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The Irrationality of Categorical Perception
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Perception is often categorical: the perceptual system selects one interpretation of a stimulus even when evidence in favor of other
interpretations is appreciable. Such categorization is potentially in conflict with normative decision theory, which mandates that the
utility of various courses of action should depend on the probabilities of all possible states of the world, not just that of the one perceived.
If these probabilities are lost as a result of categorization, choice will be suboptimal. Here we test for such irrationality in a task that
requires human observers to combine perceptual evidence with the uncertain consequences of action. Observers made rapid pointing
movements to targets on a touch screen, with rewards determined by perceptual and motor uncertainty. Across both visual and auditory
decision tasks, observers consistently placed too much weight on perceptual uncertainty relative to action uncertainty. We show that this
suboptimality can be explained as a consequence of categorical perception. Our findings indicate that normative decision making may be

fundamentally constrained by the architecture of the perceptual system.

Introduction

Bayesian decision theory imparts a clear goal to the observer:
actions should be chosen to maximize expected future utility
given the current state of the world. This scheme mandates con-
sidering the utility a candidate action would achieve under each
possible state of the world and averaging these utilities weighted
by the probability of each state (Maloney, 2002; Bossaerts et al.,
2008; Gershman and Daw, 2012). However, there is considerable
evidence that perception is categorical. Kiani et al. (2008) re-
ported evidence for an internal bound on evidence accumulation
during the random-dot motion task (Newsome et al., 1989). Such
abound is associated with threshold levels of firing in the parietal
and prefrontal cortices (Gold and Shadlen, 2007). The interpre-
tation of this finding is that even when a behavioral response is
not required, the stimulus is implicitly and prematurely catego-
rized as reflecting one or another state of the world. More gener-
ally, categorical perception of ambiguous stimuli, as with rivalry,
is subjectively apparent and empirically widespread (Harnard,
1987).

If the probabilities associated with possible states are lost
through categorical perception, the organism cannot determine
which action maximizes utility. Consider the decision tree laid
out in Figure 1. At night or in poor visibility, aircraft pilots occa-
sionally experience an illusion in which the plane is perceived as
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being banked to one side when it is not. If the aircraft is categor-
ically perceived as banked, the arm of the decision tree that con-
siders the costs and benefits of the alternative state will be
ignored. This can be potentially catastrophic if the unnecessary
corrective action leads to a crash.

However, it is unknown whether categorical perception dis-
rupts normative decision computations. There are several rea-
sons for this lacuna in the literature. First, in tasks in which
categorical perception has been reported, the utility function is
most often implicit or fixed so as to preclude dissociating state
inference from utility maximization: for example, observers may
receive a reward for correctly reporting the world state and noth-
ing otherwise. Second, whereas payoffs for different outcomes
can be manipulated to affect decision criteria (Whiteley and Sa-
hani, 2008; Feng et al., 2009; Fleming et al., 2010), this has mostly
been examined in detection regimes in which the categorical as-
pects of perception are subtler (Kiani et al., 2008; Aly and Yoneli-
nas, 2012). Finally, an important contributor to potential losses
and gains from an action is the action itself (Trommershéuser et
al., 2003a; Trommershéuser et al., 2003b; Kérding and Wolpert,
2004; Trommershduser et al, 2006; Landy et al., 2012), which in
categorization and detection tasks is usually trivial (a button
press or eye movement).

We hypothesized that the sequential organization of percep-
tion and action—both conceptually and in terms of the brain’s
gross functional organization—makes their combination a par-
ticularly likely setting in which categorical perception might ad-
versely constrain decision making. To test this hypothesis, we
manipulated state and action uncertainty in a random-dot mo-
tion task to determine whether categorical perception disrupts
normative decision computation.

Materials and Methods

Subjects

Eighteen subjects in Experiment la (mean age 22.2, range 18-33, 12
females) and 7 subjects in Experiment 1b (mean age 22, range 19-29, 5
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Figure 1. Schematic decision tree illustrating why categorical perception is at odds with
normative decision theory. The example draws on the “graveyard spiral” illusion in which pilots
under conditions of poor visibility may perceive their aircraft as banked when it is actually flying
level. To decide which corrective action to take, an ideal observer computes the posterior prob-
ability of being in one or another state of the world (banked or flying level) and uses it to weight
the expected utility of the actions available in each world state. Here, the plane is in fact flying
level and trying to correct for an illusory bank will result in disaster. The ideal observer incorpo-
rates the small subjective probability of being in the alternate state and selects the best action
(fly level) given the potentially catastrophic consequences of correcting the bank. A categorical
perceiver, in contrast, settles on a single (illusory) state of the world, thus closing off the actions
contingent on the nonperceived state (in gray). This will lead to disaster if, as in this example,
there is a large cost associated with the alternate state.

females) gave written informed consent to participate. Twelve subjects
(mean age 23.1, range 19-33, 6 females) gave written informed consent
to participate in Experiment 2. Seven of these subjects had previously
provided data in Experiment 1a. Subjects received US$12 per hour plus a
performance-related bonus as described below. The study was approved
by the New York University Committee on Activities Involving Human
Subjects.

Apparatus

Stimuli were displayed on a vertically mounted touchscreen LCD mon-
itor (338 mm X 270 mm) in a dimly lit room. The monitor resolution
was 1280 X 1024 pixels, with a refresh rate of 75 Hz. Subjects were posi-
tioned 45 cm away from the screen. The experiment was programmed in
MATLAB (MathWorks) using Psychtoolbox (Brainard, 1997; Pelli,
1997).

