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Genetic and genomic approaches in model organisms have advanced our understanding of root biology over the last decade.
Recently, however, systems biology and modeling have emerged as important approaches, as our understanding of root
regulatory pathways has become more complex and interpreting pathway outputs has become less intuitive. To relate root
genotype to phenotype, we must move beyond the examination of interactions at the genetic network scale and employ
multiscale modeling approaches to predict emergent properties at the tissue, organ, organism, and rhizosphere scales.
Understanding the underlying biological mechanisms and the complex interplay between systems at these different scales
requires an integrative approach. Here, we describe examples of such approaches and discuss the merits of developing models to
span multiple scales, from network to population levels, and to address dynamic interactions between plants and their
environment.

Root architecture critically influences nutrient and
water uptake efficiency and plays a central role in
plant productivity (Lynch, 1995); selecting new crop
varieties with improved root traits may produce a
second Green Revolution (Lynch, 2007). Over the past
several decades, reductionist approaches have pin-
pointed the individual genes or mechanisms that
control root system architecture (for review, see Benfey
et al., 2010). However, as our knowledge of biological
systems has increased, researchers have realized that
the underlying components (e.g. gene products, cells,
tissues, and organs) function in highly complex, dy-
namic networks. The existence of emergent traits, ro-
bustness, and hierarchical organization of biological
systems make them challenging to conventional re-
ductionist experimental approaches (Bruggeman and
Westerhoff, 2007). Understanding these properties re-
quires studying the system rather than its individual

components. Also, in contrast to the simple linear
networks conveyed in textbooks, biological networks
usually contain multiple branches, feedback and/or
feed-forward loops, and other complex regulatory
motifs. For example, most signal transduction pathways
include negative feedback and/or positive feed-
forward loops to switch off or amplify a response
pathway. Hence, logic alone often fails to predict the
output from such pathways. Systems approaches often
employ mathematical or computational models to
simulate the behaviors of these nonlinear networks and
predict emergent behaviors (for review, see Middleton
et al., 2012). Robust biological systems also have
compensatory mechanisms that come into play when a
key gene is removed. For example, 65% of knockout
lines for Arabidopsis (Arabidopsis thaliana) transcrip-
tion factors in the root stele gene regulatory network
(GRN) showed molecular phenotypes, but only 16%
showed morphological phenotypes (Brady et al., 2011).
Thus, in the robust stele GRN, the network architec-
ture or genetic redundancy can buffer or canalize
changes in gene expression. Hierarchy is inherent to all
biological systems. At scales relevant to agriculture,
hierarchy starts at the field scale. Field-scale popula-
tions comprise individual plants, which are composed
of organs, tissues, cells, organelles, and molecules.
Each hierarchical level interacts with higher and lower
scales. Hence, understanding the underlying biological
mechanisms of the complex, critical interplay between
these scales requires an integrative systems approach.

Root researchers currently use several distinct
systems-based approaches. “Top-down” approaches
automatically analyze large-scale data sets to uncover
relationships between levels of transcripts and/or
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proteins (for review, see Bassel et al., 2012). This ap-
proach starts with experimental “omics” data, followed
by data analysis and data integration to determine
correlations, and ends with the formulation of hypoth-
eses concerning the coregulation and interregulation
of groups of molecules. These hypotheses predict new
correlations that can be iteratively tested (Bruggeman
and Westerhoff, 2007).

Another approach, termed “bottom up,” constructs
detailed models of well-characterized networks that can
be simulated mathematically and/or computationally.
This approach starts with a manageable part of a sys-
tem, such as a small GRN, and employs mechanism-
based models (for review, see Middleton et al., 2012).
Bottom-up studies take an integrative approach to look
for emergent properties of a network with available
quantitative information such as kinetic data, transcrip-
tion rates, and protein stability. As information about
GRN increases, so does the opportunity to implement
mechanistic models for bottom-up studies.

“Middle-out” approaches construct models starting
at the level for which we have the most information
and combining predictive bottom-up and inference-
based top-down approaches, thus building on the
current body of knowledge (Noble, 2008). The middle-
out approach can start at any scale. However, cells
provide a natural level of organization for an orga-
nism, cell-based models can endow individual cells
with considerable internal machinery (representing the
subcellular networks), and the interactions of numer-
ous individual cells can lead to the (emergent) tissue-
scale properties. This makes cell-basedmodels an attractive
approach, as they naturally incorporate heterogeneity
via cellular properties.

“Multiscale” approaches employ models that con-
sider behaviors on two or more spatial scales, ranging
from the subcellular up to the whole organism and
beyond. Multiscale models must also incorporate
temporal scales ranging over many orders of magni-
tude. Spatially, systems can be measured at the mo-
lecular scale (10210 m) through the whole-plant scale
(0.1–100 m) or up to the field level (more than 1,000 m).
Likewise, temporal scales can range from nanoseconds
(1029 s) for enzymatic reaction to months and years
(107 s) for a plant life cycle. Given this range of tem-
poral and spatial scales, multiscale models are often
challenging to construct, and relatively few examples
involve plant roots (Band et al., 2012a).

Although our review focuses on roots, we do not
ignore links to the whole-plant and field systems. We
ultimately study roots because they take up water and
nutrients, which influences crop yield and environ-
mental adaptation. While the first point, that roots are
fundamental to the whole plant, is obvious, the second
point, that of the effect of the whole-plant context on
the root, is often overlooked.

