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Independent Population Coding of Speech with

Sub-Millisecond Precision
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Ear Institute, University College London, London WC1X 8EE, United Kingdom

To understand the strategies used by the brain to analyze complex environments, we must first characterize how the features of sensory
stimuli are encoded in the spiking of neuronal populations. Characterizing a population code requires identifying the temporal precision
of spiking and the extent to which spiking is correlated, both between cells and over time. In this study, we characterize the population
code for speech in the gerbil inferior colliculus (IC), the hub of the auditory system where inputs from parallel brainstem pathways are
integrated for transmission to the cortex. We find that IC spike trains can carry information about speech with sub-millisecond precision,
and, consequently, that the temporal correlations imposed by refractoriness can play a significant role in shaping spike patterns. We also
find that, in contrast to most other brain areas, the noise correlations between IC cells are extremely weak, indicating that spiking in the
population is conditionally independent. These results demonstrate that the problem of understanding the population coding of speech
can be reduced to the problem of understanding the stimulus-driven spiking of individual cells, suggesting that a comprehensive model
of the subcortical processing of speech may be attainable in the near future.

Introduction

One of the primary goals of systems neuroscience is to under-
stand how sensory information is represented in the spike trains
of neuronal populations (Averbeck et al., 2006). A common ap-
proach to characterizing population coding is to use experimen-
tal data to describe the relationship between the sensory stimulus
and neuronal responses. Such descriptions range from simple
static functions that relate the value of a single stimulus parame-
ter to the average spike rate of individual cells, i.e., tuning curves,
to complex models that combine selectivity for multiple stimulus
features with other dynamic properties to predict the joint spike
times of a neuronal population (Pillow et al., 2008). Describing
the relationship between stimulus and response often requires a
trade-off between tractability and accuracy; tuning curves, while
easily measured, may ignore important information in spike tim-
ing, but models that predict spike timing may be impossible to fit
with limited experimental data. Thus, the first step in character-
izing any population code is to assess which features of spike
trains carry information about the stimulus (Strong et al., 1998;
Brenner et al., 2000). With the results of this assessment, the
simplest description required to capture the relevant features of
the spike trains can be determined and, in the event that this
minimal description is not tractable and a simpler one must be
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used, the cost associated with ignoring the features that cannot be
captured can be quantified.

In recent years, much has been learned about the nature of the
population code in many brain areas, but there have not yet been
any comprehensive analyses of population spike trains in the
subcortical auditory pathway. In this study, we characterize the
neural code for speech in the inferior colliculus (IC), the central
station of the auditory midbrain where inputs from parallel path-
ways in the brainstem are integrated for transmission to the cor-
tex. The first step in determining the important features of a
population code is to specify its temporal resolution, i.e., the
critical level of spike time precision (Butts et al., 2007). IC cells are
known to respond to tones and broadband sounds with time-
locked spikes for carrier frequencies >1 kHz and modulation
frequencies up to several hundred Hertz (Frisina, 2001; Joris et
al., 2004; Liu et al., 2006; Horvath and Lesica, 2011; Chen et al.,
2012), suggesting that they have the capacity to encode the acous-
tic features of speech with high temporal precision. Once the
temporal precision of spiking has been determined, the nature of
the correlations between successive spikes from individual cells as
well as between spikes from neighboring cells must be assessed.
The correlations between successive spikes imposed by refracto-
riness can shape spike patterns in the auditory nerve (Gaumond
etal., 1982; Miller, 1985; Avissar et al., 2013), and it is likely that
such correlations play a significant role in the IC as well. The
noise correlations between spikes from neighboring cells have
not been studied in detail in any subcortical auditory area, and,
given the diversity of correlation structures observed in other
brain areas, it is difficult to predict the impact that such correla-
tions might have in the IC.

Materials and Methods

In vivo recordings. Adult male gerbils (70-90 g, P60—P120) or mice
(C57BL/6, 25-30 g, P60—P70) were anesthetized for surgery with an
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Figure1.  Multitetrode recordings of population responses to speech in the IC. A, A schematic diagram of the electrode arrangement on the array. Thirty-two electrodes were grouped into eight
tetrodes. B, Example recordings from one tetrode in the IC. For each tetrode, spikes were grouped into clusters corresponding to nonisolated multiunit activity (noise) and single units. The waveforms
and ISI histograms for each cluster are shown (note the logarithmic axis for the ISIs). Clusters were identified by projecting each spike into principal component space (12 dimensions corresponding
to 3 principal components for each electrode). Two-dimensional projections that illustrate the isolation of the different single unit clusters are shown. C, The distribution of center frequencies in our
sample of ICcells. D, A spectrogram of the one of the segments of speech used in this study, the sentence “A huge tapestry hungiin her hallway.” E, Raster plots of spike trains recorded during a single
presentation of speech for three example populations. F, Mean responses (PSTHs with 0.7 ms time bins) for two example cells for a 200 ms segment of speech.

