of haplotyping for
this purpose is preferable to ignoring these errors, it is
far from perfect. For one thing, current programs pro-
vide a single haplotype configuration when, in fact, there
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Table 2

Part of the Output from a Mistyping
Analysis Using MENDEL, Version 4

Locus and
Individual

Error
Probabilitya

D9S1677:
Anyone .00486
Father .00000
Mother .00000
24 .00003
25 .00304
26 .00094
27 .00003
28 .00003
29 .00031
30 .00049

D9S1776:
Anyone 1.00000
Father .02751
Mother .00001
24 .00002
25 .97262
26 .00037
27 .00002
28 .00016
30 .00073

D9S1682:
Anyone .73744
Father .62274
24 .00173
25 .01259
26 .00647
27 .00174
28 .00223
30 .09940

D9S290:
Anyone .61366
Father .00026
Mother .56709
24 .00008
25 .00056
26 .04476
27 .00008
28 .00254
30 .00034

D9S1826:
Anyone 1.00000
Father .00015
Mother .00000
24 .01475
25 .00067
26 .00044
27 .00044
28 .00133
29 .99995
30 .00037

NOTE.—For each observed genotype,
a posterior probability of mistyping is
calculated via the Lander-Green-Krug-
lyak algorithm, with the penetrance
function at these loci based on a uni-
form error model with error rate .025.

a Genotype mistyping probabilities
1.25 are underlined.

may be many equally likely or only slightly less likely
alternative configurations consistent with the data.

The posterior-probability method gives more-defini-
tive predictions by, in essence, considering the distri-
bution of all possible haplotypes. Computation of pos-
terior probabilities depends on the usual parameters of
pedigree likelihoods: allele frequencies, marker map dis-
tances, and a penetrance function, in this case deter-
mined by an error model. Predictions are reasonably
robust to small perturbations in these quantitative pa-
rameters but can show sensitivity to gross errors in ped-
igree structure or the order of marker loci. As discussed
in the next section, such sensitivity can be useful in
detecting nongenotyping errors.

To illustrate the posterior-probability method, we use
some of the same data featured in Example 1. Tables
2, 3, and 4 give output from a single nuclear family
with data from chromosome 9. In this case, genotypes
are taken directly from the automated genotype-calling
software. The individuals labeled 24–30 are the children
of the nuclear family. There were 17 loci included in
our analysis, with �13 alleles per locus. These tables
show only the output for five of the last six loci, an
interesting and representative subset.

Table 2 is part of the output from an exact analysis
using the Lander-Green-Kruglyak algorithm as imple-
mented in MENDEL, version 4. Tables 3 and 4 provide
MCMC estimates from SimWalk2, version 2.82. The
uniform error model with an overall error rate of 0.025
was used in the preparation of tables 2 and 3. In table
4, the empirical error model was used, with the default
error rates listed above in the Error Models section.

Two of the loci shown, D9S1776 and D9S1826, have
genotypes inconsistent with Mendelian inheritance. In
all cases, the programs report the same individuals to
be mistyped at these two loci, with probability 10.94.
Although not illustrated here, one can easily imagine an
example of a Mendelian error where the probability of
mistyping is split evenly between two or more individ-
uals. At two other loci in this data set, D9S1682 and
D9S290, all results strongly suggest (probability 10.5)
that there was a mistyping in a single specific individual.
For these two loci, there are no Mendelian errors. At
the first locus, D9S1682, everyone is even assigned the
same heterozygous genotype, 01/02. Clearly, for these
loci, the majority of the evidence for mistyping is from
excess recombinations. Even after manual scoring by an
experienced technician, these two mistypings remained.
However, the quality-control process recognized that
these genotypes were the result of bleed-through and
that they were not accurately called.