This review attempts to cover the plethora of activ-
ities that make up root systems research, employing
the approaches detailed above. In recent years, “root
systems biology” has become synonymous with the

top-down approach pioneered by Benfey, Birnbaum,
Coruzzi, and coworkers, involving transcriptomics
and bioinformatic analysis (Poultney et al., 2007; Benfey
et al., 2010; Katari et al., 2010). Here, we first describe
the impressive progress made using this approach to
build root GRNs and elucidate novel biological
mechanisms. We also discuss how mathematical and
computational modeling employing bottom-up,
middle-out, and multiscale approaches helps us un-
derstand the mechanistic behavior of root systems
from the GRN scale to whole-root system and rhi-
zosphere scales, thereby enabling us to bridge the
genotype-to-phenotype gap by integrating environmental
information.

TOP-DOWN ROOT SYSTEMS
BIOLOGY APPROACHES

Until recently, root-related gene and protein net-
works have been characterized using low-throughput
molecular genetic and cell biological approaches (e.g.
double mutants, fluorescence resonance energy trans-
fer; Benfey et al., 2010). Although these approaches
have enabled the discovery and characterization of
many small GRNs controlling root developmental
programs, they do not work for large-scale network
identification, as they build GRNs in a gene-by-gene
manner. In contrast, top-down systems biology
approaches are ideally suited to construct large-scale
root networks of genes or proteins (for review, see
Bassel et al., 2012).

New omics profiling technologies such as tran-
scriptomics have enabled explosive growth of top-
down approaches in recent years, and the large-scale
data sets required to conduct top-down approaches
have increased almost exponentially since the se-
quencing of the Arabidopsis genome (Arabidopsis
Genome Initiative, 2000; for review, see Mardis, 2008;
Egan et al., 2012; Hamilton and Buell, 2012). Expres-
sion analysis of specific cell types and developmental
stages in Arabidopsis roots can be accomplished using
techniques such as laser-capture microdissection (Kerk
et al., 2003; Jiao et al., 2009). The most widely used
technique uses fluorescence-activated sorting of marked
cells, usually from transgenic lines with tissue-specific
expression of GFP. This technique uses total RNA pre-
pared from sorted protoplasts of these transgenic lines
(Birnbaum et al., 2005). Another method involves
expressing a tagged ribosomal protein behind a tissue-
specific promoter (Zanetti et al., 2005). Immunopre-
cipitation of ribosomes from such transgenic plants
allows researchers to profile only the actively translated
transcripts.

The majority of current top-down examples in roots
examine mRNA transcript abundance (transcriptomics),
but transcript levels do not necessarily predict protein
abundance. Directly examining proteins, a protein ex-
pression map of the Arabidopsis root provided the
identity and cell type-specific localization of nearly
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2,000 proteins, and colocalization data provided
support for numerous protein-protein network in-
teractions (Petricka et al., 2012). Other omics profil-
ing techniques recently employed in roots include
metabolomics, which measures the pool sizes of me-
tabolites (molecules of less than 1,000 D) that collec-
tively define the metabolome (Fiehn et al., 2000).
Moussaieff et al. (2013) used a cell-sorting approach
to perform nontargeted metabolomics assays on core
cell types in the Arabidopsis root. This study pro-
vided a metabolic map of the key root cell types,
identifying 50 metabolites.
The challenge root researchers face is how to use

these rich omics data sets to elucidate meaningful reg-
ulatory relationships between mRNAs, proteins, and
other biological molecules. Two distinct approaches
have been employed to construct large-scale root reg-
ulatory networks (summarized in Fig. 1 using two
specific examples). The direct approach involves a
systematic experimental screen of pairwise interactions
among a carefully selected subset of potentially inter-
acting root genes and/or proteins. The second, indirect
approach exploits the availability of root omics (pre-
dominantly transcriptomic) data sets to infer GRNs
through statistical analysis and the identification of
regulatory relationships between tens to many thou-
sands of genes. In the next section, we review both
approaches using recent examples.

Building Root Networks Using Interaction Screens

Brady et al. (2011) recently described an interaction-
based screen to unravel the GRN controlling the
identity of the stele, the innermost Arabidopsis root
tissues. The authors initially used a high-resolution
spatiotemporal root gene expression map (Brady
et al., 2007) to select 167 genes encoding stele-enriched
transcription factors (TFs). They carried out a yeast
one-hybrid screen using these 167 TF genes as prey
and the promoters of 65 out of the 167 genes as bait.
They also included in their screen the promoters of
28 microRNAs (miRNAs) that target some of the se-
lected TFs. Next, they completed their network with a
yeast two-hybrid screen to identify protein-protein
interactions between the 167 TFs. The two screens
generated a network of 66 protein-DNA interactions
and 25 protein-protein interactions. Fifty-nine percent
of the protein-DNA interactions could be validated in
planta by chromatin immunoprecipitation (ChIP) and
genetic analysis. To determine whether the protein-DNA
interactions detected by yeast one-hybrid screening and
ChIP-PCR resulted in positive or negative effects on
transcription, they next analyzed changes in transcript
accumulation of the predicted targets in lines knocked
down or overexpressing each putative regulator. This
approach allowed them to quantify the strength of the
interactions and identify the strongest regulators for
each target. This systematic screening approach suc-
cessfully recovered the core of the GRN controlling
stele tissue identity and quantitatively measured the

strength of the interactions in this GRN. This time-
consuming method yields only a partial GRN, but it
provides an excellent experimentally validated frame-
work to undertake more detailed analysis of network
topology through further laboratory-based and in
silico modeling studies.