Stimuli

Experiment 1. Stimuli were presented against a gray background. All trials
began with a central white fixation point (0.2° diameter). All stimuli,
including the fixation point, were displaced 5° below the horizontal me-
ridian of the touchscreen. In pilot work, we found that this shift reduced
anisotropy in the distribution of pointing end points by minimizing the
vertical component of the movement.

Targets for the motor component of the task were circular gray disks
presented at an eccentricity of 8° either side of fixation. In the calibration
phase, only one target was presented; in the main experiment, two targets
were presented. Targets used in the calibration phase were 0.5° 1°, 1.5°,
and 2° in diameter.

Experiment 1a. In Experiment 1la, stimuli consisted of random-dot
kinematograms (RDKs). Each stimulus consisted of a field of random
dots (2 X 2 pixels; 0.52 X 0.52 mm) contained in a 7° diameter aperture.
Each set of dots lasted for 1 video frame and was replotted 3 frames later
(Roitman and Shadlen, 2002). Each time the same set of dots was replot-
ted, a subset determined by the percent coherence was offset from their
original location in the direction of motion and the remaining dots were
replotted randomly. Coherently moving dots moved at a speed of 8°/s
and the number of dots in each frame were specified such that their
density was 30 dots/deg?/s. Each RDK stimulus lasted for 800 ms (60
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video frames). The percent coherences used in the calibration phase were
3%, 8%, 12%, 24%, 48%, or 100%. Motion direction (left or right) was
randomized and independent of coherence.

Experiment 1b. In Experiment 1b, the sensory evidence was delivered
in the auditory modality. Stimuli consisted of Poisson-distributed “click-
trains” played binaurally through headphones. Each click was a 23 ms
burst of white noise sampled at a rate of 44 kHz. The overall click rate was
set to 200 Hz and each clicktrain lasted for 1 s. On each trial, the number
of clicks played to each ear varied depending on the ratio of click rates for
the correct to incorrect response. In the calibration phase, these ratios
were drawn from the set [0.51 0.53 0.58 0.68 0.8 1.0]. The direction was
randomized and independent of ratio. Subjects listened to the click stim-
uli over a pair of Bose OE2i headphones set to a comfortable volume.

Experiment 2. Stimuli were the same as in Experiment la.

Task and procedure

Calibration phase. Before performing the main task, each subject under-
went a calibration session designed to quantify task-related state and
action uncertainty.

To quantify state uncertainty, we asked subjects to perform a
2-alternative forced choice judgment as to whether the predominant
motion direction or clicktrain was to the left or right. Stimulus strength
and direction were randomized across trials. Subjects made their judg-
ment using the left and right arrow keys on a computer keyboard after the
offset of each stimulus. The response was unspeeded. After each re-
sponse, auditory feedback was delivered as to whether the judgment was
correct (high pitched tone) or incorrect (low pitched tone). The intertrial
interval was 1 s. The calibration consisted of 3 blocks of 100 trials.

To quantify action uncertainty, we asked each subject to make a series
of speeded pointing movements to a target of variable size that could
appear either 8° to the left or right of the fixation point. The x and y
coordinates of each target was adjusted on each trial by sampling from a
uniform distribution of *£1° to discourage preplanning of movements.
Target side and size were randomized across trials. Subjects could initiate
each trial by pressing down the space bar with their dominant hand on a
keyboard firmly fixed to the table. If the spacebar was still being held after
500 ms, a target was displayed for 750 ms. Subjects were required to reach
out and hit the target with their index finger before 750 ms had elapsed.
If a target was successfully acquired, it changed color from gray to red. If
the subject released the spacebar before the target appeared, the trial was
aborted and a message was displayed reminding subjects to continue
holding the spacebar before target onset. If the touchscreen did not reg-
ister a response within 750 ms, the message “Too slow!” was displayed for
a time-out of 5 s. Calibration consisted of 3 blocks of 96 trials.

Experiment phase: Experiment 1. In the main experiment, subjects were
instructed that they would receive a reward by successfully acquiring the
target indicated by the direction of the stimulus. The ideal observer
should take into account both the chances of being in each possible state
(each possible motion direction) and the chances of successfully hit-
ting the targets on the left or right (see below). For example, if the
sensory evidence indicating left is borderline and the target on the left
is much smaller than the target on the right, selecting the right target
may lead to greater expected reward. If, however, the sensory evidence
is compelling, the subject should resign himself to attempting to hit
the smaller target.

The subject initiated each trial by depressing the spacebar, as in the
motor calibration phase. After 500 ms, if the spacebar were still de-
pressed, two targets differing in size appeared either side of fixation (Fig.
2C). After a further 300 ms, the RDK or clicktrain stimulus was pre-
sented. Subjects were instructed that they would not be able to release the
spacebar until the end of the RDK or clicktrain. If the spacebar was
released prematurely, an error message was displayed and the trial was
aborted. At the end of the stimulus, the fixation point turned red and
subjects were able to release the spacebar and point to one of the two
targets. If they hit the correct target within 750 ms, it turned green and a
high-pitched tone was heard. If the incorrect target was hit, it turned red
and a low-pitched tone was heard. If anywhere else on the touchscreen
was contacted or the time limit was exceeded, the targets remained gray
and a low-pitched tone was heard. The intertrial interval was 1 s.
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stimulus and the sizes of the targets. The main
experiment consisted of 3 blocks of 108 trials
each with brief rest periods between blocks.