The deterministic and stochastic algorithms have dif-
ferent error-detection features. For example, as we have
seen, the Lander-Green-Kruglyak algorithm can be used
in error-rate estimation. However, such maximum-like-



504 Am. J. Hum. Genet. 70:496–508, 2002

Table 3

Part of the Output from a Mistyping Analysis Using SimWalk2,
Version 2.82 (Uniform Error Model)

LOCUS AND

INDIVIDUAL

OBSERVED

GENOTYPE

AT ALLELE 1/
ALLELE 2

PROBABILITY OF MISTYPING ATa

Allele
1

Allele
2

Both
Alleles

Either
Allele

D9S1677:
Father 01/05 .000 .000 .000 .000
Mother 07/09 .000 .000 .000 .000
24 01/07 .000 .000 .000 .000
25 05/09 .001 .001 .001 .001
26 01/09 .001 .001 .001 .001
27 01/07 .000 .000 .000 .000
28 01/07 .000 .000 .000 .000
29 01/09 .001 .000 .000 .001
30 05/07 .000 .000 .000 .000

D9S1776:
Father 04/04 .012 … .000 .012
Mother 05/06 .000 .000 .000 .000
24 04/06 .000 .000 .000 .000
25 05/06 .233 .756 .000 .989
26 04/05 .000 .002 .000 .002
27 04/06 .000 .000 .000 .000
28 04/06 .000 .001 .000 .001
30 04/06 .000 .001 .000 .001

D9S1682:
Father 01/02 .394 .287 .000 .681
24 01/02 .000 .000 .000 .000
25 01/02 .003 .003 .000 .006
26 01/02 .003 .002 .000 .005
27 01/02 .000 .000 .000 .000
28 01/02 .001 .003 .000 .004
30 01/02 .042 .049 .000 .091

D9S290:
Father 02/06 .000 .000 .000 .000
Mother 04/06 .605 .000 .000 .605
24 06/06 .000 … .000 .000
25 02/06 .000 .000 .000 .000
26 02/06 .006 .037 .000 .043
27 06/06 .000 … .000 .000
28 06/06 .005 … .000 .005
30 02/06 .000 .000 .000 .000

D9S1826:
Father 04/04 .000 … .000 .000
Mother 02/04 .000 .000 .000 .000
24 02/04 .008 .000 .000 .008
25 04/04 .000 … .000 .000
26 02/04 .000 .000 .000 .000
27 04/04 .000 … .000 .000
28 02/04 .001 .000 .000 .001
29 03/04 1.000 .000 .000 1.000
30 04/04 .000 … .000 .000

NOTE.—For each observed genotype, a posterior probability of
mistyping is calculated via an MCMC algorithm, with the pene-
trance function at these loci based on a uniform error model with
error rate .025.

a Genotype mistyping probabilities 1.25 are underlined.

lihood estimation is nearly impossible in an MCMC
environment. On the other hand, only the MCMC tech-
nique can estimate mistyping probabilities at each allele
in the observed genotypes in addition to an error prob-
ability for the genotype itself. On small pedigrees, the
exact results are obviously preferable to the MCMC
results. In tables 2, 3, and 4, the exact and MCMC
predictions agree reasonably well. This has been our

experience over a wide range of examples. In addition,
whether we use the uniform or empirical error model
does not significantly alter conclusions in the data we
have analyzed, as illustrated in tables 3 and 4. Because
of the additional term n2f in equation (1) arising from
penetrance evaluation, the Lander-Green-Kruglyak al-
gorithm, when accommodating mistyping, is limited to
somewhat smaller pedigrees than are the typical appli-
cations. For larger pedigrees, the MCMC approach
works well.

Example 3: Pedigree Selection

In the pedigree-selection problem, the exact pedigree
structure connecting several people is unknown. Two or
more alternative pedigrees are possible. Traditionally,
the problem of pedigree selection has been viewed as
one of correctly specifying the relationship between pairs
of individuals. For instance, paternity testing attempts
to confirm or eliminate a putative father as the actual
father of a child (Ott 1991; Weir 1996; Lange 1997).
In this case, we have two possible pedigrees to consider:
one with the putative father as father, and one with a
random male as father and the putative father as un-
related. Genotyping of the mother, child, and putative
father is done at a number of different loci. If a genetic
inconsistency is found, then, in the absence of typing
error or mutation, the putative father can be eliminated
from consideration. On the other hand, if the trio is
consistent at all loci typed, then either a rare event has
occurred or the putative father is the actual father. The
rarity of a match can be quantified by computing either
a paternity index or nonexclusion probability. Given
prior probabilities for the two scenarios of paternity ver-
sus nonpaternity, the paternity index can be transformed
into the corresponding posterior probabilities.