One of the key challenges to building GRNs lies in
defining and confirming the cis-acting regulatory ele-
ments in the promoters of transcription factor targets.
Recent genome-aided investigations of the develop-
mental pathway have begun to provide insights into
how useful this can be (Won et al., 2009). This approach
depends on knowledge of the consensus binding mo-
tifs for the transcription factors, knowledge largely
lacking in Arabidopsis. High-throughput genomic
approaches such as ChIP sequencing and yeast one-
hybrid screening have begun to fill in this knowledge
gap, but the large number of known and putative
transcription factors suggests that in silico scans
with subsequent validation will remain the standard
approach.

Building Root Networks Using Statistical
Inference Algorithms

Network inference approaches typically look for
correlative associations (e.g. sets of genes expressed
under a particular condition) in genome-wide omics
data sets, commonly using transcriptomic data. Ini-
tially, the approach identifies the components corre-
lated with specific variables (e.g. time, developmental
stage, genetic differences, and growth conditions).
Conditional and temporal/developmental transcriptomic
data can be used to infer GRNs. Conditional expression
data compare variables such as the wild type versus
root hair-defective mutants (Jones et al., 2006), treated
versus mock treated (Paponov et al., 2008), or com-
binations of genetic and environmental variables
(Okushima et al., 2005; Bruex et al., 2012). Time-series
expression data can be collected following develop-
mental or experimental induction of the system.
Temporal and developmental transcriptomic data sets
relevant to roots include those associated with lateral
root formation (De Smet et al., 2008), root hair nodu-
lation (Libault et al., 2010), or responses to hormone or
nutrient treatments (Krouk et al., 2010; Bielach et al.,
2012). For example, Ruffel et al. (2011) studied how
systemic nitrate signaling affected genome-wide pro-
gramming in root development (Fig. 1). This involved
physically isolating root systems of the same plant
using a “split root” and challenging them with different
nitrate conditions. This system was used to probe sys-
temic nitrate responses by comparative transcriptomic
analysis of Arabidopsis mutants impaired in nitrate
reduction and hormone synthesis and on decapitated
plants. The authors performed three-way ANOVA
to analyze the data as a whole, including the nitrogen
and split-root effects. This analysis identified genes
whose nitrate responses were affected by the split-root
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conditions and found at least two genetically indepen-
dent systemic signaling mechanisms important for
communicating the nitrate supply and demand of a
plant (Ruffel et al., 2011).

Clustering provides a useful first analysis of tran-
scriptomic data sets (Eisen et al., 1998; Bansal et al.,
2007). Hierarchical clustering uses a pairwise measure
of distance between gene expression profiles to compute

distance trees (dendrograms) that delimit clusters of
coexpressed genes; genes showing similar expression
profiles are likely to be coregulated. Clustering can
help identify regulatory modules, but it does not re-
veal the regulatory relationships of the genes inside a
cluster. If two genes cluster together, they could be
targets of another gene or one gene could directly or
indirectly regulate the other.

Figure 1. Examples of top-down approaches to infer GRNs. Left column, Krouk et al. (2010) combined time-series tran-
scriptomic data with published hormone treatment data sets (Nemhauser et al., 2006) to obtain a temporal model for nitrate-
driven gene expression networks. They then used a machine-learning approach (state-space modeling) to infer a regulatory
network governing nitrate response over time. Middle column, Ruffel et al. (2011) combined genetic and genomic approaches
within a split-root system to study how systemic nitrate signaling affected genome-wide programming in root development.
Right column, Brady et al. (2011) employed a modeling approach to predict the regulatory potential of each of the relationships
they identified within the stele GRN. Stele-expressed transcription factors were selected from the GRN data set published
previously (Brady et al., 2007). Protein-protein and protein-DNA maps were generated from yeast one-hybrid and two-hybrid
screens of stele-expressed TFs and miRNAs. The key interactions between TFs and their target genes were measured by
quantitative reverse transcription-PCR of target gene expression in the wild type and mutant lines. Regulatory interaction
strength is represented by edge and arrow width, with thicker lines or arrowheads representing steeper slopes. P value strength
is represented by edge opacity, with darker edges representing more significant interactions. Slopes were determined by plotting
quantitative PCR expression values of the TF and its target and fitting a line using weighted least-squares regression. This
predictive framework enables the identification of the most influential upstream activators or repressors to be manipulated to
regulate the expression of a target.
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In contrast to clustering approaches, correlation
network reconstruction algorithms aim to infer the
regulatory relationships between correlated genes. The
simplest way of building a correlation network consists
of first calculating all pairwise Pearson’s correlations
between expression profiles and then determining the
edges of the network through a thresholding procedure.
However, these simple correlation network analyses
have the same drawbacks as clustering analyses.
Several algorithms based on various types of math-

