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Abstract
In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to
dimethylarsenic (DMA), although in most people this process is not complete. Previous studies
have identified associations between the proportion of urinary MMA (%MMA) and increased
risks of several arsenic-related diseases, although none of these reported on lung cancer. In this
study, urinary arsenic metabolites were assessed in 45 lung cancer cases and 75 controls from
arsenic-exposed areas in Cordoba, Argentina. Folate has also been linked to arsenic-disease
susceptibility, thus an exploratory assessment of associations between single nucleotide
polymorphisms in folate metabolizing genes, arsenic methylation, and lung cancer was also
conducted. In analyses limited to subjects with metabolite concentrations above detection limits,
the mean %MMA was higher in cases than in controls (17.5% versus 14.3%, p = 0.01). The lung
cancer odds ratios for subjects with %MMA in the upper tertile compared to those in the lowest
tertile was 3.09 (95% CI, 1.08–8.81). Although the study size was too small for a definitive
conclusion, there was an indication that lung cancer risks might be highest in those with a high
%MMA who also carried cystathionine β-synthase (CBS) rs234709 and rs4920037 variant alleles.
This study is the first to report an association between individual differences in arsenic
metabolism and lung cancer, a leading cause of arsenic-related mortality. These results add to the
increasing body of evidence that variation in arsenic metabolism plays an important role in
arsenic-disease susceptibility.
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Inorganic arsenic (InAs) occurs naturally in the groundwater and surface water of many
parts of the world, and tens of millions of people worldwide are exposed to drinking water
containing this known carcinogen (Nordstrom, 2002). Based on epidemiologic evidence
from several countries, the International Agency for Research on Cancer (IARC) has
concluded that ingestion of inorganic arsenic causes cancer of the bladder, skin, and lung.
Other evidence suggests that of all of the various malignant and non-malignant diseases
linked to arsenic ingestion, lung cancer is the most common cause of arsenic-related
mortality (Smith et al., 1998; IARC, 2002). The excess risks associated with drinking water
arsenic may be quite high (Chen et al., 1992; Smith et al., 1992; NRC, 1999; Morales et al.,
2000; NRC, 2001). The National Research Council has estimated that the excess cancer risk
associated with lifetime exposures to arsenic at the US regulatory drinking water standard of
10 μg/L may be close to 1 in 300 (NRC, 2001). Risks may be even higher in susceptible
subpopulations if they exist. These risks are about 30 to 300 times higher than the cancer
risks estimated for exposure to all other known drinking water carcinogens at concentrations
equal to their current US drinking water standard (Smith et al., 2002).

The primary metabolic pathway of ingested InAs in humans is methylation (Gebel, 2002;
Styblo et al., 2002; Vahter, 2002). Once ingested, InAs is methylated to monomethylarsonic
acid (MMA5) which is reduced to monomethylarsonous acid (MMA3). MMA3 is then
methylated to dimethylarsinic acid (DMA5) which is reduced to dimethylarsinous acid
(DMA3). In humans, this process is not complete, and some arsenic remains as InAs and
MMA (MMA3 and MMA5). Almost all ingested arsenic is excreted through the urine and
the relative distribution of arsenic metabolites in urine is commonly used as a biomarker of
how well an individual can fully methylate ingested InAs (NRC, 1999). Typically, ingested
InAs is excreted as 10–20% InAs, 10–15% MMA, and 60–75% DMA (Hopenhayn-Rich et
al., 1993). However, large inter-individual variations exist (Vahter, 1999b).

Until recently, methylation of InAs was thought to be primarily a detoxification pathway
since the methylated species most commonly found in human urine, MMA5 and DMA5, are
more water soluble, more readily excreted, and less acutely toxic than InAs (Buchet et al.,
1981a; Buchet et al., 1981b; Moore et al., 1997; Hughes and Kenyon, 1998; Gebel, 2002).
MMA3 and DMA3 are highly unstable in human urine and so have been measured in only a
few human studies. However, there is increasing evidence that MMA3 is much more toxic
in vitro than its pentavalent form, and more toxic than InAs (Cullen et al., 1989; Styblo et
al., 1997; Lin et al., 1999; Styblo et al., 1999; Petrick et al., 2000; Styblo et al., 2000; Lin et
al., 2001; Mass et al., 2001).