At the end of the experiment, six trials were
randomly selected from the choice set. For each -100 -50
trial on which the subject was successful (i.e.,
hit the target in the direction of the stimulus), C
$2 was added to their overall payment. Subjects
received an average bonus of $5.3 (range $0—
$10) in Experiment 1a and $6 (range $4-$8) in
Experiment 1b.

Experiment phase: Experiment 2. Experi-
ment 2 was identical to Experiment la, ex-
cept that we elicited a probability judgment
after target selection but before the pointing
attempt. Calibration of state and action un-
certainty was performed exactly as for Exper-
iment la. In the main experiment, targets
appeared for 300 ms, followed by the
random-dot motion stimulus for 800 ms.
Subjects were required to indicate, with a
button press, which target they would prefer
to hit (left or right). The reward schedule was
the same as in Experiment 1. After target se-
lection, a probability screen appeared, with
probability indicated both by a circular pie
chart and a vertical scale labeled from 0% to
100% in 10% increments. Using a trackball,
observers could adjust the probability scale
to their selected rating and confirm their
choice by clicking one of the trackball but-
tons. There was no time limit on probability
ratings.

On each trial, one of three probabilities was
elicited, indicated by the question displayed on
the probability screen. The occurrence of a par-
ticular question was random and could not be predicted during the judg-
ment phase of the trial. “Probability dots?” asked subjects to rate the
probability that their response was in the direction of motion regardless
of whether they thought they could hit the chosen target. This question
aimed to measure the subjective state probability. “Probability hit?”
asked subjects to rate the probability that they would be able to hit their
chosen target, regardless of whether they thought they had chosen the
correct direction of motion. This question aimed to elicit the subjective
action probability. “Probability overall?” asked subjects to estimate their
overall probability of success. This question aimed to elicit overall sub-
jective confidence.

After the rating, observers were asked to hit their chosen target. The
procedure here was similar to the motor calibration phase—after press-
ing the spacebar for at least 500 ms, the subject was required to reach out
and hit the chosen target with his or her index finger before the 750 ms
had elapsed.

At the end of the experiment, six trials were randomly selected from
the choice set. For each trial on which the subject was successful (i.e., hit
the target in the direction of the stimulus), $1 was added to the overall
payment.

We incentivized probability ratings using the “Lottery Rule” (Karni,
2009). This rule is similar to the Becker-DeGroot-Marshak mechanism
in behavioral economics (Becker et al., 1964) and provides incentives for
the subject to truthfully reveal a subjective probability p. For each of the
6 selected trials, subjects drew a ball from a bag of bingo balls labeled
1-100. If p > 1;, the computer checked to see if the subject had correctly
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(alibration data and task setup. 4, Example subject data from the sensory calibration stage. Open circles reflect the
proportion of times rightward motion was indicated as a function of coherence. Lines indicate the fit of a cumulative Gaussian to
these data, with 95% confidence intervals on the slope parameter. Dotted vertical lines indicate coherence values selected for use
in the main experiment for this subject. B, Example subject data from the motor calibration stage. Dots reflect the x, y position of
movement end points collected from several trials. Circles indicate the target sizes selected for use in the main experiment for this
subject. ¢, Schematic outline of the task. Observers began the trial by depressing the spacebar, after which two targets appeared on
the left or right of the screen. A random-dot kinematogram (Experiment 1a) or auditory stimulus (Experiment 1b) was then
presented for 800 ms. Responses were made by a rapid pointing movement to one of the two targets. The inset tabulates the utility
function for the task. Rewards are available for hitting the target in the direction of the world state (left or right), so the expected
utility of each action is determined solely by the chances of hitting each target (P,).

answered the relevant component of the task (selected direction for
“Probability dots?,” target acquisition for “Probability hit?,” and
overall success for “Probability overall?”). If the judgment was cor-
rect, an additional $1 was won; if incorrect, nothing was won. If p <1,
subjects drew a new bingo ball, [,. If [, < I, $1 was won; if [, < [,,
nothing was won. The rule can be intuitively understood as follows.
The higher the initial rating of p, the more likely the correctness of the
decision will determine earnings. The lower the rating, the more likely
earnings will be determined by chance (a second lottery). A particular
rating value (e.g., 75%) thus reveals how subjects trade off a belief in
an element of a decision being correct against a randomly determined
reward. Before the experiment, we explained various possible out-
comes to subjects, along with their intuitive interpretation, until they
understood how different rating strategies affected their potential
earnings.

Stimulus and target selection. Stimulus and target sets used in the
main experiment were individually determined for each subject from
online fits to the calibration data. Stimulus coherence levels 6§ were
identified that led to “rightward” state probability values of [0.05 0.23
0.44 0.56 0.77 0.95] using probit regression (Fig. 2A). Rightward
target sizes were chosen that corresponded to matching action prob-
ability values (P%) of [0.05 0.23 0.44 0.56 0.77 0.95] by integrating a
bivariate probability density as outlined below (note outliers were not
excluded at this stage; Fig. 2B). For each condition, the target proba-
bility on the left (PL) was set to 1 — P®. Stimuli and targets were
randomized across trials and crossed to create a fully factorial design
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Experiment 1 results. 4, Ideal observer model of choice probabilities and average subject data from Experiment 1a. The heat map reflects the predicted proportion of times

the rightward target should be selected as a function of both stimulus coherence ( y-axis) and target asymmetry (x-axis). B, State and action regression coefficients from a probit analysis
of Experiments 1a and 1b plotted alongside the ideal observer predictions. The size of the coefficient represents the influence state and action probabilities had on subjects’ choices.