There are some obvious analogies between determi-
nation of twin zygosity and paternity testing. In both
cases, one looks for exclusions on the basis of geno-
typing at a large number of loci. If there are no incon-
sistencies, then one can calculate a measure of how
likely it is that the twins are identical. In determining
twin zygosity, a Bayesian approach is clearly justified.
Prior probabilities that same-sex twins are identical are
well known, though these may vary from population to
population (Cavalli-Sforza and Bodmer 1971). As an
example of the havoc caused by incorrect twin zygosity,
Cardon et al. (1994) reported a linkage that they later
corrected (Cardon et al. 1995). Similar issues apply to
determining whether sibs are half sibs or full sibs in a
genome scan (Thompson 1975, 1986; Lathrop et al.
1983; Boehnke and Cox 1997; Broman and Weber
1998; Ehm and Wagner 1998; Gordon et al. 1999a;
Kumm et al. 1999; McPeak and Sun 2000; Sieberts et
al. 2001). Plane crashes and other disasters provide yet
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Table 4

Part of the Output from a Mistyping Analysis Using SimWalk2,
Version 2.82 (Empirical Error Model)

LOCUS AND

INDIVIDUAL

OBSERVED

GENOTYPE

AT ALLELE 1/
ALLELE 2

PROBABILITY OF MISTYPING ATa

Allele
1

Allele
2

Both
Alleles

Either
Allele

D9S1677:
Father 01/05 .000 .000 .000 .000
Mother 07/09 .000 .000 .000 .000
24 01/07 .000 .000 .000 .000
25 05/09 .001 .002 .001 .002
26 01/09 .001 .001 .001 .001
27 01/07 .000 .000 .000 .000
28 01/07 .000 .000 .000 .000
29 01/09 .000 .000 .000 .000
30 05/07 .000 .000 .000 .000

D9S1776:
Father 04/04 .055 … .000 .055
Mother 05/06 .000 .000 .000 .000
24 04/06 .000 .000 .000 .000
25 05/06 .188 .757 .000 .945
26 04/05 .000 .001 .000 .001
27 04/06 .000 .000 .000 .000
28 04/06 .000 .000 .000 .000
30 04/06 .001 .001 .000 .002

D9S1682:
Father 01/02 .321 .248 .000 .569
24 01/02 .001 .000 .000 .001
25 01/02 .004 .005 .000 .009
26 01/02 .006 .002 .000 .008
27 01/02 .002 .000 .000 .002
28 01/02 .002 .000 .000 .002
30 01/02 .048 .043 .000 .091

D9S290:
Father 02/06 .000 .000 .000 .000
Mother 04/06 .618 .000 .000 .618
24 06/06 .000 … .000 .000
25 02/06 .000 .000 .000 .000
26 02/06 .003 .023 .000 .026
27 06/06 .000 … .000 .000
28 06/06 .010 … .000 .010
30 02/06 .001 .000 .000 .001

D9S1826:
Father 04/04 .000 … .000 .000
Mother 02/04 .000 .000 .000 .000
24 02/04 .010 .000 .000 .010
25 04/04 .000 … .000 .000
26 02/04 .001 .000 .000 .001
27 04/04 .001 … .000 .001
28 02/04 .003 .000 .000 .003
29 03/04 1.000 .000 .000 1.000
30 04/04 .000 … .000 .000

NOTE.—For each observed genotype, a posterior probability of
mistyping is calculated via an MCMC algorithm, with the pene-
trance function at these loci based on the empirical error model
and default error rates described in the Error Model section.

a Genotype mistyping probabilities 1.25 are underlined.