initial injection of a mix of ketamine, xylazine, and saline or a mix of
fentanyl, medetomidine, and midazolam, and the same solution was
infused continuously during recording. A small metal rod was mounted
on the skull and used to secure the head of the animal in a stereotaxic
device in a sound-attenuated chamber. A craniotomy was made over the
inferior colliculus or the primary auditory cortex (Al), an incision was
made in the dura mater, and a multi-tetrode array (Fig. 1A; Neuronexus)
was inserted into the brain. Only recordings from the central nucleus of
the IC and Al were analyzed. Because the array covered a large area,
recording sites in the central nucleus of the IC could be distinguished
from those in other areas by comparison of their responses to tones
(Aitkin etal., 1975; Syka et al., 2000), and A1 could be distinguished from
other fields based on the direction of the tonotopic gradient (Thomas et
al., 1993). Al recordings were made in deeper layers, most likely layer V
(between 1 and 1.5 mm from the cortical surface).

Spike sorting. The procedure for the isolation of single-unit spikes
consisted of (1) bandpass filtering each channel between 500 and 5000
Hz; (2) whitening each tetrode, i.e., projecting the signals from the four
channels into a space in which they are uncorrelated; (3) identifying
potential spikes as snippets with energy (Choi et al., 2006) that exceeded
a threshold (with a minimum of 0.7 ms between potential spikes); (4)
projecting each of the snippets into the space defined by the first three
principal components for each channel; (5) identifying clusters of snip-
pets within this space using KlustaKwik (http://klustakwik.sourceforge.
net) and Klusters (Hazan et al., 2006); and (6) quantifying the likelihood
that each cluster represented a single unit using isolation distance

(Schmitzer-Torbert et al., 2005). Isolation distance assumes that each
cluster forms a multi-dimensional Gaussian cloud in feature space and
measures, in terms of the SD of the original cluster, the increase in the size
of the cluster required to double the number of snippets within it. The
number of snippets in the “noise” cluster (non-isolated multiunit activ-
ity) for each tetrode was always at least as large as the number of spikes in
any single-unit cluster. Only single-unit clusters with an isolation dis-
tance >20 were analyzed.

Sound delivery. For gerbil experiments, sounds were generated with a
48 kHz sampling rate, attenuated, and delivered to speakers. In some
experiments (2 animals; 4 of 20 IC populations), a free-field speaker
(TDT MF1) was positioned 10 cm from the ear contralateral to the re-
cording site. In these experiments, sounds were filtered such that the
effective frequency response of the speaker measured at the location of
the ear was flat (£5 dB SPL) between 0.5 and 20 kHz. In other experi-
ments (9 animals; 16 of 20 IC populations and all 4 Al populations),
speakers (Etymotic ER2) coupled to tubes were inserted into both ear
canals for diotic sound presentation along with microphones for calibra-
tion. The frequency response of these speakers measured at the entrance
of the ear canal was flat (=5 dB SPL) between 0.2 and 5 kHz. For mouse
experiments (2 animals; 4 populations), sounds were generated with a
192 kHz sampling rate, attenuated, and delivered to a free-field speaker
(Avisoft Vifa) that was positioned 10 cm from the ear contralateral to the
recording site. The effective frequency response of the speaker measured
at the location of the ear was flat (=10 dB SPL) between 4 and 80 kHz. At
each recording site, a sequence of tones with different frequencies and
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intensities with 5 ms cosine on and off ramps were presented to charac-
terize basic response properties. For gerbil experiments, one of three 2-3
s segments of female speech from the UCL SCRIBE database
(http://www.phon.ucl.ac.uk/resource/scribe) was presented either 512
or 1024 times. Of the 384 cells in the main analysis, 58% were presented
with segment 1 (spectrogram shown in Fig. 1D), 22% with segment 2,
and 20% with segment 3. All of the Al data were with segment 1. An
additional 6 min segment of speech was repeated twice for all popula-
tions. For mouse experiments, a 2.5 s segment of a dynamic random
chord sound (5 ms tones, average density of 2 tones/octave) was pre-
sented 64 times.

Calculation of correlation functions. Correlation functions were com-
puted after converting spike trains to binary vectors with 0.7 ms time
bins. For each cell or pair of cells, the total correlation function was
obtained by computing the correlation coefficient between the actual
spike trains. The signal correlation function was computed after shuffling
the order of repeated trials for each time bin. The noise correlation func-
tion was obtained by subtracting the signal correlation function from the
total correlation function. For cells recorded on the same tetrode, the
value of the correlation functions at lags —1, 0, and 1 were influenced by
the 0.7 ms lockout period used for spike detection during spike sorting.
Thus, these values were ignored and the correlation functions were in-
terpolated to fill in the gap. For a number of tetrodes, we split the four
channels into two pairs for independent spike sorting and observed no
qualitative difference in the results.