Epidemiological studies have reported associations between individual methylation patterns,
specifically the proportion of MMA in urine (%MMA), and the risks of several different
arsenic-related diseases including bladder cancer, skin cancer, and arsenic-caused skin
lesions (Del Razo et al., 1997; Hsueh et al., 1997; Yu et al., 2000; Chen et al., 2003a; Chen
et al., 2003b; Tseng et al., 2005; Steinmaus et al., 2006; Wu et al., 2006; Ahsan et al., 2007;
Huang et al., 2007; McCarty et al., 2007; Pu et al., 2007; Huang et al., 2008; Lindberg et
al., 2008). These data provide a highly consistent body of evidence linking methylation
capacity, and specifically high %MMA, to arsenic-related disease risks. However, to date no
study has reported on the potential association between arsenic metabolism and lung cancer.

Several studies have also linked folate intake and folate metabolism to arsenic metabolism
and arsenic-related disease risks (Gamble et al., 2005; Chen et al., 2007; Gamble et al.,
2007; Huang et al., 2007; Kile and Ronnenberg, 2008). The results of these studies have led
to the hypothesis that variants in genes that code for folate metabolizing enzymes could
account for some inter-individual variation in arsenic metabolism and arsenic-related disease
susceptibility. For this reason, we have also performed a preliminary investigation on
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whether certain polymorphisms in folate metabolizing genes, such as cystathionine B-
synthase (CBS), might affect the relationship between arsenic metabolism and lung cancer
relative risks.

Methods
The participants of this study were a subgroup of subjects from a case-control study of lung
cancer and arsenic in drinking water (publication in progress). The study area for this
investigation was the county of Unión in the Province of Córdoba, Argentina, where many
private wells are contaminated with arsenic. All newly diagnosed incident cases of primary
lung cancer, aged 20 to 80 who were living in Unión, were identified through rapid case
ascertainment from 2000–2006 involving all pathologists and pulmonary medicine
physicians in the county, and from radiographic services. In the original study, controls,
individually matched to cases by sex and exact year of birth, were selected from
computerized voter registration lists. The participants in the current study included all cases
and controls in the original study who agreed to provide urine samples for arsenic metabolite
measurements.

This study was approved by ethical review boards in the US and Argentina, and informed
consent was obtained from all participants. All subjects were administered standardized
questionnaires in their homes. Information sought included residential history, water sources
at each current and past residence, smoking, and occupation. Buccal cell samples for DNA
and a single first morning urine sample were also collected by study personnel during the
home visits. A previous study has shown that a moderately strong correlation exists between
arsenic concentrations in single first morning samples and samples collected over 24 hours
(Calderon et al., 1999). Urine samples were kept frozen in the field laboratory at −20° and
then transported on dry ice to the University of Washington, Seattle for analysis. The urinary
concentrations of inorganic arsenic and its metabolites were measured using hydride
generation atomic absorption spectroscopy (Crecelius, 1978). Details of the laboratory
methods are described elsewhere (Chung et al., 2002). Detection limits for InAs, MMA, and
DMA were 0.5, 1.0, and 2.0 μg/L, respectively. The corresponding replicate precisions were
15%, 17% and 11%. The MMA and DMA measured in this study are the sums of the
trivalent and pentavalent forms. The trivalent forms, MMA3 and DMA3, are rapidly
oxidized during storage and at the time of this study could not be reliably measured in field
studies (Del Razo et al., 2001). Most samples were stored frozen for one to four months
before analysis.

DNA was isolated from buccal samples using the PUREGENE™ DNA Purification Kit
(Gentra Systems Inc., Minneapolis, MN) and quantified using PicoGreen dsDNA
quantitation kits (Molecular Probes, Eugene, OR). All DNA samples were whole genome
amplified using GenomiPhi DNA Amplification kits (Amersham BioSciences Corp.,
Piscataway, NJ). TaqMan® assays were obtained from the Assays-on-Demand service
(Applied Biosystems, Foster City, CA) to genotype the SNPs listed below.