ematical formalisms have been developed over the
last decade to infer GRN state-space representation
models; one of the earliest and widely used methods
for modeling gene networks (Noor et al., 2013) at-
tempts to capture the dynamic evolution of the gene
network. Krouk et al. (2010) employed a state-space
modeling approach termed machine learning to ana-
lyze time-series transcriptome data and generate test-
able hypotheses to probe potential mechanisms
underlying the root nitrate signaling pathway. Out of
550 nitrogen-regulated genes, the authors extracted 67
that correspond to the predicted transcription factors
plus nine nitrogen-regulated target genes belonging
to the primary nitrogen assimilation pathway. The
machine-learning approach proposed a regulatory
network derived from the high-resolution tran-
scriptome data set that was sampled at rapid time
points after roots were treated with nitrate. Intrigu-
ingly, of the 76 studied genes, 60 have 500 significant
connections, suggesting that nitrate regulation is
highly complex. Indeed, the authors speculated that
this high level of connectivity “may explain why, to
date, (reductionist) experimental analyses have
uncovered only few molecular actors specifically
involved in the control of NO3

2-induced gene ex-
pression” (Krouk et al., 2010). Nevertheless, by deter-
mining the topology of the GRN, the authors
pinpointed a key node, the SBP BOX-LIKE9 (SPL9)
transcription factor. The model identified SPL9 as the
third most influential transcription factor regulating
nitrogen assimilation genes, since it is induced minutes
after nitrate treatment and controls at least six genes,
including two highly important genes. Furthermore,
SPL9 had the greatest magnitude and number of “in”
connections controlling it. Hence, the authors con-
cluded that “SPL9 constitutes a potential crucial bot-
tleneck in the flux of information mediated by the
proposed nitrogen regulatory network,” a prediction
that was later validated experimentally through stud-
ies demonstrating that SPL9 overexpression modifies
the characteristics of nitrate signal propagation.
Probabilistic graphical modeling techniques such as

Bayesian, Gaussian, and qualitative probabilistic net-
works have also emerged as useful tools for reverse
engineering GRNs (for review, see Noor et al., 2013).
Bayesian approaches were initially developed to infer
GRNs from steady-state expression data (Friedman
et al., 2000). They were later extended to solve infer-
ence problems on time-series expression data (dy-
namic Bayesian network; Perrin et al., 2003; Yu et al.,

2004). For example, to infer the GRN important for
root hair differentiation, Bruex et al. (2012) examined
the transcriptomes of 17 root epidermal mutants and
two plant hormone treatments. They used a Bayesian
approach to infer the regulatory relationships between
208 core genes and used expression information from a
developmental time-series data set to position genes
temporally within the network (Bruex et al., 2012).

Tools and Resources Available for Root System
Biology Studies

A wealth of available tools and databases can be
used for data collection, data mining, analysis, and
meta-analysis. The high spatial resolution of tran-
scriptome data sets has proved particularly valuable
for root studies (Brady et al., 2011). For example, 85%
of the 3,656 differentially expressed genes identified by
a cell-sorting analysis were not detected in whole-root
experiments (Gifford et al., 2008). This illustrates the
sensitivity of these approaches; also, transcriptional
responses to environmental cues are likely to be tissue
specific and masked in whole-root assays.

As the capacity to generate high-throughput large-
scale data sets increases, so does the need for tools
designed to collect and examine this wealth of new
information. Despite the focus on aboveground tissues
and whole-plant expression, many tools and resources
are already available for root biologists to adopt for
their studies. The publicly available Arabidopsis eFP
Browser visualizes relative and absolute gene expres-
sion data across approximately 22,000 genes from
Arabidopsis, as represented on the ATH1 GeneChip
from Affymetrix (Winter et al., 2007). This platform
includes root-expressed genes profiled using 19
marker lines and 13 developmental stages, corre-
sponding to cell types and tissues at progressive
developmental stages, and transcript profiles from
quiescent center cells of the root meristem (Brady et al.,
2007). The updated Arabidopsis eFP Browser incor-
porates gene expression data from a variety of sources,
including roots under abiotic stresses such as high
salinity, iron deprivation, nitrogen availability, low
pH, and sulfur and phosphate deficiency (Dinneny
et al., 2008; Gifford et al., 2008; Iyer-Pascuzzi et al.,
2011; Lin et al., 2011).

The majority of root transcriptome data sets contain
microarray data, but many future data sets will con-
tain next-generation sequencing data, from RNA
analysis through complementary DNA sequencing at a
massive scale (RNA-seq; Ozsolak and Milos, 2011).
Indeed, RNA-seq overcomes many of the limitations of
microarray technologies. For example, RNA-seq can
detect alternative isoforms of RNA transcripts and
discover miRNAs (Fahlgren et al., 2007) or small, in-
terfering RNAs (Kasschau et al., 2007; for review, see
Ghildiyal and Zamore, 2009; Ozsolak and Milos, 2011).
Next-generation sequencing-based investigation of Arabi-
dopsis root system architecture in response to nitrate
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availability discovered a nitrate-responsive miRNA
and its target (Vidal et al., 2010). The authors found
that nitrate induces the expression of both miRNA393
and its target, the auxin receptor AUXIN SIGNALING
F-BOX3 (AFB3), with a time delay, creating a negative
feedback loop of regulation; this module regulates
primary and lateral roots by modifying auxin re-
sponses via AFB3 (Vidal et al., 2010). Vidal et al. (2013)
recently extended their studies to dissect regulatory
networks activated by nitrate in roots and acting
downstream of AFB3. Employing the Sungear tool (for
details, see Table I), they found that the NAC4 tran-
scription factor controls a nitrate-responsive network.
Intriguingly, the nac4 mutant exhibits altered lateral
root growth but normal primary root growth in re-
sponse to nitrate. The authors conclude that AFB3 ac-
tivates two independent pathways to control root
system architecture.