Calculation of mutual information. The mutual information between
two variables measures how much the uncertainty about the value of one
variable is reduced by knowing the value of the other. The mutual infor-
mation between a sensory stimulus and a neural response can be com-
puted as the difference between the entropy of the response before and
after conditioning on the stimulus, as follows:

I(r;s) = H(r) — H(rls) = — >, p(r) log, p(r)
+ > pls) D plrls) log, plrls). (1)

To measure the information that is carried by spike trains about speech
without having to specify which features of the speech were relevant, we
used the approach pioneered by Strong et al. (1998) of discretizing a
continuous stimulus into separate “stimuli” in time. To measure infor-
mation, the total entropy of the response is compared with the average
entropy of the response in each time bin (the noise entropy):

I(r;s) = H(r) — H(r|r) = — >, p(r) log, p(r)
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All information calculations were performed using the Direct Method via
infoToolbox for Matlab (Magri et al., 2009) with bias correction via the
shuffling method and quadratic extrapolation (Panzerietal., 2007). Only
cells with single spike information rates >0.5 bits/s were included in the
analysis (368 of 374 cells). For all calculations, spike trains were repre-
sented as binary patterns.

Calculation of single spike information. To determine the critical level of
spike timing precision, it is important to represent spike trains with the
highest possible temporal resolution; if the time bins used to represent
the response are too large, the critical level of precision may be underes-
timated. For each cell, we first determined the smallest time bin that
allowed for reliable information estimates by starting with 80 us bins and
increasing in increments of 40 us until the information computed using
all of the trials was within 5% of the mean information computed from
25 random subsets of half the trials, ensuring that the calculation was
stable. For 80% of cells, the bin size used was smaller than 0.2 ms.

Calculation of information in temporal spike patterns. For the calcula-
tion of information in temporal patterns, a bin size of 0.7 ms was used
and we determined the longest pattern that allowed for reliable informa-
tion estimates by starting with patterns of two time bins and increasing
until the information computed using all of the trials was >5% different
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from the mean information computed from 25 random subsets of half
the trials, which occurred for patterns longer than 16 bins (~12 ms).

Calculation of information in population spike patterns. For the calcu-
lation of information in population spike patterns, the response in each
time bin was specified as a binary pattern with one element correspond-
ing to each neuron. For all calculations (except as noted in Fig. 4C), a bin
size of 0.7 ms was used and only a single time bin was considered (i.e.,
temporal correlations were ignored). We determined the largest popula-
tion that allowed for reliable information estimates by starting with pop-
ulations of two cells and increasing until the information computed
using all of the trials was >5% different from the mean information
computed from 25 random subsets of half the trials, which occurred for
populations larger than 14 cells.

Calculation of the effects of noise correlations on information. For the
calculation of the effects of noise correlations on information in spike
patterns, we used an information breakdown approach (Pola et al.,
2003) and computed the information breakdown quantity I ,.ina =

— 3, pina(NI0g, Pina(r) — =, p(r)log, pina(r), where p;. 4(r) is an esti-
mate of the probability of a spike pattern assuming there are no noise
correlations between cells or time bins. I, ;.4 captures only the av-
erage effect of noise correlations on information (Oram et al., 1998;
Panzeri et al., 1999; Pola et al., 2003) and ignores any additional
effects due to stimulus modulation of noise correlations (Nirenberg et
al., 2001; Pola et al., 2003). The effects of these stimulus-independent
noise correlations depend on their interaction with signal correla-
tions. Signal correlations elongate the distributions of responses to
different stimuli along a direction that increases their overlap and,
thus, reduces stimulus discriminability. If noise correlations have the
same sign as signal correlations, they will further elongate the re-
sponse distributions in the same direction, further increasing overlap
and reducing discriminability, but if noise correlations have the op-
posite sign from signal correlations, they will elongate the response
distributions in a direction that is orthogonal to the direction of
overlap and improve discriminability. Measurements of additional
stimulus-dependent effects of noise correlations (information break-
down quantity I, 4.,) from our data with sufficiently small time
bins did not satisfy the stability criterion defined above, even for
relatively short patterns, so we did not include them. To express the
effect of noise correlations on information as a percentage of the
information without noise correlations, I, ;4 was compared with

> “cor—

I+ Lg sim - Lo is the single spike information as described above and
Lig sim i the information loss due to signal correlations — 3, p,a(r) —