Polymorphisms in CBS rs234709 and rs4920037; methyltetrahydrofolate (MTHFR)
rs1801133 and rs1801131; methionine synthase (MTR) rs1805087; thymidylate synthase
(TYMS) rs16430; dihydrofolate reductase (DHFR) rs2618372; and serine
hydroxymethyltransferase 1 (SHMT1) rs1979277 were selected a priori because they
encode enzymes involved in folate metabolism. Polymorphisms in glutathione-S-
transferase-1 (GSTO1) rs11509435 and rs4925 were assessed due to their modest
associations with urinary %MMA seen in previous studies (Marnell et al., 2003; Meza et al.,
2005; Lindberg et al., 2007; McCarty et al., 2007; Steinmaus et al., 2007). Polymorphisms
were selected, especially those with non-synonymous amino acid changes, using the dbSNP
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(http://www.ncbi.nlm.nih.gov/SNP/) and SNPper (http://snpper.chip.org/) databases.
Genotyping was carried out using TaqMan® SNP Genotyping Assays (Applied Biosystems,
Foster City, CA). Amplification reactions (95° C for 10 minutes, then 40 cycles of 95 °C for
15 seconds and 60° C for 1 minute) were performed on the ABI 9700 GeneAmp PCR
system and a post-PCR read using the ABI 7700 SDS was performed to determine
genotypes.

The proportion of arsenic in each species (%InAs, %MMA, and %DMA) was calculated by
dividing the concentration of arsenic in each species by the sum of the concentrations of
InAs, MMA, and DMA. At low metabolite concentrations, relatively small inaccuracies in
laboratory measurements can cause relatively large errors when calculating metabolite
proportions. In addition, the choice of methods used to assign values to subjects with
metabolite concentrations below detection can also have large effects on metabolite
proportion calculations. For example, in a subject with a total urinary arsenic (InAs + MMA
+ DMA) of 5 μg/L, assigning values for MMA to subjects with MMA concentrations below
detection of either zero, the limit of detection divided by the square root of two, or at the
limit of detection (1 μg/L) will give %MMA values of either 0%, 14%, or 20%, which
would place the subject in either the lower, middle, or upper tertiles, respectively, of
%MMA in this study. For these reasons, we excluded subjects who had InAs, MMA, and
DMA concentrations below detection levels. The impact of this was assessed by performing
separate analyses where all subjects were used and concentrations below detection were set
at ½ the detection level.

Past arsenic exposure was assessed by linking information on residential water sources to
arsenic water concentrations, obtained either through historic water records or from water
samples we collected from as many current and past residences as possible. The focus of
assessing past exposure was on well water, since previous research has shown that arsenic
exposure in this area comes almost exclusively from wells (Bates et al., 2004). Arsenic
concentrations in some wells used in the past could not be measured since some wells were
closed or could not be located. All water samples collected were frozen at −20° C,
transported to the United States on dry ice, and analyzed for arsenic content using graphite
furnace atomic absorption spectroscopy, with a detection limit of 0.5 μg/L. Using these data,
a year-by-year arsenic exposure profile was created for each subject. Since the focus was on
well water, and since previous research suggests that arsenic-related cancer risks are more
dependent on arsenic concentration than on cumulative exposure (Lubin et al., 2008),
subjects were categorized based on whether or not they ever used well water in the study
area and if so, the highest known well water arsenic concentration to which they were
exposed.

Unconditional logistic regression was used to calculate lung cancer odds ratios (OR)
comparing subjects with high and low proportions of all three arsenic metabolites (InAs,
MMA, and DMA), with our focus being primarily on %MMA. The one to one case-control
matching in the original case-control study was not retained since not all subjects in the
original study provided urine samples. Category cutoff points for defining low, medium, and
high %MMA were based on tertiles. Odds ratios were adjusted for age (≤ 65 versus > 65
years old), gender, smoking (ever versus never), and historical arsenic exposure in drinking
water. This last variable was categorized as either (1) never used a well (and therefore
presumed to have had low exposure), (2) used a well in the study area, but that well was
closed or could not be found (“no measurement”) (3) used a well in the study area and the
highest known arsenic concentration among all wells used was below 100 μg/L, or (4) used
a well in the study area and the highest known arsenic concentration among all wells used
was ≥ 100 μg/L. Entering highest known arsenic concentration in a greater number of
categories or as a continuous variable had little impact on results.
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Lung cancer ORs for genetic polymorphisms were calculated with logistic regression using
the same methods described above. To assess whether a genetic polymorphism might affect
the relationship between lung cancer and %MMA, lung cancer ORs were calculated for each
percentage point increase in %MMA in analyses stratified by each genetic polymorphism. In
preliminary analyses, for each SNP assessed, the associations between genotypes and
%MMA, %DMA and %InAs were analyzed using multivariate linear regression, adjusted
for age, gender, current smoking status, case-status, and total urinary arsenic. Mean %InAs,
%MMA, %DMA levels in subjects with wildtype genotypes were compared to those with
heterozygous and variant homozygous genotypes, separately and combined. Data on the
impact of SNPs on arsenic methylation-lung cancer risks are only presented for CBS in this
paper since this was the only gene related to arsenic metabolism (i.e. a linear regression p-
value less than 0.05) (These p-values were not adjusted for multiple comparisons since these
analyses were exploratory and based on a priori hypotheses). For the analyses presented in
this paper, CBS heterozygotes and homozygous variants were combined into one stratum
because of the small sample size. All data analyses were carried out using the SAS statistical
program package (Version 8.0e, SAS Institute, Cary, NC). All p-values are two-sided.