The Arabidopsis Interactions Viewer searchable
database includes experimental and predictive infor-
mation from protein-protein interactions (Geisler-Lee
et al., 2007). This freely available and curated re-
source (Table I) queries a database of 70,944 predicted
and 28,556 confirmed Arabidopsis interacting proteins
against a protein(s) of interest. The experimentally
confirmed and predicted interactions come from
BIND, the Biomolecular Interaction Network Database
(Willis and Hogue, 2006), from high-density Arabi-
dopsis protein microarrays (Popescu et al., 2007, 2009),
from the Arabidopsis Interactome Mapping Consor-
tium (2011), the Membrane protein INteractome
Database MIND (Lalonde et al., 2010), the Arabidopsis
G-signaling Interactome Database (Klopffleisch et al.,
2011), and over 1,190 other literature sources. The
subcellular localization data in the Arabidopsis Inter-
actions Viewer comes from an older version of SUBA

Table I. Databases, data mining, and analysis tools for root systems biology

Freely available databases and mining tools for root systems biology are listed. Many of these databases also may be useful for the study of other
plant organs and systems.

Resource Description Reference

VirtualPlant 1.3 (http://www.virtualplant.org) Integrates genomic data and provides visualization
and analysis tools to aid the generation of biological
hypotheses; also includes predicted and validated
protein-DNA interactions

Katari et al. (2010)

Sungear (http://virtualplant.bio.nyu.edu/
cgi-bin/sungear/index.cgi)

Enables rapid, visually interactive exploration of large
sets of genomic data; allows browsing of gene sets
by experiment, gene annotation, and ontological
term; makes otherwise complicated queries quick
and visually intuitive

Part of the VirtualPlant
suite of tools

Arabidopsis eFP Browser (http://bar.
utoronto.ca/efp/cgi-bin/efpWeb.cgi)

Enables the visualization of relative and absolute
gene expression data from approximately 22,000
Arabidopsis genes in different tissues and under
a variety of conditions

Winter et al. (2007)

GENIUS (Gene Network Inference Using
Signatures; http://networks.bio.puc.cl/
genius/)

Uses large-scale gene expression data to identify
signatures that characterize and discriminate
the process of interest, and then uses these
signatures to predict a functional gene network

VisuaLRTC Lateral root transcriptome compendium Parizot et al. (2010)
iRootHair (http://www.iroothair.org/) A comprehensive database of root hair genomics

information
Kwasniewski et al.

(2013)
SUBA3 (http://suba.plantenergy.uwa.edu.au) Combines manual literature curation of large-scale

subcellular proteomics, fluorescent protein
visualization, and protein-protein interaction
data sets from Arabidopsis with subcellular
targeting calls from 22 prediction programs

Tanz et al. (2013)

Arabidopsis Interaction Viewer (http://bar.
utoronto.ca/interactions/cgi-bin/
arabidopsis_interactions_viewer.cgi)

Queries a database of 70,944 predicted and 28,556
confirmed Arabidopsis interacting proteins against
the protein(s) of interest; includes subcellular
localization from SUBA

Geisler-Lee et al.
(2007)

PlantMetabolomics.org
(http://plantmetabolomics.vrac.iastate.
edu/ver2/)

A National Science Foundation-funded multi-institutional
project that is developing metabolomics as a functional
genomics tool for elucidating the functions of Arabidopsis
genes; the consortium has established metabolomic
platforms that detect approximately 1,800 metabolites

Bais et al. (2010)

Ionomics Hub (http://www.ionomicshub.
org/home/PiiMS)

Contains curated ionomic data on many thousands of plant
samples (from Arabidopsis, Brassica napus, rice [Oryza sativa],
maize, and soybean [Glycine max])
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(which does not include predicted localization from
SUBA3). Other freely available tools include user-friendly
platforms designed to facilitate hypothesis formulation
by depositing information on high-throughput profiling
information relating to the plant tissue metabolome (Bais
et al., 2010) and mineral composition (termed the ionome;
Baxter et al., 2007).
Resources for mining high-throughput profiling

data sets increasingly include user-friendly platforms,
but the ever-increasing information contributed by
low-throughput studies remains less well annotated.
A wealth of information relevant to root biology re-
mains buried within various repositories, including the
scientific literature. Text mining can retrieve these data,
but as the body of information grows, the feasibility of
manual annotation decreases. However, advanced text-
mining methodology has recently been implemented
(Van Landeghem et al., 2013), including work to collate
information about specific tissues or processes in a
readily accessible format. For example, the more than
1,300 articles that describe processes related to root hair
cells would require extensive time and effort to extract
relevant information by a traditional literature review
(Kwasniewski et al., 2013). iRootHair addresses this
problem and provides a freely available resource that
collects, presents, and shares the available information
in a systematic, curated fashion (Kwasniewski et al.,
2013). Features of iRootHair include four searchable
sections: Genes, Processes of root hair formation, Root
hair mutants, and References. The database also inte-
grates bioinformatic tools and can be used to identify
particular genes of interest or to find broader informa-
tion about root hair genomics.