Figure 3 Determination of twin zygosity

another example. In a plane wreck, a few victims may
be damaged beyond recognition. If each body and a
handful of their relatives are genotyped, one can hope
to assign bodies to surviving families. In this situation,
a uniform prior is indicated.

These special cases suggest that it is worth posing the
pedigree-selection problem as a matter of choosing
among several possible pedigrees, using marker geno-

typing data M. In the Bayesian approach, each pedigree
is assigned a prior probability of being the true pedigree.
In stating the problem in this generality, it is useful to
include the possibility of genotyping error. If the ith
pedigree is labeled Pedi and assigned prior probability
pi, then Bayes’ theorem gives the posterior probability

Pr (MFPed )pi iPr (Ped FM) p .i �Pr (MFPed )pj j
j

For a simple numerical example, consider the pedi-
gree depicted in figure 3, with the two daughters as
nonidentical twins. Now imagine a second pedigree
with the same phenotypes but with the daughters as
identical twins. The first locus is the ABO blood group;
its three alleles, A, B, and O, have frequencies in whites
of 0.28, 0.06, and 0.66, respectively. The second locus
is a codominant marker with four equally frequent al-
leles. Given an error probability of 0.01 in the uniform
error model and a prior probability of 0.462 that same-
sex twins are identical, the posterior probability that
the twins are identical is 0.911. When we change the
second marker genotype of one daughter from 1/4 to
1/3, the posterior probability that the twins are identical
becomes 0.023. If genotyping errors were not taken into
account, then the posterior probability that the twins
are identical would drop to zero. With genotyping er-
rors built into the analysis model, our conclusions are
less definite but more secure.

Discussion

Marker genotyping errors are the skeleton in the closet
of statistical genetics. It is common knowledge that there
is considerable mistyping in most genotype data and that
error rates as low as 1%–2% can distort map distances
and linkage conclusions (Buetow 1991; Goldstein et al.
1997; Douglas et al. 2000; Abecasis et al. 2001). How-
ever, statistical analysis is usually performed under the
assumption that all of the genetic data are correct once
obvious Mendelian errors have been removed. In fact,
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Douglas et al. (2002 [in this issue]) show that, for typical
multiallelic markers and completely typed four-person
nuclear families, ∼40% of the genotyping errors are
Mendelian consistent. Furthermore, the fraction of mis-
typings consistent with Mendelian inheritance will in-
crease with the more widespread use of SNPs and other
biallelic markers. The problems are particularly acute in
genome scans involving sib pairs without parents (Doug-
las et al. 2002 [in this issue]). Unfortunately, research
studies seldom undertake complete detection of geno-
typing errors, and, in practice, statisticians almost never
explicitly account for errors in their analyses.

We have defined two general pedigree, multipoint al-
gorithms that integrate genotyping errors into likeli-
hood calculations. Perhaps the most useful of our cur-
rent applications of these algorithms is the calculation
of posterior mistyping probabilities at each observed
genotype. Our deterministic descent-graph algorithm is
exact on small pedigrees. On large pedigrees, our sto-
chastic MCMC algorithm provides an acceptably ac-
curate substitute. All Mendelian errors are found. By
analyzing all markers simultaneously, we are able to
detect errors revealed by double recombination events
between closely spaced markers.

We have several predecessors to thank for clarifying
the advantages of posterior error probabilities over rule-
based methods of error detection (Ott 1991, 1993; Lin-
coln and Lander 1992; Ehm et al. 1996; Stringham and
Boehnke 1996; O’Connell and Weeks 1998). Our par-
ticular contributions to this subject include: (a) the elim-
ination of the unnecessary assumption that one error,
at most, occurs per pedigree; (b) the ability to handle
pedigrees of nearly unlimited size and complexity; (c)
the construction of more-realistic error models; (d) max-
imum-likelihood estimation of error rates from multilo-
cus data; and (e) the inclusion of error models in the
problem of pedigree selection.