Results
Overall, 141 cases and 252 controls were eligible for participation in the case-control study.
Of these 109 (77%) of cases and 141 (56%) of the controls were interviewed and provided a
urine sample. Eleven cases (8%) and 30 (12%) controls declined participation, and 21 cases
(15%) and 81 controls (32%) could either not be located or were too ill to participate. Of
those who provided a urine sample, 45 cases (41.3%) and 75 controls (53.2%) had levels of
all three arsenic metabolites above the detection levels. Table 1 shows descriptive
characteristics and arsenic exposure information of the study subjects. Cases were more
likely to be current or former smokers (unadjusted OR = 4.31.; 95% confidence interval
(CI), 2.26–8.20). In the analysis of all subjects in the original study (i.e. regardless of
whether or not they provided urine samples), increased lung cancer risks were found for
those with highest known water arsenic concentrations above 200 μg/L (OR=2.2), but with a
wide confidence interval (95% CI, 0.7–7.3). Increased risks were more pronounced in those
who smoked and who were exposed to arsenic in drinking water starting more than 40 years
before diagnosis (details to be reported in a separate publication).

Table 2 shows the mean relative proportions of each arsenic species stratified by case status,
gender, smoking, age, and urinary arsenic. %MMA was higher in cases than controls (17.5
vs. 14.3%, p = 0.01). The mean concentrations (and ranges) of urinary InAs, MMA, and
DMA in all subjects with levels above detection were 3.8 μg/L (0.5–17.1 μg/L), 3.8 μg/L
(1.0–20.2 μg/L), and 17.1 μg/L (2.0–78.2 μg/L) (not shown in tables). Table 3 displays the
unadjusted and adjusted odds ratios for the association between lung cancer and urinary
%MMA for those subjects with metabolite concentrations above the detection limits. The
adjusted lung cancer OR for subjects with %MMA in the middle and upper tertiles
compared to those in the lower tertile were 0.85 (95% CI, 0.29–2.51) and 3.09 (95% CI,
1.08–8.81), respectively. The logistic regression lung cancer OR for %MMA as a
continuous variable was 1.106 (p = 0.008) suggesting that each one percentile increase in
%MMA (e.g. a %MMA of 15.0% versus a %MMA of 14.0%) is associated with about a
10.6% increase in lung cancer risk. In the analysis using all subjects who provided urine and
setting metabolite levels below detection at ½ the detection limit, the adjusted lung cancer
OR comparing the upper and lower tertiles of %MMA was 2.14 (95% CI, 0.91–5.06) (not
shown in tables). The lung cancer ORs for %DMA, %InAs, MMA/InAs, and DMA/MMA
tertiles can be found at http://asrg.berkeley.edu/index.html. %DMA was less strongly
associated with lung cancer than was %MMA. The adjusted lung cancer OR comparing
subjects in the upper and lower tertiles of %DMA was 0.44 (95% CI, 0.16–1.23).
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Data on CBS rs234709 and rs4920037 polymorphisms were available for 207 and 212
subjects, respectively. No association was seen between lung cancer and CBS rs234709 or
rs4920037 polymorphisms: the lung cancer OR adjusted for age, gender, smoking, and
highest known arsenic exposure comparing CBS rs234709 wildtypes to non-wildtypes was
0.89 (95% CI, 0.49–1.59). The corresponding OR for CBS rs4920037 was 0.92 (95% CI,
0.50–1.69) (data not shown in tables). No associations with lung cancer were seen with the
other genetic polymorphisms we assessed.