Bottom-Up Root Systems Biology Approaches

In contrast to the phenomenological-type models
used in top-down studies, the hypothesis-driven
bottom-up approach uses predictive models that can
be tested experimentally (for review, see Middleton
et al., 2012). This requires quantitative data on key
components of the steady-state system to build
mechanism-based models to predict emergent behav-
iors of the system. Mechanism-based models help us
conceptualize biological processes and uncover gaps
in our understanding. These models can be used as
simulations, which assist in experiential design by
enabling researchers to make well-founded and testable
predictions. Models, by nature, oversimplify the system
we wish to study and should ideally be improved in
an iterative loop, in association with experimental val-
idation. The more quantitative data available for key
components of a particular system, the greater the op-
portunity to construct meaningful models.
New mathematical and computational models probe

the biological significance of identified interactions
within increasingly complex GRNs. The BioModels
Database serves as a reliable repository of computational
models of biological processes (Li et al., 2010). The

BioModels Database Web site (http://www.ebi.ac.uk/
biomodels-main/) hosts a collection of models described
in peer-reviewed scientific literature as well as models
generated automatically from pathway resources
(Path2Models). These freely available models can
be used or adapted to address relevant biological
questions. As information on root regulatory networks
increases, so does the opportunity to implement
mechanistic models for bottom-up studies (for review,
see Middleton et al., 2012). Below, we discuss some ex-
amples of how these types of models have successfully
addressed important biological questions related to root
systems.

The molecular and biochemical reactions that un-
derpin biological systems are often nonlinear, with
feed-forward and feed-backward loops that contribute
to the robustness of the system (Mosconi et al., 2008).
For example, the phytohormone auxin regulates cell
division, elongation, and differentiation in roots (Péret
et al., 2009; Stahl and Simon, 2010; Sablowski, 2011).
Auxin functions in part by mediating the degradation
of auxin/indole-3-acetic acid (Aux/IAA) family pro-
teins, which repress auxin response transcription fac-
tors (ARFs). ARFs regulate various downstream genes
that define the auxin-responsive cellular processes de-
scribed above, including Aux/IAAs. Thus, the pathway
comprises multiple negative feedback loops. Middleton
et al. (2010) developed a mathematical model of the
auxin response network by employing a series of coupled
ordinary differential equations. The model captures all
key auxin response network components, including
auxin, its receptor protein TIR1, ARFs, and interacting
AUX/IAA repressor proteins, together with their
known regulatory relationships. The quantitative data
from molecular studies on protein turnover and tran-
scription rates enabled Middleton et al. (2010) to build a
model using realistic parameters. Simulations using this
model revealed the importance of the turnover rates of
Aux/IAA protein and mRNA for the dynamic behavior
of the model.

Model predictions that are inconsistent with the
experimental data can point to the existence of un-
known interactions or components missing from the
network model. For example, the model described
above showed discrepancies between its behavior and
the experimental data (Middleton et al., 2010). In ex-
periments, the abundance of some mRNA species can
change by up to 30-fold (Abel and Theologis, 1996).
However, achieving this level of fold change in the
original model developed by Middleton et al. (2010)
requires an extremely large (and possibly unrealistic)
increase in auxin levels. This points to the existence of
additional regulatory mechanisms that might amplify
the cellular response (as measured by Aux/IAA mRNA
levels) to changes in auxin. A number of ARF-encoding
genes respond to auxin (Okushima et al., 2005), which
could represent a feed-forward loop that allows signal
amplification.

The ARF family member MONOPTEROS (MP) up-
regulates both its own expression and the expression
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of the gene encoding Aux/IAA family member
BODENLOS (BDL; Lau et al., 2011). Thus, the network
consists of an ARF-based positive feedback loop cou-
pled to the Aux/IAA negative feedback. The presence
of a positive feedback loop in a model can lead to
bistability, in which the system can rest in either of two
stable states. The two stable states allow for switch-like
behavior that functions as a form of signal amplifica-
tion. For example, increasing levels of exogenous auxin
can switch the system from a low-MP/BDL concen-
tration steady state to a high one (Lau et al., 2011).
Bistable systems also exhibit hysteresis, where the be-
havior of a system depends not only on its current
condition but also on its past environment. As auxin
levels increase, MP expression increases and the sys-
tem approaches a high-MP/BDL steady state. How-
ever, as auxin levels decrease, MP and BDL levels
decrease much more slowly (i.e. the MP positive feed-
back loop is self-sustaining) and remain up-regulated
for several hours (Lau et al., 2011). Moreover, the
system can generate switch-like responses to changes
in auxin concentration, so that an MP-dependent
developmental program can only initiate over a
certain threshold. Once the switch has been activated
(and the system is in an MP up-regulated state), the
network’s behavior will be robust to large changes
in the level of auxin. Hence, modeling has revealed
how auxin can induce all-or-nothing developmental
outputs.