3, Pin(N)10g, piin(r), where py;. (r) is an estimate of the probability of a spike
pattern assuming there are no signal or noise correlations between cells or
time bins. The effect of noise correlations on information was computed as
100 X Icor—ind/(l() + Isig—sim)'

Fitting a generalized linear model of IC spike trains. We modeled IC
spike trains using the generalized linear model (GLM) p(f{n]) =
fini(&uml] + gnislm] + ¢) where the probability of a spike occurring
in time bin # on a given trial depends on a linear combination of a
function g;,, that describes the feed-forward influence of the stimu-
lus and depends only on n, a function g, that captures the effect of
spike history based on the time since the last spike m, and a constant
¢ (see schematic in Fig. 5A). The link function that converts this
combination to a probability value between 0 and 1 is the logistic
function fi(x) = e*/(e* + 1). For each cell, model parameters
were fit using the Matlab function glmfit with half of the recorded
response trials. The input matrix was binary with N X Irows and N X
M columns, where N was the total number of time bins in a trial (N =
3571 for a 2.5 s segment of speech with 0.7 ms bins), I was the total
number of trials used for training (I = 256 or 512), and M was longest
interval for which the spike history was considered (M = 20 for 0.7 ms
bins). In each row of the input matrix, only two elements correspond-
ing to the index n of the relevant time bin and the interval n since the
last spike were non-zero. The output vector was binary with N X I
elements indicating whether or not a spike occurred in each time bin
on each trial. The similarity of the model spike trains to the actual data
was assessed on the half of the trials that were not used for model
fitting.
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The temporal precision of IC spike trains. 4, Raster plots of the responses of an example IC cell to a 20 ms segment of speech. The top row shows the actual responses and the bottom

rows show the responses after the addition of different amounts of random jitter to the spike times. For each response, the single spike information is shown. B, The single spike information for the
example cell as a function of the amount of added jitter. The critical timescale at which the information is decreased to 95% of its original value /, is marked as 7. €, The histogram (black) and
cumulative distribution function (gray) of the critical timescale 7o for our sample of IC cells. D, A scatter plot of the single spike information /, versus the critical time scale 7y for our sample of IC

cells. The correlation coefficient between /, and 7,5 with logarithmic scaling is shown.

Results

We made multitetrode recordings (Fig. 1A) from the central nu-
cleus of the IC of anesthetized gerbils during the presentation of
tones and speech. Recordings yielded between 14 and 29 single
units recorded simultaneously across the set of 8 tetrodes (20
populations for a total of 374 cells). Example recordings from one
tetrode are shown in Figure 1B. Recordings were targeted to areas
with low preferred frequencies. In our sample of cells, 95% of all
center frequencies (frequency at which a response was observed
at the lowest intensity) were between 400 Hz and 5 kHz, as shown
in Figure 1C.

Speech is encoded in spike timing with sub-millisecond
precision

To assess the contribution of different features of spike trains to
the neural code, we recorded responses to repeated presentations
of one of several 2-3 s segments of speech. Figure 1, D and E, show
the spectrogram of one of the speech segments along with the
responses of three example populations to a single presentation.
Our first step was to determine the critical timescale for the in-
formation carried by single spikes of individual neurons. The
responses of two example cells to repeated presentations of a
short segment of the speech are shown in Figure 1F. The re-
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sponses are time-locked to the speech
with high precision, indicating the capac-
ity of the cells to transmit information on
a fine timescale.

To measure the critical timescale for
each cell, we converted the spike trains to
binary vectors and computed the mutual
information between the stimulus and re-
sponse in single time bins using the small-
est time bin that yielded an unbiased
result for each cell (see Materials and
Methods). This quantity is equivalent to
the information carried by the PSTH on
the same timescale (Brenner et al., 2000).
We first computed the information in the
actual responses (I,), and then measured
the decrease in information that resulted
from jittering the spike times with succes-
sively larger amounts of noise as illus-
trated in Figure 2A (Lu and Wang, 2004;
Kayser et al., 2010). The top row shows a
short segment of the actual responses for
one example cell that had an information
rate of 68.4 bits/s. The second row shows
the responses after the addition of jitter
drawn from a uniform distribution with a
width of 7 = 0.1 ms, which had no visible
effect on the responses and no impact on
the information. The third row shows the
responses after the addition of noise with
7 = 1 ms, which resulted in a clear de-
crease in the precision of some response
events across repeats (see event marked by
arrow) and a drop in information to 93%
of I. The fourth row shows the responses
after the addition of noise with 7 = 10 ms,
which resulted in severe degradation of all
response events and reduced the informa-
tion to 55% of I,,. Finally, the bottom row
shows the responses after the addition of
noise with 7 = 100 ms, which left little
observable structure or information in the
responses.