Although we have devised an empirical error model
that reflects the predominant avenues of mistyping,
there is so much variability in genotyping methods and
expertise that we consider the less specific uniform-error
model as the natural default. In practice, the uniform-
error model finds almost all errors (Ehm et al. 1996).
Within our programs, it is easy for users to specify their
own error rates and their own probability thresholds
for the flagging of potential errors. Douglas et al. (2000)
give reasons for imposing different thresholds for dif-
ferent markers. Additional error models can be imple-
mented in our programs, with minor coding.

A useful adaptation of the error model would be to
carry forward from the typing process any conclusions
about the quality of the genotype. If the genotyper or
the genotyping software listed a confidence score with
each observed genotype, this could be used to inform
and improve the error model. Confidence scores can be

based on the morphology and intensity of allele bands.
Our programs take a small step in this direction by
allowing half-typed genotypes to be included in the data
files. If there is high confidence at one allele and low
confidence at the other, the genotype can be listed as
consisting of one specific allele and another unknown
allele.

All error models and their predictions are approxi-
mations of reality. Nonetheless, we have been heartened
to see that most genotypes flagged by our routines rep-
resent true typing errors. Exceptions to this rule occur
when relatively high posterior error probabilities are
distributed over several closely related people. All of the
error models we have considered involve independent
errors. This simplification may not always hold. In one
case, our programs suggested that a single allele was
mistyped in a parent. Closer examination of the data
showed instead that three alleles were in error in the
children. Despite these caveats, we have found that it
is best to treat flagged genotypes with great skepticism.
At the very least, one should re-examine the original
images. If no errors are seen and if resources allow, it
is best to retype. When the expense of retyping is pro-
hibitive or samples are not available, we recommend
dropping suspect genotypes when performing any sta-
tistical analysis that assumes the data are error free.
Observed data should never be changed to new, non-
blank values solely on the basis of statistical inference;
they should be altered only on the basis of laboratory
evidence. Missing data are better than bad data, since
a loss in power is preferable to false conclusions. Nev-
ertheless, one can be overzealous in the deletion of ques-
tionable genotypes. As we have stressed earlier, it would
be better to address suspect data within the analysis
rather than delete them entirely.

Estimation of error rates has also proven to be a
useful tool. In particular, the locus-specific error rates
can highlight markers that should be redesigned or re-
placed. Such optimization of marker sets is crucial for
high-efficiency genotyping.

As currently configured, our algorithms do not apply
to the genotyping of random individuals in case-control
association studies or to sib pair studies without paren-
tal data. Errors can be detected in such individuals in
two ways. First, pedigree-independent quality-control
procedures can be implemented (Ewen et al. 2000; Papp
et al. 2000). Such screening is a very valuable initial
step, even when pedigrees are available. Second, de-
partures from known patterns of linkage disequilibrium
can guide error detection. It may be, for example, that
some haplotypes are virtually nonexistent, even though
an unjustified assumption of linkage equilibrium would
suggest otherwise. Relaxing the assumption of linkage
equilibrium is feasible for the MCMC method but not
for the deterministic descent-graph method.
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Error detection, correction, and integration merit
more attention than they have received in the past. We
have stressed the need to adapt analysis to allow for
genotyping errors. This relieves users of the responsi-
bility of manually determining the correct values of
doubtful genotypes. Such software is essential if high-
throughput analysis is to match high-throughput data
generation. One of the most urgent tasks is to build
specialized error models for the new gene-chip tech-
nologies. In the near future, we will continue to adapt
MENDEL and SimWalk2 to integrate mistyping into
more statistical genetic analysis options. The current
version of SimWalk2 implements the error models
found in the present article in the calculation of pos-
terior mistyping probabilities at each observed geno-
type. It can be downloaded by visiting the UCLA Hu-
man Genetics Web site. The new version of MENDEL
is still under development and will be released at the
same site, as soon as testing and documentation are
complete. We hope that our efforts will stimulate others
to develop even better tools addressing these neglected
but important problems of genetics.
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