**%p < 0.0007; error bars reflect SEM.

(Fig. 3A). The model fitting procedures outlined in subsequent sec-
tions were then performed offline to refine our estimates of state and
action probabilities for subsequent analysis.

Computational models

Ideal observer model. The agent receives a fixed reward r (in this case, a fixed
possibility of a reward) if the target associated with the particular state is
successfully acquired. The utility function is tabulated in the inset to Figure
2C. Because r is constant throughout the experiment, the utility of each
action is determined only by the posterior belief P(s|X) (the “state” proba-
bility) and the probabilities of acquiring each target P~ and P* (“action”
probabilities):

U@ = R) = P(s = R|X) - P~

U@ = L) = P(s = LX) - Pt (1)

In other words, the optimal agent considers the chances of hitting each
target and weighs these by the posterior probability of being in each state.
The decision rule is to respond “right” if:

P(s = R|X) - P* > P(s = L|X) - Pt (2)

We can equivalently write this rule in terms of state and action log-odds
ratios:

17P(S=R|X)+1§>o 3
8P = L) ~ 8P (3)

The state probability for motion direction has the following genera-
tive model. The true motion direction s gives rise to a noisy sample of
this direction from one of two Gaussian distributions with means that
depend linearly on motion coherence 6 via free parameter k (Palmer
etal., 2005). The variance of these distributions reflects the combined
contributions of external (stimulus) and internal (observer percep-
tual) noise; we take it to be 1 without loss of generality because k is free
to rescale. We can then write down the likelihood function for the
observer’s noisy sensory measurement X on each trial as follows:

P(X|s) « N(dk#, 1) (4)

where d is an indicator variable that is +1 if motion is rightward and —1 if
motion is leftward. Because leftward and rightward motion directions are
equally likely (the prior is flat), the log posterior odds for belief in rightward
motion (B; the first component of Equation 3) is equal to the log-likelihood
ratio:

P(s = R|X) P(X|s = R)

B =logp =) = 18 pxfs = 1)

(5)

2
Sk0+302/2

= log Sk0-X)72

= 2k6X

We use M to denote the action log-odds ratio (the second component of
Eq. 3):

M 1 i
- %% (6)
Therefore, the compound decision variable, D, is as follows:
D=B+ M+ B (7)

The observer should respond “right” when D > 0 and “left” when D <
0. Free parameter B (which should be zero in the ideal case) accom-
modates any overall bias toward left or right regardless of experimen-
tal condition.

“Categorical” model. The model outlined above is optimal in that it
maintains a posterior probability of being in one or another state to
select the action with the highest expected utility. If, in contrast, the
observer has an internal bound on evidence accumulation (Kiani et
al., 2008), they may prematurely settle on one or other state of the
world before combination with a utility function. We approximate
bounded accumulation with a threshold (=A) on the log-posterior
odds (Fig. 6A):

If|B| > A
D=B+B
else )

D=B+M+8

If A is very large, the categorical model becomes the ideal observer. As A
becomes smaller, a greater proportion of trials are categorically perceived
and action probabilities are ignored (Fig. 5B).

“Weighted” model. An alternative to the categorical model is that ob-
servers draw on both state and action information, but weight state in-
formation to a greater degree when making their decision. In this model,
parameter w controls how state and action probabilities are combined:

D=wB+ 2 - wM+ B (9)
Data analysis

Estimating state and action uncertainty from calibration data. In what
follows, we use i and j to index the target pair ¢ and coherence 6 for each
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condition in the experimental design, respectively. In the state calibra-
tion phase, the decision variable (Equation 7) depends only on the state
log-odds B and bias parameter f3:

Dralib =B + B (10)

The probability of answering “right” for coherence level 6, is then:

P(a = R|6) = P(Deip > 0)
= P(B > —P)
= P(2k6;X > — B) (From Eq. 5)

i i) (11)

-

B
CI><dk0j + Tﬂj) (From Eq. 4)

where d() is the standard cumulative Gaussian function.

For each subject, k and 8 were fit to the calibration data using Markov
Chain Monte Carlo methods (see “Model fitting” below). The mean and
variance of each subject’s k and 8 estimates were stored and used to
specify prior distributions when fitting experiment phase data.

It is possible to underestimate k due to random lapses made by the
subject at high stimulus strength (Wichmann and Hill, 2001). To address
this possibility, we additionally refit k assuming that all errors made when
the stimulus was unambiguous (i.e., when all moving dots or clicks were
associated with one or other stimulus direction) could be attributed to
lapses (Prins, 2012). The probability of a lapse, A, was set to the sum of the
lapse rate to rightward and leftward stimuli, leaving the probability that
the response was instead based on the cumulative normal functionas 1 —
A (where 0, is unambiguous motion to the left and 6, is unambiguous
motion to the right):

A A
Pa = R0y = 56 = Rloy = (1= 3);

A
Pla = Rl6,.<,) = (1 — A) - @(dkej + zfej) + 5 (12)
In the action calibration phase, we assume that the motor system
imposes a probability density on the space of possible movement
trajectories that could occur once a target is selected (Trommershiuser et al.,
2003b). The center of each target, t,, is at a given location (x,y) on the touch-
screen. For each subject, the probability of landing at a particular location
(x', ¥") having aimed at the center of target t; is given by the multi-
variate normal density P(x', y'|x,y) = N(x, ¥; we =4). The
probability of hitting the target is then the integral of this density over
the target area:

P,(t) = JP(x’,y’lx, ydx'dy’' (13)
ti

To determine P, for each subject, we computed the covariance 2, of the
bivariate distribution of end points during calibration. Endpoints >3
SDs from the mean in either x or y were excluded as outliers. This cova-
riance matrix was used to specify a bivariate normal probability density
centered on the target location. All points on a 100 X 100 grid falling
within each target circle were numerically integrated to approximate the
solution to Equation 13. M(%) is then the estimated log-odds in support
of a rightward action for each target pair:

Pi(r;)

M(ti) = log PL(t)

(14)

Probit regression analysis. We visualized data from Experiment 1 by plot-
ting the probability of choosing the rightward target (regardless of
whether it was acquired) as a function of both target asymmetry and
stimulus identity (Fig. 3A). Rightward or leftward choices were defined
by whether the movement end point fell to the left or right of the vertical
meridian of the touchscreen.
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The ideal observer model (Equation 7), marginalizing over the inter-
nal sample X (which is unknown to the experimenter), predicts that the
probability of responding “right” is a cumulative Gaussian thresholded
by the action log-odds M:

Pla = Rlo,t) = P(B+ M + B > 0) (15)

= P(2k6;X > — M — B) (From Eq. 5)

M+B>

:P<X> *Tej

= ®| dko M+ B
= ), + 2%6, (From Eq. 4)

Given this identity between the ideal observer and Equation 15, the ideal
observer makes predictions about effect sizes that can be tested using
probit regression. Specifically, the estimated action log-odds M and co-
herence 0; can then be entered as predictors of subjects’ choices:

M

a (D(Bs . dkﬂj + Bu . ie] + ﬁ()) (16)
where a = 1 for a rightward response and 0 otherwise, and M and k are
derived from calibration data as above. We estimated state () and
action (3,) regression coefficients (summary statistics) at the individual
subject level and compared them at the group level using paired ¢ tests
(Holmes and Friston, 1998). If subjects are following the ideal observer
model, B, = B, = 1.Incontrast, if categorical perception is at work, we
expect observers to sometimes disregard the possible rewards available
from the unperceived state, leading in the aggregate to a weaker overall
influence of action probabilities on behavior and 8, < f3..

Model fitting. We used Markov chain Monte Carlo methods to sample
from each candidate model using Gibbs sampling as implemented in
JAGS (http://mcmc-jags.sourceforge.net/). Uninformative (high vari-
ance) prior distributions on k and 3 were used when fitting calibration
data (after JAGS convention, variances are written as precisions, or the
reciprocal of the variance):

we ~ N(0, 0.0001)
wg » N(0,0.0001)

The mean and variance of the posterior densities of k and 8 were then
entered as priors when fitting models to the experimental phase data.
Priors on w and A were specified as uniform distributions:

1
N e
. (“k ai>

1
w v unif (0, 2)
A unif (0, 5)

A is bounded above at 5, which is equivalent to a posterior belief in
rightward or leftward motion of 0.99 or greater. We note that the cate-
gorical model coincides exactly with the ideal model in the limit as
A — o when the flanking criteria in Figure 6A are pushed out past the
edges. We simplify the model by bounding A a priori within the percep-
tually relevant range; the behavior at A = 5 is effectively identical to the
ideal observer and further increases in A do not appreciably affect its
behavior.

For each subject/model, JAGS sampling was run with 2000 adaptation
steps, 20,000 burn-in samples and 250,000 effective samples. Traces for
parameters k, B, w, and A were monitored and estimates of the posterior
density for each parameter were calculated. Three chains for each param-
eter were run, each with different starting points, and visually checked for
convergence. We additionally report Gelman and Rubin’s (1992) poten-
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tial scale reduction statistic R for all parameters. Large values of R indi-
cate convergence problems and values ~1 suggest convergence. Average
R (across parameters and subjects) was 1.001 and all values were <1.1,
indicating good convergence.

To determine the ability of each model to account for subjects’ choices,
we extracted the maximum a posteriori parameter estimates from each
subject’s model fits and simulated 50,000 trials with these parameter
settings. The predictions of each model are plotted alongside the data in
Figure 6B. As a quantitative measure of model fit, we computed Deviance
Information Criterion (DIC) scores after model convergence (Spiegel-
halter et al., 2002). DIC provides a measure for how well each model fits
the data while penalizing for model complexity (effective number of
parameters). DIC is approximately equivalent to Akaike’s Information
Criterion assuming negligible prior information (Spiegelhalter et al.,
2002). A lower DIC score indicates better model fit, with differences >6
considered strong evidence (Burnham and Anderson, 1998; Spiegelhal-
ter et al., 2002).

Ideal observer for confidence. Subjective confidence is often equated
with the subjective probability of success (Kepecs and Mainen, 2012). We
modeled an ideal observer for confidence as the probability of success
from Equation 2:

P, = argmax[P(s = Rlx) - P*P(s = L[x) - P] (17)
To examine how (objective) P, and P, contribute to subjective confi-
dence (P, ), we constructed the following regression model:

B. + log PP (1) + B, - log """ (6) + B
(18)

lOg Pc,sub =

where P"**"(t,) indicates the value of P, associated with the chosen target
and P*(0) = 1 — P(dk0)) if the leftward target is chosen and
®(dk0)) if the rightward target is chosen.