Another increasingly important aspect of root de-
velopmental biology is the study of cross regulation
between two or more hormones. For example, the in-
terplay between auxin and cytokinin controls the size
of the root meristem in an antagonistic manner (Dello
Ioio et al., 2008). Local accumulation of auxin promotes
root cell division, whereas high cytokinin concentra-
tions promote differentiation. To study the interplay
between auxin and cytokinin signaling, Muraro et al.
(2011) developed an ordinary differential equation-
based mathematical model of known interactions. In
addition to the auxin-mediated up-regulation of Aux/
IAA genes (notably SHORT HYPOCOTYL2 [SHY2]),
auxin also up-regulates the transcription of genes en-
coding ARR-A inhibitors of the cytokinin response.
ARR-A genes are also up-regulated by ARR-Bs in re-
sponse to cytokinin. In contrast, cytokinin signaling
activates an ARR-B transcription factor, which in turn
induces the transcription of SHY2. In silico perturba-
tions to the model predict experimental changes in cell
division observed in both gain-of-function and loss-of-
function shy2 mutants, suggesting that the network
had accurately captured the regulatory mechanisms
controlling meristem size.

MIDDLE-OUT ROOT SYSTEMS
BIOLOGY APPROACHES

The middle-out approach starts at the physical scale
at which there is the most information and takes

bottom-up and top-down approaches. Models con-
structed at the cell scale are particularly well suited to
the middle-out approach because the cell comprises
subcellular network systems (revealed using a top-
down approach), and cell-cell interactions lead to the
emergence of tissue-scale properties (revealed using a
bottom-up approach). However, the middle-out ap-
proach can start at any scale with sufficient available
information. In the following section, we review ex-
amples where root researchers have developed models
focused at the subcellular, cell, tissue, organ, whole-
plant, and plant-environment scales.

Subcellular-Scale Systems Models

At the subcellular scale, root models have been de-
scribed that simulate gene regulatory, signaling, and
metabolic networks. These typically employ Boolean,
ordinary differential equations, or stochastic approaches
(when low copy numbers are important; for review, see
Band et al., 2012a).

Dupeux et al. (2011) described a stochastic model
developed to study abscisic acid (ABA) signal
perception within a cell. The key hormone ABA
regulates root growth and responses to biotic and
abiotic stresses. Within the cell, ABA binds to a family
of intracellular receptors, termed PYRABACTIN RE-
SISTANCE (PYR)/PYR1-LIKE (PYL)/REGULATORY
COMPONENT OF ABSCISIC ACID RECEPTOR
(RCAR) proteins. ABA binding promotes the formation
of complexes involving the PYR/PYL/RCAR receptors
and several types of PROTEIN PHOSPHATASE TYPE
2C (PP2C) proteins that activate ABA responses. PYR/
PYL/RCAR family members bind ABA as a monomer
or dimer. Dupeux et al. (2011) developed a computa-
tional model capturing this relatively simple network
of interactions to probe the response to ABA when
both monomeric and dimeric PYR/PYL/RCAR re-
ceptors compete for ABA and PP2C molecules. In-
triguingly, the study revealed that monomeric receptors
have a competitive advantage for binding, particularly
at lower ABA concentrations. Hence, tissue receptor
composition and oligomerization likely impact ABA
responsiveness.

Cruz-Ramírez et al. (2012) recently used a mathe-
matical model of a small GRN to demonstrate how
two nested feed-forward loops precisely control
asymmetric cell divisions within the root stem cell
niche (Fig. 2). The authors employed modeling to help
understand how spatial restriction of these divisions
requires physical binding of the stem cell regulator
SCARECROW (SCR) by the RETINOBLASTOMA-
RELATED (RBR) protein. They generated coupled or-
dinary differential equations to describe the wiring
of the network. Initial models tested the importance of
the CycD6 feedback loop on the phosphorylation of
RBR and its interaction with SCR and subsequent
feedback on SCR expression. Because asymmetric cell
divisions occur at low or high SCR-RBR levels, the
authors analyzed equilibrium levels of nuclear SHORT
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ROOT (SHR) and free SCR (unbound to RBR). SHR
and auxin distribution and their effect on the precise
positioning of CycD6 in the cortex endodermis deter-
mine radial and longitudinal positional information.
Coupling of cell cycle progression to protein degra-
dation resets the circuit, resulting in a “flip-flop” (i.e.
a circuit with two stable states) that constrains asym-
metric cell division to the stem cell region. RBR binds
SCR and, together with the RBR regulator CYCD6;1,
defines the position of asymmetric cell divisions. The
resulting network creates a robust, bistable switch
combining the auxin gradient along the longitudinal
axis with the SHR distribution pattern along the radial
axis (Cruz-Ramírez et al., 2012).