Variant genotypes for CBS rs234709 and rs4920037 SNPs compared with wild-type
homozygotes were associated with 24% (p = 0.01) and 26% (p = 0.02) increases,
respectively, in mean %MMA. Table 4 shows the lung cancer odds ratios for each one
percentage point increase in %MMA, stratified by the CBS polymorphism. All of these
analyses involved small numbers of subjects and none of the results was statistically
significant. However, for both CBS rs234709 and CBS rs4920037, lung cancer-%MMA
associations appear somewhat greater in subjects with non-wildtype alleles than in subjects
with wildtype alleles. The lung cancer odds ratios comparing subjects in the upper tertile of
%MMA with those in the lower tertile were 0.33 (95% CI, 0.04–2.86) and 3.34 (95% CI,
0.53–20.9) for subjects with CBS rs234709 wildtype and non-wildtype genotypes,
respectively (not shown in Tables). The corresponding odds ratios for subjects with CBS
rs4920037 wildtype and non-wildtype genotypes were 1.43 (95% CI, 0.32–6.35) and 9.48
(95% CI, 0.20–448), respectively.

Discussion
The lung cancer OR of 3.09 (95% CI, 1.08–8.81; p-trend = 0.04) comparing the upper tertile
of %MMA to the lower tertile of %MMA, and the lung cancer OR of 1.106 (95% CI, 1.026–
1.191; p-value = 0.008) for %MMA as a continuous variable are evidence that subjects who
are less effective at methylating MMA to DMA are at greater risks of arsenic-related lung
cancer than others. Although the number of subjects in this study is relatively small, the low
p-values and the consistency of our results with other human, animal, and laboratory studies
suggests that these findings are not due to chance and could represent real effects.

Data on associations between %MMA and increased relative risks of arsenic-related disease
in humans are shown in Table 5. A few of the results in this table are for MMA/DMA ratio
rather than %MMA. These were included because inter-individual variability in MMA/
DMA ratios is more dependent on %MMA than %DMA since inter-individual variability in
%MMA is generally much greater than inter-individual variability in %DMA (Buchet et al.,
1984; Hopenhayn-Rich et al., 1996; Vahter, 1999a). Thus, variability in MMA/DMA ratios
is more likely due to differences in %MMA than differences in %DMA. As seen in Table 5,
in every study except for one the odds ratios for arsenic-related disease are higher in those
with higher %MMA or higher MMA/DMA ratios. As a whole, these studies provide a fairly
large and consistent body of evidence linking %MMA to arsenic-related disease risks.

The study of hypertension by Huang et al. (2007) is the only published study of inter-
individual differences in arsenic metabolism that did not find a clear association. The reason
for this is unknown. It is possible that arsenic does not cause hypertension (the evidence
linking arsenic to hypertension is not as strong as it is for the other outcomes assessed in
Table 5) or that it causes hypertension by a mechanism that is different from other arsenic-
related diseases, although the later is difficult to evaluate since the exact mechanisms of
arsenic toxicity are unknown. Interestingly, in the Huang et al. study mean %MMA levels
were somewhat higher in subjects with hypertension than in those without (14.32% versus
13.07%, n = 871, p = 0.03), and the unadjusted odds ratios for hypertension showed a
statistically significant trend in people with low, medium, and high %MMA values [ORs =
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1.00; 1.28 (95%CI, 0.90–1.81); 1.47 (95%CI, 1.04–2.07); respectively, p for trend = 0.02].
However, this trend was not seen after adjustment for age, gender, body mass index,
smoking, triglycerides, and cumulative arsenic exposure.

In addition to the studies in Table 5, other data support the hypothesis that %MMA is related
to arsenic-disease susceptibility. In Mexico, Del Razo et al. reported higher levels of
%MMA in subjects with arsenic-related skin lesions than in those without lesions (14.3%
versus 9.5%) (Del Razo et al., 1997). In one of the few studies involving MMA3,
Valenzuela et al. reported higher %MMA3 levels in subjects with arsenic-caused skin
lesions (mean %MMA3 = 7.7%, n = 55) than in those without these lesions (mean %MMA3
= 5.9%, n = 21, p = 0.072) (Valenzuela et al. 2005). (The Valenzuela and Del Razo et al.
studies were not included in Table 5 because data were not presented as relative risks). In
Finland, Maki-Paakkanen et al. found a positive association between lymphocyte
chromosomal aberrations and MMA/InAs ratio (Maki-Paakkanen et al., 1998). Additional
biologic plausibility comes from laboratory research where several studies have shown that
MMA3 is more acutely toxic in vitro than MMA5, DMA, and InAs (Cullen et al., 1989;
Styblo et al., 1997; Lin et al., 1999; Styblo et al., 1999; Petrick et al., 2000; Styblo et al.,
2000; Lin et al., 2001; Mass et al., 2001). These data suggest that MMA, specifically
MMA3, may be the primary toxic species of ingested inorganic arsenic. These findings,
combined with epidemiologic evidence from Taiwan, Japan, Chile, and Argentina showing
clear associations between InAs ingestion and lung cancer risks (IARC, 2002), all support
the biologic plausibility of our results linking inter-individual differences in %MMA to
increased lung cancer risks.