Results

We developed a task in which observers were first given a stochas-
tic perceptual cue (a visual or auditory stimulus) that indicated
which of two circular targets carried a reward (Fig. 2C). The
stimulus duration was fixed and observers could only respond
after observing the entire evidence stream. The duration chosen
occupied a regime known to be affected by internal bounds on
evidence accumulation in primates (Kiani et al., 2008). The reli-
ability of the perceptual cue and the chances of hitting each target
were varied independently. We tailored stimuli and targets for
each subject based on performance in a calibration phase.

The ideal Bayesian observer chooses whichever target would
most likely lead to reward, giving equal weight to state and action
probabilities (Fig. 3A). In contrast, if categorical perception is at
work, we expect observers to sometimes disregard the possible
rewards available from the unperceived state, leading in the ag-
gregate to a weaker overall influence of action probabilities on
behavior. We test for categorical perception effects by comparing
the fit of ideal observer models with and without an internal
threshold on sensory evidence.

Choice probabilities

Examples of individual subject data from the state and action
calibration stages are shown in Figure 2A, B. These calibration
phases were used to select stimuli and targets for use in the main
experiment (Fig. 2C; see Materials and Methods). We visualized
data from Experiment 1a by plotting the probability of choosing
the rightward target (regardless of whether it was acquired) as a
function of both target asymmetry and stimulus coherence (Fig.
3A, right). Due to inherent state and action uncertainty, an ideal
observer should choose the target with the greatest probability of
success. The ideal observer model thus predicts that state and
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Table 1. Mean regression coefficients for state and action probabilities

Experiment Method to fit k State 3 (SEM) Action 3 (SEM)

Visual Cumulative normal 1.20 (0.05) 0.15(0.02)
Cumulative normal UB* 0.95 (0.05) 0.19(0.02)
Cumulative normal + lapse 1.15(0.07) 0.16 (0.02)

Auditory Cumulative normal 0.92 (0.05) 0.12 (0.02)
Cumulative normal UB* 0.73 (0.04) 0.12 (0.01)
Cumulative normal + lapse 0.85(0.06) 0.12 (0.02)

*UB indicates upper bound on 95% credible interval.

action probabilities will be weighed equally in the decision pro-
cess, resulting in the diagonal tradeoff shown in Figure 3A, left.
We observed that, although subjects showed sensitivity to both
sources of uncertainty, there was a systematic skew in the average
heat map due to a greater influence of state probabilities on de-
cision making. This influence is qualitatively consistent with a
categorical observer who ignores action probabilities on a subset
of trials.

The underweighting of action probabilities can be quantified
in a probit regression analysis of the influence of the two sources
of uncertainty on choices. If subjects are following the ideal ob-
server (Equation 6), B, = B, = 1. Both the state and action re-
gression coefficients were significantly nonzero (one-sample ¢
test, state f,,) = 20.9, p < 10~ "% action ;,, = 8.0, p < 10 °).
The state coefficient was individually significant in all 18 subjects;
the action coefficient was individually significant in 16 of 18 sub-
jects. The action regression coefficient was systematically lower
than the state regression coefficient in all 18 subjects (Fig. 3B;
paired-samples  test, f,,) = 16.4, p < 10~ '"). We also estab-
lished that the interaction between state and action probabilities
was not significant (one-sample t test, ,,, = 0.64, p = 0.53). This
result indicates that subjects place greater weight on state com-
pared with action probabilities during decision making.

Why do subjects underweight action probabilities?

We sought to rule out several explanations for this effect. First, we
considered that an underestimation of state probabilities during
calibration could give rise to its apparent overweighting during
the decision phase. We recalculated the regression parameters
after deriving state probability values from either the upper 95%
confidence bound on the psychometric function slope or a psy-
chometric function incorporating a lapse rate (Wichmann and
Hill, 2001). Neither method altered our conclusions (Table 1).

Second, we considered that subjects might underweight ac-
tion probabilities due to inattention to the target information.
Stimulus and target information were presented through the
same modality (vision) in Experiment la, so it may have been
difficult for subjects to attend to peripheral targets while process-
ing centrally presented sensory information. In Experiment 1b,
we therefore adapted our task to present sensory information in
the auditory, rather than visual, modality (using a binaural click
stimulus; see Materials and Methods) while maintaining visual
presentation of action targets. The same pattern of results was
obtained (Fig. 3B), with state and action regression coefficients
both significantly above zero (one-sample ¢ test, state ¢4, = 18.5,
p <10 % action t5, = 7.9, p < 0.001) and the state coefficient
again greater than the action coefficient in all 7 subjects (¢, =
14.7,p < 10 7).

Finally, we considered that subjects may distort subjective
probabilities such as failing to appreciate the success rate associ-
ated with pointing at targets of different sizes. We performed an
additional experiment (Experiment 2; see Materials and Methods
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bars reflect SEM.

for details) in which we elicited subjective beliefs about success in
various aspects of the task. Calibration curves for state and action
probabilities are shown in Figure 4A, B. We then used these func-
tions as proxies for state and action probabilities in a reanalysis of
Experiments la and 1b. Despite the overconfidence shown for
small targets in Experiment 2 (Fig. 4B), subjective probability
distortion was not sufficient to explain the underweighting of
action probabilities seen in subjects’ behavior (Fig. 4C). In addi-
tion, in the elicited beliefs, both state and action probabilities
contributed significantly and with equal weight to overall confi-
dence in success (Fig. 3 D, E; one-sample ¢ test against zero, state
tany = 5.41, p < 0.001; action t;,, = 3.42, p < 0.01; paired-
samples t test ¢;,) = 1.23, p = 0.25). In other words, subjects are
well aware of the two limiting factors on their performance—
state and action uncertainty—and, when reporting beliefs about
them, they do not place greater weight on one or the other. These
results indicate that the underweighting of action probability ob-
served in Experiment 1 is not due to a lack of understanding of
action-outcome uncertainty or of the structure or requirements
of the task.