The single spike information for this
example cell as function of the amount of
added jitter is shown in Figure 2B. We de-
fined 7y, the critical timescale at which
information is encoded, as the value of 7
for which the information dropped to
95% of I, which, for this cell, was 0.7 ms.
Figure 2C shows the distribution of 7, for
our sample of cells, which had a median
value of 2 ms [only cells with information
rates of at least 0.5 bits/s were analyzed
(n=368)]. To gain additional insight into
how the critical timescale varied across the
population, we examined the relationship
between 745 and the information in the
responses (I,). As shown in Figure 2D, the
critical timescale was finest for the most
informative cells [the correlation coeffi-
cient between 7o5 and I, was —0.58 (p <
0.001) after logarithmic scaling], suggest-
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versus the single spike information for each cell in our sample.

ing that when considering the total information transmitted by
the population, an even finer timescale may be appropriate.

Refractoriness shapes spikes patterns and increases
information transmission

The above analysis considered only the information in single
spikes and, thus, ignored any correlations between spikes. As a
first step toward assessing the impact of correlations in IC
spike patterns, we considered the temporal correlations be-
tween spikes from the same cell. The total correlations in the
actual spike trains can be decomposed into “signal” and noise
components (Gawne and Richmond, 1993). For single cells,
the signal correlations are the temporal correlations in the
PSTH and the noise correlations are the temporal correlations
in the deviation of the response in each time bin from the
PSTH. We focused our analysis mainly on noise correlations
(since the signal correlations are defined by the PSTH, any
description of spike trains that captures the PSTH on the rel-
evant timescale will also capture the effects of signal correla-

Info (bits/sec)

Refractoriness and information transmission. A, The temporal signal correlation functions for the IC cells in our
sample. Cells were ordered for plotting asin 3A. B, The distribution of temporal signal and noise correlations for our sample of cells.
To obtain these values, the temporal signal and noise correlation functions for each cell were summed over lags up to 12 ms. C, The
black distributions in the left panel show the effects of temporal noise correlations on the information in spike patterns of different
lengths with 0.7 ms time bins for our sample of cells. The percentage change in information due to temporal noise correlations was
computed as 100 X /eg,_ina/(ly + lq_gim) (se€ Materials and Methods for definitions of information theoretic quantities). The gray
distributions are those obtained when only half of the trials were used indicating the stability of the result. The blue and orange
lines show the median values for the same quantity computed with 1.4 and 2.1 ms bins, respectively. The right panel shows a
scatter plot of the effects of temporal noise correlations on the information in spike patterns that were 16 bins long with 0.7 ms bins

typically between 2 and 10 ms, as shown in
Figure 3B. After removing the effects of
refractoriness by shuffling, the maximum
of all of the ISI histograms shifted to the
smallest value, suggesting that refractori-
ness can change the distribution of spike
patterns over short-time windows. To
quantify this effect, we computed the
probability of observing different binary
spike patterns with a length of 12 ms be-
fore and after shuffling (for this and all
further analyses, 0.7 ms time bins were
used). As shown in Figure 3C, refractori-
ness resulted in an increase in the occur-
rence of patterns with a single spike, and a decrease in the
occurrence of patterns with multiple spikes.

To gain further insight into the impact of refractoriness, we
measured its effect on the information transmitted by spike pat-
terns. The impact of noise correlations on information transmis-
sion depends on the sign and magnitude of the signal correlations
(Oram et al., 1998; Panzeri et al., 1999). Generally, information
transmission will be decreased if signal and noise correlations
have the same sign, and increased if they have opposite signs.
Signal correlations elongate the distributions of responses to dif-
ferent stimuli along a direction that increases their overlap and,
thus, reduces stimulus discriminability. If noise correlations have
the same sign as signal correlations, they will further elongate the
response distributions in the same direction, further increasing
overlap and reducing discriminability, but if noise correlations
have the opposite sign from signal correlations, they will elongate
the response distributions in a direction that is orthogonal to the
direction of overlap and improve discriminability. Figure 4A
shows the temporal signal correlation functions, i.e., the tempo-

10 100
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A Generalized linear model of IC spike trains ral correlations in the PSTH, for each cell
in our sample. Most cells had positive

f link t§mp0ral signal. C(.)rrel.ations for short
time lags. The distribution of the tempo-

'.) - ral signal and noise correlations (summed

n = _.®_’ / o ‘ r [n] over lags up to 12 ms, the longest spike

>

: patterns for which information could be
g stim reliably calculated) for each cell in our sam-
ple is shown in Figure 4B. Temporal signal
/ hist and noise correlations were typically similar
g in magnitude and opposite in sign, suggest-
ing that the negative temporal correlations
imposed by refractoriness may increase in-
formation transmission by offsetting the
positive temporal correlations in speech. To
quantify the impact of refractoriness on in-
formation, we used an information break-
down approach to compute the impact of
stimulus-independent noise correlations on
the information in spike patterns (Polaetal.,
2003). The black distributions in Figure 4C
show the effects of refractoriness on the in-
formation in spike patterns of increasing
length for our sample of cells with 0.7 ms
> 8 32 128 2 8 32 128 time bins. The effects of refractoriness were
generally positive, reaching a median value

vy)