In our study, MMA was measured as total MMA, that is, MMA3 and MMA5 combined. At
the time of this study, it was very difficult to accurately measure MMA3 separately in the
field due to its instability in urine. If MMA3 is the primary toxic species, it may be that the
total MMA is an accurate surrogate for MMA3, although currently this is unknown. If
MMA3 truly is the toxic species, any inaccuracies involved in using total MMA as a
surrogate for MMA3 would cause bias towards the null and true relative risks may actually
be higher than those found in this study.

As in all of the studies in Table 5, the measurement of urinary methylation patterns was
taken after disease diagnosis and assumed to be representative of subject’s past methylation
patterns. Few studies have assessed changes in methylation patterns in the same individuals
over time, but those that have suggest that these patterns remain fairly stable over time
(Concha et al., 2002; Steinmaus et al., 2005b). Evidence suggests that stable genetic factors
play a more important role in determining inter-individual differences in methylation
patterns than do factors that are likely to have greater day to day variability such as diet or
smoking (Chiou et al., 1997; Vahter, 1999a; Vahter, 1999b; Vahter, 2000; Chung et al.,
2002; Vahter, 2002; Steinmaus et al., 2005a). It should also be noted that although intra-
individual variability in methylation patterns could lead to misclassification of past
methylation patterns, because we collected and analyzed metabolites from cases and
controls using the same protocols, the resulting bias would be non-differential and likely
towards the null, not towards the positive associations identified. Similar misclassification
might occur as a result of DMA from arsenosugars in seafood. However, the study area is
inland with relatively little seafood consumption, and the resulting bias would also likely be
non-differential and towards the null.

In our main analyses, we used only samples with metabolite levels above detection limits.
While this resulted in a smaller sample size and may have caused some reduction in study
power, it likely improved the accuracy of our odds ratio estimates. This is because in
samples with metabolite concentrations below detection, laboratory imprecision or
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inaccuracies in assigning values to samples below detection (e.g. zero, ½ the detection
limit…) can cause relatively large errors when calculating metabolite proportions. These
errors would most likely be non-differential and bias any true association towards the null.
The decrease in the %MMA-lung cancer OR from 3.09 (95% CI, 1.08–8.81) to 2.14 (95%
CI, 0.91–5.06) when we added subjects with metabolite levels below detection is consistent
with this effect.

The assessment of methylation after cancer diagnosis also raises concerns about the
temporal relationship between disease and methylation capacity. That is, the effects seen in
our study and those in the other studies in Table 5 might not be due to the impact of
methylation patterns on disease, but rather, due to the impact of disease or disease treatment
on methylation patterns. Currently no data are available on the impact of severe chronic
disease on arsenic metabolism. However, several of the studies linking %MMA to arsenic
susceptibility involve non-melanoma skin cancer, benign skin lesions, or chromosomal
aberrations, none of which would be expected to have significant systemic effects on
metabolism. The consistency of our findings with these studies and other data on biologic
plausibility suggest our results represent the effects of %MMA on lung cancer risks,
although the possibility that lung cancer affects %MMA can not be completely ruled out. A
longitudinal cohort study might be better able to establish temporality, although this type of
study would be incredibly difficult given the 30 to 40 year (or longer) latency of arsenic-
caused cancer.

Overall participation rates differed between the cases (77%) and controls (56%) in this
study, but it is unlikely this difference had a major impact on our results since our primary
exposure variable (%MMA) is probably not strongly related to participation. Most of the
major factors that might be associated with both participation and %MMA were adjusted for
in our analyses and had little impact on results (e.g. smoking, age, gender). Some dietary
variables affect arsenic methylation, but the impacts are mostly small and thus unlikely to
have caused the effects identified in this study (Steinmaus et al., 2005a; Li et al., 2008;
Heck et al., 2007).