Computational model comparison
Instead, our results are consistent with a systematic constraint on
the perceptual decision process that leads to an underweighting

of action probabilities. Such a constraint could result from a cat-
egorical commitment to one or other state of the world. In a
signal detection model, this commitment can be represented as
an additional bound that controls the transition from probabilis-
tic to discrete state judgments (Fig. 5A). On this model, judg-
ments become categorical on a subset of trials when the subjective
evidence exceeds a threshold; the chance of this happening
increases with stimulus strength. We next compared the fit of
categorical and noncategorical observer models to subjects’
choice probabilities in Experiment la (Fig. 5B; see Materials
and Methods).

Examining the model fits, the categorical model was strongly
preferred to the ideal observer model (Table 2; median DIC
scores: ideal = 187.8, categorical = 51.8). A weighted model
(equivalent to the probit regression) also provided a better fit
than the ideal observer, as expected, but was not preferred to the
categorical model (median DIC score = 59.1; difference in
group-level DIC = 66.8). The median A parameter for the cate-
gorical model was 0.25 (Table 3; range 0—0.78), which corre-
sponds to responding categorically when the state probability
exceeds 0.56 (range 0.5-0.69).

The ability of each model to account for the pattern of sub-
jects’ choices is displayed in Figure 6. These plots show the pro-
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Table 2. Comparison of model fits to data

Model Parameters Median DIC Summed DIC
Ideal 2 187.8 3321.8
Weighted 3 59.1 1007.2
(ategorical 3 51.8 940.4

Table 3. Median maximum a posteriori parameter estimates = SD for each
computational model

Model k B w A

Ideal 6.49 = 3.16 0.06 = 0.19 — —
Weighted 5.07 =247 0.11 £ 0.16 1.76 = 0.13 —
Categorical 5141250 0.17 = 0.13 — 0.25+0.21

portion of times the model/subjects chose the bigger target in the
pair as a function of motion coherence, target size, and whether
the motion direction was congruent or incongruent with the
bigger target. The ideal observer is unable to accommodate
subjects’ avoidance of the bigger target (i.e., the underweight-
ing of action probabilities). Both the weighted and categorical
models accommodate this variable weighting, but only the
categorical model captures the overlap of choice probabilities
for medium and large target differences, particularly when
coherence is low. In particular, the two models (weighting and
categorical) differ in how they manage the tradeoff between
the posterior belief B and the target probabilities M. For the
categorical model, the range within which M exerts its effect is
compressed, but because in this range B is also small, the
model often goes with the bigger target regardless of the value
of M (medium or large).

Discussion

Perception is often categorical (Harnard, 1987) and perceptual
categorization can potentially affect decision making (Kiani etal.,
2008; Aly and Yonelinas, 2012). Discrete categorization at the
perceptual stage is at odds with the requirement that optimal
decisions require evaluating the consequences of actions consid-

ering all possible states of the world—not just the state perceived.
Neglecting alternate states as a result of categorization can lead to
suboptimal selection of actions (Fig. 1).

We tested for this irrationality in a task that required the com-
bination of sensory evidence with motor uncertainty. In a sensory
discrimination task, observers responded with rapid pointing
movements to targets on a touch screen, with potential rewards
conditional both on the movement’s success and on variable per-
ceptual information. We found that observers erred by placing
more weight on perceptual state probabilities compared with ac-
tion probabilities, even though an ideal observer would balance
these factors symmetrically.

We showed that this pattern of results could be due to cate-
gorical perception distorting the computation of expected value,
closing off actions that would be more beneficial. Harnessing
computational model comparison, we found that a model in
which categorical perception occurred on a subset of trials pro-
vided a good fit to observers’ choices. This finding was supported
by a second experiment in which the sensory information was
presented in a different modality (auditory) to the targets of ac-
tion, indicating that visual inattention to action targets could not
explain our results. Finally, we confirmed that our pattern of
results was not due to a failure to appreciate action-outcome
uncertainty. Subjects were sensitive, in explicit belief reports, to
the probabilities of acquiring different targets, and gave equal
weight to state and action probabilities when placing bets on their
performance.

An internal bound on evidence accumulation provides a par-
simonious explanation of these findings (Kiani et al., 2008). In a
generalization of signal detection theory, observers accumulate
information over time until a threshold is reached, at which point
one or other state of the world is settled upon. A flattening of
performance as stimulus duration is increased and a greater in-
fluence of early evidence on choice are both signatures of such an
internal termination of accumulation (Vickers et al., 1971; Kiani
et al., 2008). Conversely, other experiments reveal that if this
threshold is not crossed, a probability of being in one or another
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state is available to the observer to guide their decision making
(Kiani and Shadlen, 2009). At a neural level, this probability is
associated with graded changes in firing of posterior parietal cor-
tex neurons (Yang and Shadlen, 2007; Kiani and Shadlen, 2009).
In contrast, abound crossing may be associated with an attractor-
like process in which the system “commits” to one or another
state of the world (Wong and Wang, 2006; Gold and Shadlen,
2007).