Temporal ‘noise’ correlations
Actual Model

Cells (sorted by refractoriness)

Lag (ms Lag (ms
0/(ms) _ ) pina) of approximately 10% of the total informa-
c Normalized ISI histograms tion in spike patterns that were 12 ms long,
Actual Model which was the maximum length for which

we could reliably compute information. To
provide an indication as to whether these
effects were stable for longer spike patterns,
we recomputed the information with larger
time bins, allowing information to be mea-
sured over longer time scales at the cost of
decreased temporal resolution. As shown in
Figure 4C, using larger bins resulted in an
overall decrease in information due to the
loss of temporal resolution, but confirmed
that the information reaches a steady value
2 8 32 128 2 8 2 128 for patterns between 10 and 20 ms. This is

ISI (ms) ISI (ms) consistent with the timescale of the rel-
ative refractory periods for these cells (i.e.,
the temporal noise correlation functions in

100 10 Fig. 3A), which was typically <10 ms. Fi-

Cells (sorted by mode ISI)

D Spike pattern probabilities E Change in info due to refractoriness

50

1 «—

panelin Figure 3B. Theright panel shows the ISI histograms for
the model generated spike trains, with cells ordered for plot-
ting as in the left panel. The inset in the right panel shows the
=0 0.01 - o distribution of the correlation coefficients between the IS his-

“ tograms for the actual and model generated spike trains for
J o the cells in our sample. D, The difference between the proba-

Model error (%)
o
o
Model (bits)
o
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' bility of different spike patterns in the actual and model gen-

4 3 2 1 0 0.01 0.1 1 10 erated spike trains for our sample of cells. For each cell,

Number of spikes in pattern Actual (bits) probabilities were averaged across all possible spike patterns

with a given number of spikes. For this analysis, spike patterns

Figure 5.  Modeling refractoriness in IC spike trains. 4, A schematic diagram of a generalized linear model of IC spike trains. B, ~ were represented as binary patterns that were 16 bins long

The temporal noise correlation functions for the actual and model generated spike trains for the IC cellsin our sample. The left panel ~ with 0.7 ms bins. E, A scatter plot of the effects of temporal

is the same as the right panel in Figure 3A. The right panel shows the correlation functions for the model generated spike trains,  noise correlations on the information in actual and model gen-

with cells ordered for plotting as in the left panel. The inset in the right panel shows the distribution of the correlation coefficients  erated spike trains for our sample of cells. For this analysis,

between the temporal noise correlation functions for the actual and model-generated spike trains for the cellsin our sample. , The  spike patterns were represented as binary patterns that were
ISl histograms for the actual and model generated spike trains for the IC cells in our sample. The left panel is the same as the left 16 bins long with 0.7 ms bins.
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Noise correlations between IC cells. A, The noise correlation functions for the pairs of simultaneously recorded IC cells in our sample. Color scale is the same as Figure 3A. B, The

distributions of pairwise noise correlations for gerbil IC, gerbil A1, and mouse IC. To obtain these values, the noise correlation functions for each pair were summed over lags between =5 ms.
Distributions are shown for pairs recorded on tetrodes separated by different distances. €, The distributions of the effects of noise correlations on the information in spike patterns for populations of

different size with 0.7 ms bins for our sample of cells. The percentage change in information due to noise correlations was computed as 100 X / ;. /(l + I

definitions of information theoretic quantities).

nally, we examined the extent to which the effects of refractoriness
varied across the population. As shown in Figure 4D, the effects of
refractoriness (measured for 12 ms spike patterns with 0.7 ms bins)
tended to be stronger for the more informative cells.

The effects of refractoriness can be captured by a

simple model

Given that refractoriness can play a significant role in shaping IC
spike patterns, we sought to find the simplest modeling frame-
work that could adequately capture its effects. We used the gen-
eralized linear model

p(f’[?’l]) = flink(gstim[n] + ghist[m] + C))

where the probability of a spike occurring in time bin # on a given
trial depends on a linear combination of a function g, that
describes the feed-forward influence of the stimulus and depends
only on #, a function g,;,, that captures the effect of spike history
based on the time since the last spike m, and a constant ¢ (see
schematic in Fig. 5A). The link function that converts this com-
bination to a probability value between 0 and 1 is the logistic
function f,(x) = €‘/(¢* + 1). This model is not designed to
predict responses to novel stimuli, but simply to capture the ef-
fects of temporal noise correlations on responses to the same
stimulus on which it is trained (with trials divided into two sets
for training and testing). Thus, the feedforward influence is not
estimated by passing the stimulus through a filter, but simply as a
nonparametric function of the time since stimulus onset. For a
cell without temporal noise correlations, since the probability of
spiking in a given time bin is described completely by the PSTH
and is independent of spike history, g;,, matches exactly the
PSTH and g, is all zeros (given adequate training data). In the
presence of temporal noise correlations such as refractoriness,
g, is a PSTH-like function that, when combined with the effects
of spike history captured by g, best describes the probability of
spiking on a trial-by-trial basis.