We found some evidence that the association between %MMA and lung cancer could be
related to rs234709 and rs4920037, two intronic polymorphisms in the CBS gene. These
SNPs may be functionally relevant or may be in linkage disequilibrium with some other
functional SNP that may influence CBS activity. CBS is an important enzyme in the
conversion of homocysteine to cystathionine, a precursor to cysteine and glutathione
biosynthesis. CBS gene variants may influence CBS enzyme activity. The exact way this
might affect arsenic toxicity is unknown although several possibilities exist (Selhub, 1999).
(The relationship between arsenic and homocysteine metabolism is shown in Figure 1.) CBS
enzyme deficiency can result in increased levels of homocysteine and s-
adenosylhomocysteine (SAH), the later being a potent inhibitor of methylation reactions (De
Kimpe et al., 1999; Selhub, 1999; Yi et al., 2000). If SAH selectively inhibits the
methylation of MMA3 to DMA5, this might lead to increased levels of MMA3 (and a
greater MMA3/MMA5 ratio) and thus higher risks of MMA3 associated toxicity. A previous
study has identified associations between increased homocysteine and decreased %DMA
and increased %MMA, although MMA3 was not specifically measured (Gamble et al.,
2005). Another possible mechanism could be related to the involvement of CBS in
glutathione production. CBS deficiencies might lead to decreased glutathione biosynthesis
and inhibition of any potential detoxification pathway involving glutathione.

Overall, the results of this study suggest that the association between %MMA and arsenic-
related lung cancer may be mediated by genetic variation in CBS. These results involve a
small number of subjects and need to be confirmed. As such, our CBS findings should be
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viewed as preliminary exploratory results that may help guide researchers in selecting which
genetic factors to be included in future studies.

In conclusion, millions of people are exposed to arsenic worldwide and these exposures may
be associated with high cancer risks. Our results add to a gradually expanding body of
evidence that inter-individual differences in arsenic metabolism play an important role in
arsenic-related disease. Our results are the first to suggest that this may include lung cancer.
Although the design of this study prevents us from confirming the temporal relationship
between %MMA and lung cancer, the biologic plausibility of our results and their
consistency with a variety of other research is evidence that our findings represent a true
impact of MMA on lung cancer risks. Data such as these are important in identifying
susceptible subpopulations that may need specific regulatory protection. These data may
also help elucidate the mechanisms of arsenic-caused disease which are largely unknown.
Further research is needed on the potential toxic effects of MMA3 in humans, the genetic
and lifestyle factors that influence individual arsenic methylation, and the role of CBS
genetic variants in arsenic toxicity.
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Figure 1.
Involvement of cystathionine β-synthase and homocysteine in the metabolism of
methylarsonous acid (MMA3) to dimethylarsinic acid (DMA5) and in glutathione
biosynthesis.
Abbreviations: InAs, inorganic arsenic; MMA5, methylarsonic acid; MMA3,
methylarsonous acid; DMA5, dimethylarsinic acid; DMA3, dimethylarsinous acid; SAM, S-
adenosylmethionine; SAH, S-adenosylhomocysteine; GSH, glutathione
aCystathionine β-synthase and homocysteine are similarly involved in the conversion of
InAs3 to MMA5
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Table 4

Lung cancer adjusted odds ratios (OR)a for each percentage point increase in %MMA, in analyses stratified by
cystathionine synthase (CBS) polymorphism

Polymorphism N ORb 95% CI

CBS rs234709 CC (wildtype) 45 0.89 0.74–1.07

CBS rs234709 CT or TT (non-wildtype) 60 1.10 0.99–1.22

CBS rs4920037 GG (wildtype) 68 1.04 0.94–1.15

CBS rs4920037 GA and AA (non-wildtype) 38 1.14 0.91–1.42

a
Logistic regression odds ratio where the dependent variable is lung cancer case status and the independent variable is %MMA as a continuous

variable. The values given are the odds ratio and its 95% confidence interval for each 1% increase in %MMA.

b
Adjusted for age (≤ 65 versus > 65 years old), gender, smoking (ever versus never), and highest level of past known arsenic exposure (no well

use, no measurement, 0–99 μg/L, ≥ 100 μg/L). Only includes subjects with arsenic metabolite concentrations above the detection limit.
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