Consistent with these accounts, a categorical observer model
faithfully combines state probabilities with action consequences
when an internal threshold is not crossed, but disregards the
utilities of alternative actions on a subset of trials that lead to
categorical perception. We note that alternative explanations are
possible. In particular, the weighted model we tested here also
accommodates the behavioral finding of lowered sensitivity to
action probabilities. However, we suggest that the categorical
model provides a more satisfactory explanation of subjects’
choice patterns. First, the categorical model accommodates qual-
itative features of the data that are not predicted by the weighted
model, such as the near-equal effect of medium and large target
differences when sensory evidence is low. Second, in explicit be-
lief reports, subjects did not weight state probabilities differently
from action probabilities. Finally, Bayesian model comparison
indicates a small but significant advantage for the categorical
model.

Thresholds on evidence are cornerstones of optimal deci-
sion rules and the role of evidence thresholding in optimal and
suboptimal choice is somewhat subtle. For example, optimiz-
ing expected reward rate in the reaction time version of the
random-dot motion task (in which observers can terminate
the stimulus when they are ready to answer) prescribes re-
sponding when evidence reaches a threshold (Wald, 1945;
Gold and Shadlen, 2007). However, as we have described,
when a fixed amount of noisy evidence is available, prema-
turely ceasing to consider it or in any case treating the state
probability distribution resulting from accumulated evidence
as categorical can lead to inefficient choices. Finally, it is true
that, given any particular loss function, the optimal decision
rule that would arise from computing utility in expectation
over the full state distribution can equivalently be reexpressed
in terms of a threshold on the perceptual evidence: a criterion
shift in signal detection terms (Green and Swets, 1966). How-
ever, in such a one-stage perception/decision system, deter-
mining the appropriate threshold depends on the loss

function. Therefore, in an arguably more realistic computa-
tional architecture in which perceptions are computed and
utility-bearing actions are evaluated serially—as, we suggest,
in evaluating noisy movements conditional on noisy per-
cepts—the threshold is instantiated at the movement stage
and premature categorization at the perceptual stage can lead
to errors.

Previous studies have demonstrated that observers can com-
bine state uncertainty with loss information to guide decision
making (Bohil and Maddox, 2001; Whiteley and Sahani, 2008;
Feng et al., 2009; Fleming et al., 2010; Rorie et al., 2010; Summer-
field and Koechlin, 2010). We analogously find that observers are
sensitive to expected utilities (here, the probability of successful
actions) in perceptual decision making. However, we addition-
ally find that action consequences are underweighted. In signal
detection terms, this result is consistent with empirically mea-
sured criterion shifts being closer to neutral than would be ex-
pected from an ideal observer model (Green and Swets, 1966;
Healy and Kubovy, 1981; Maloney and Thomas, 1991; Bohil and
Maddox, 2001). A commonly invoked post hoc explanation for
this conservatism is that observers place weight on being accu-
rate, rather than only on maximizing reward, leading to a com-
petition between reward and accuracy maximization (Maddox,
2002; Maddox and Bohil, 2004). A categorical observer model
offers a different explanation: it also attenuates overall bias ef-
fects, but does so not because observers place a premium on
accuracy. Instead, the criterion undercompensates for the action
probabilities on average because a subset of trials leads to cate-
gorical perception. In other words, an apparent insensitivity to
payoff information can be explained by the sequential nature of
perception and action together with categorical perception at the
perceptual stage.

A categorical observer effectively exhibits nonlinearity in the
computation of state probabilities (small state probabilities are
underweighted and large probabilities are overweighted). Non-
linear probability weighting is a ubiquitous feature of decision
under risk (for review, see Zhang and Maloney, 2012). However,
the weighting function implied by the categorical perception
model is opposite to that commonly observed in “decision from
description” tasks, in which small probabilities are overweighted
and large probabilities are underweighted (Kahneman and Tver-
sky, 1979; Gonzalez and Wu, 1999). Categorical perception in-
stead produces a pattern similar to that observed when
probabilities are learned from experience (Hertwig et al., 2004).
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However, whereas explanations of such underweighting in that
domain relate to the statistics of decision makers’ objective trial-
trial experience (e.g., rare events tend not to be included in an
average subject’s sample), our results suggest that similar nonlin-
ear weighting may arise internally due to how experience is
interpreted.

If categorical perception throws normative decision compu-
tations off course, why is it so common? One possibility is that
categorical perception is a byproduct of a limited-resource com-
putation of a posterior belief distribution (Gershman et al.,
2012). Although approximate perceptual inference may be costly
due to producing relatively poorer decisions, these inefficiencies
may be balanced, on average, by significant savings in computa-
tional costs due to simplifying the problem. Therefore, such ap-
proximations are justified overall even though they can lead to
irrationalities in individual decision scenarios. A second point is
that categorical judgments are not, in themselves, problematic.
To the contrary, decisions by definition require the production of
discrete responses, such as whether it is safe to cross the road or
whether to subscribe to pension plan A or B. However, if evolu-
tion has iteratively replicated or extended core mechanisms or
circuits for simple sensory decisions to support higher-order de-
cision making (Shadlen et al, 2008; Dehaene and Sigman, 2012),
then categorization might occur inappropriately at intermediate
stages before the final decision (Murphy and Ross, 2010). Our
findings indicate that normative decision making may, in this
way, be fundamentally constrained by the architecture of the
perceptual system.
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