It is important to note that because of the linear form of the
spike history dependence in this model, there is no guarantee that
it will accurately capture the effects of refractoriness on spike
patterns, as the interactions between successive spikes may
be nonlinear. To assess the performance of the model, we used
the model to generate spike trains and compared the patterns in
the model spike trains to those in the actual data. As shown in
Figure 5, B and C, both the temporal noise correlation functions

) (see Materials and Methods for

sig—sim

and ISI histograms of the model spike trains closely matched
those of the actual data (see insets). The model also accurately
captured the probability of patterns with 0, 1, and 2 spikes within
a 12 ms time window (Fig. 5D). While spike patterns with 3 and 4
spikes were reproduced less well, these patterns were extremely
rare (average probabilities of 3.7 X 10 ~®and 2.6 X 10 ~%, respec-
tively, across our sample of cells), and thus, the failure of the
model to match these patterns did not impair its ability to capture
the effects of refractoriness on information transmission (Fig.
5E). These results demonstrate that the effects of the interactions
between successive spikes on IC spike patterns can be accurately
described by a simple model.

Noise correlations between IC cells are extremely weak

Thus far, we have considered only the temporal correlations be-
tween spikes from the same cell, but correlations between spikes
from different cells can also play a significant role in shaping
population spike patterns. As above, we focused our analysis on
noise correlations, since any description that captures the PSTHs
of the individual cells in a population on the relevant timescale
will also capture the effects of their signal correlations on popu-
lation spike patterns. As shown in Figure 6, A and B, the noise
correlations in our sample of IC populations were extremely
small. Figure 6A shows the noise correlation functions for all
simultaneously recorded pairs of cells in our sample with the
same color scale that was used for the temporal noise correlation
functions in the previous figures, and Figure 6B shows the distri-
bution of pairwise noise correlations (summed over lags between
*5 ms). The distributions are shown for pairs separated by dif-
ferent distances.

To demonstrate that our experimental approach was capable
of detecting noise correlations, we recorded responses to the
same sounds with the same electrodes in the primary auditory
cortex (A1), where strong noise correlations have been observed
previously (Eggermont, 2006; Luczak et al., 2009). As shown in
Figure 6B, the pairwise noise correlations in Al populations were
much larger. We also verified that the lack of noise correlations in
IC was not species specific by recording in the IC of mice. Figure
6B shows the distribution of pairwise noise correlations in pop-
ulation spike trains in mouse IC recorded during the presentation
of dynamic random chord sounds. As in the gerbil, the noise
correlations in the mouse IC were extremely weak. Finally, to
verify that noise correlations between cells did not have a signif-



19370 - J. Neurosci., December 4, 2013 - 33(49):19362-19372

icant impact on IC population spike patterns, we measured their
effect on the information transmitted by the population using the
same information breakdown approach as described above. For
this analysis, the response in each 0.7 ms time bin was specified as
a binary pattern with one element corresponding to each neuron
and only a single time bin was considered (i.e., temporal correla-
tions were ignored). As shown in Figure 6C, noise correlations
between cells had no impact on the information transmitted by
population spike patterns for the range of population sizes that
could be accurately assessed from our data.

Discussion

Our results provide a characterization of the population code for
speech in the IC, suggesting that any description of the processing
of speech in the subcortical auditory pathway should consider
spike times with sub-millisecond precision and include the effects
of refractoriness, but can treat spike trains as conditionally inde-
pendent (at least to second order) as noise correlations between
pairs of cells were extremely weak. The observed temporal preci-
sion in the IC is much finer than that observed in other mamma-
lian brain areas under natural stimulus conditions (Schnupp et
al., 2006; Butts et al., 2007; Kayser et al., 2010; Shusterman et al.,
2011; Roussin et al., 2012) and is consistent with the ability of IC
cells to respond to tones and broadband sounds with time-locked
spikes for carrier frequencies of >1 kHz and modulation fre-
quencies up to several hundred Hertz (Frisina, 2001; Joris et al.,
2004; Liu et al., 2006; Horvath and Lesica, 2011; Chen et al.,
2012). The influence of refractoriness in shaping IC spike pat-
terns is similar to its effects in the visual periphery and auditory
nerve (Gaumond et al., 1982; Miller, 1985; Berry and Meister,
1998; Kara et al., 2000; Uzzell and Chichilnisky, 2004; Avissar et
al., 2013). The increase in information that results from refracto-
riness is due to temporal decorrelation of the spike trains; the
negative temporal correlations imposed by refractoriness offset
the redundancy in the spike trains due to the positive temporal
correlations in the speech (Dan et al., 1996; Brenner et al., 2000;
Reinagel and Reid, 2000). Our observation that the noise corre-
lations between IC cells are negligible is an important step for-
ward in our understanding of population coding in the auditory
system; while noise correlations in auditory cortex have been well
documented (Eggermont, 2006; Luczak et al., 2009), our results
provide the first comprehensive assessment of their effects on
spike trains in a subcortical auditory area (Johnson and Kiang,
1976; Voigt and Young, 1988; Lesica et al., 2010). Noise correla-
tions between cells can have a major impact on population cod-
ing (Shadlen and Newsome, 1998; Abbott and Dayan, 1999;
Averbeck et al., 2006) and have been shown to play an important
role in shaping spike trains in many brain areas. The fact that
noise correlations between cells in the IC can be ignored greatly
simplifies the problem of understanding its function (see below)
and has important implications for speech processing in auditory
cortex. Recent studies have reported weak noise correlations in
some cortical populations (Ecker et al., 2010; Hansen et al., 2012;
Smith et al., 2013), but whether these weak cortical correlations
reflect weak correlations in subcortical inputs or active decorre-
lation due to recurrent connectivity in cortex (Renart et al., 2010)
remains to be determined.

Our approach to characterizing the neural code for speech in
the IC suggests a template for studying spike trains in any sensory
brain area based on answering three questions: (1) What is the
critical time scale for the information in single spikes? (2) Are
there temporal noise correlations and, if so, do they have a signif-
icant impact on spike patterns? (3) Are there noise correlations

Garcia-Lazaro et al. e Population Coding of Speech

between cells and, if so, do they have a significant impact on spike
patterns? Answering the first question is equivalent to specifying
the size of the time bin that should be used if spike trains are to be
described only by their PSTHs, while answering the second and
third questions requires assessing the extent to which PSTHs are
a sufficient description for the spike trains of individual cells and
the population. While the first question is easily answered given
limited experimental data, the second and third may not be if, for
example, the timescale of the noise correlations is large relative to
the resolution of the single spike information; if small time bins
must be used to capture the single spike information, but long
time windows must be considered to capture the full impact of
the correlations, it may be difficult to accurately measure the
probabilities of different spike patterns. Furthermore, additional
difficulties may arise if the timescale of the correlations is finer
than that of the information in single spikes (Brenner et al.,
2000), if correlations are of a high order (Ohiorhenuan et al.,
2010), or if the recording technique is not able to sample the
neuronal population at the appropriate spatial scale (Smith and
Kohn, 2008). There are also many ways to measure the impact of
noise correlations on spike patterns. We chose to look directly at
the effect of noise correlations on pattern probabilities and mu-
tual information in IC spike trains, which is reasonable for a
subcortical area where spiking is predominantly driven by
stimulus-driven input from sensory receptors, but may be less
appropriate for the cortex where intrinsic dynamics play a larger
role. Ultimately, the impact of noise correlations should be as-
sessed by their impact on perception and behavior (Gutnisky and
Dragoi, 2008; Cohen and Maunsell, 2009; Gu et al., 2011; Jeanne
etal., 2013).

Our results suggest that the problem of understanding popu-
lation coding in the IC can be reduced to the problem of under-
standing the stimulus-driven spiking of individual cells and their
refractoriness. While this is still a difficult problem, it is simpler
than the analogous problem in many other sensory areas, where
spike trains are influenced not only by stimulus-driven input, but
also by intrinsic influences from the surrounding neural network.
The problem of understanding the stimulus-driven input to in-
dividual IC cells is made difficult by the many nonlinearities of
the cochlea (Robles and Ruggero, 2001), which appear to play a
significant role in the processing of speech (Young and Sachs,
1979; Sinex and Geisler, 1983; Delgutte and Kiang, 1984; Palmer
et al., 1986). Fortunately, much progress has been made toward
characterizing these nonlinearities (Brown et al., 2010; Hudspeth
etal., 2010; Zilany and Carney, 2010), and the additional nonlin-
earities in the auditory brainstem appear to be relatively modest
(Chen et al., 1996; Delgutte et al., 1998; Young, 2008). Thus,
based on our results and other recent progress in the field, we are
optimistic that a comprehensive model of the processing of
speech in the IC may be attainable in the near future.
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