Cell-Scale Systems Models

At the cell level, models capture interactions between
neighboring root cells. For example, Savage et al. (2008)
modeled the patterning of the Arabidopsis root epider-
mis, which forms alternating files of trichoblasts (bear-
ing root hairs) and atrichoblasts (lacking root hairs).
Epidermal cells overlying two cortical cell files form
trichoblasts. The mobile activator proteins GALABRA3/
ENHANCER OF GALABRA3 (GL3/EGL3) regulate
this patterning and form an activator complex with
TRANSPARENT TESTA GALABRA1, WEREWOLF
(WER), and the mobile inhibitor protein CAPRICE (CPC).
Savage et al. (2008) formulated a stochastic Boolean
model, embedded into a circle of cells, with the levels of
CPC and GL3/EGL3 depending on the rate of tran-
scription in the neighboring cells. They modeled potential
network structures, comparing WER self-activation and
CPC inhibition via competition for GL3/EGL3, with
constitutive WER transcription and CPC directly inhib-
iting WER. While both models replicated the patterning
in wild-type roots, the latter model best explained the
mutant phenotypes, in particular cpc.

Benítez et al. (2008) explored the same problem
using a three-state deterministic model within a two-
dimensional array of cells; they also found that WER
autoregulation was not required for pattern formation
in wild-type roots, but it proved necessary to explain
some mutant phenotypes in the two-dimensional ge-
ometry. The two-dimensional model was also used to
explore the effects of cell shape, with cell elongation
acting to stabilize patterns. While the experiments of
Savage et al. (2008) provided evidence that WER au-
toregulation is not important for the early patterning
of epidermal cells, local self-activation does occur at
later stages (Kwak and Schiefelbein, 2008; Kang et al.,
2009), although its functional role remains unclear.

Tissue- to Organ-Scale Systems Models

Tissue- and organ-scale models describe growth,
transport, and deformation on the macroscale, usually
employing continuum (mainly partial differential) equa-
tions that do not explicitly subdivide a tissue into discrete
cells. Péret et al. (2012) described a tissue-scale modeling
approach to investigate how aquaporins regulate lateral
root emergence. In Arabidopsis, lateral root primordia
originate from pericycle cells located deep within the
parental root and emerge through endodermal, cortical,
and epidermal tissues. Recent studies have highlighted
the importance of the localized auxin signal originating
from the tip of the lateral root primordia to induce spe-
cific physiological responses in overlying tissues (Swarup
et al., 2008; Péret et al., 2012). Biomechanical properties
targeted by auxin include changes in aquaporin spatial
expression patterns to modify water fluxes. Based on
these data, Péret et al. (2012) included a mathematical
model describing how aquaporin-dependent tissue hy-
draulics could affect the timing of lateral root development.
In the model, water fluxes are coupled to primordium
expansion, with the lateral root primordia and overlying

Figure 2. Examples of hypothesis-driven
bottom-up and middle-out approaches.
Models were constructed for processes
at different spatial and temporal scales.
A, At the subcellular level, GRNs can
be modeled to include the input of
signals such as auxin and output in the
form of cell-scale events, such as mi-
tosis. B, Stem cell division and the
bistable switch that regulates it are
modeled using longitudinal gradients
of auxin and radial gradients of the
transcription factor SHR (Cruz-Ramı́rez
et al., 2012). C, Root system scale
models such as RootTyp (Pagès et al.,
2004) can be linked to hydraulic
models to explicitly simulate water
flow in the soil-plant domain (Javaux
et al., 2008).
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tissue represented as two fluid compartments. The di-
viding primordium cells have a prescribed increasing
osmotic potential. The model predicts the resulting
water fluxes and pressure dynamics and shows how
these drive primordium expansion. The model predicts
that aquaporin repression by auxin promotes lateral
root emergence and explains the experimentally ob-
served delay in lateral root primordia emergence for
both aquaporin loss-of-function and overexpression
lines.

Plant-Scale Systems Models

Plant-scale models aim to integrate the behavior of
individual plant organs, or even suborgan characteris-
tics, at the whole-plant level, into functional structural
plant models (Godin and Sinoquet, 2005). At this level,
major dynamic processes come into play, including re-
source capture (carbon, water, nutrients), long-distance
transport, resource allocation, long-distance signaling,
and concurrent growth of many organs. This type of
model implements most processes, such as the pro-
duction and consumption of carbohydrate assimilates
(Drouet and Pagès, 2007) or the development of the
plant (growth, branching) at the organ or suborgan
level. These processes are integrated at the plant level
by connecting the different parts (up to several thou-
sand) according to plant topology. These models often
adopt a tree-like structure, well suited to representing
plant networks.

The analysis of carbon transport and allocation
within the root system has been described using the
MassFlowDyn model (Bidel et al., 2000), which explic-
itly simulates the phloem transport of sugars following
simple source/sink rules in relation to the growth
and development of complex root system. The authors
demonstrated the importance of the initial diameter
of individual root meristems as a determinant of sink
strength. The formation of a hierarchy of root meristems
(primary . lateral) leads to herringbone-type systems
(akin to the arrangement of bones in a fish), while similar
meristem sizes lead to fibrous root systems (composed of
many roots of approximately equivalent lengths).

Plant-Environment-Scale Systems Models

A second category of functional structural plant
models explicitly takes into account the bidirectional
flow of material or energy and the biological, physical,
and chemical interactions between the plant and the soil
compartment. Compared with the previous models,
which generally exclude environmental effects or con-
sider them uniform, these models explicitly include the
environment, with a focus on the processes of interest.
As for plant-scale models, the different processes, in the
plant, in the environment, or at the plant-environment
interface, are implemented at the local scale and inte-
grated at the whole-plant scale. The plant structure still

follows a tree-like structure, but the environment,
especially the soil, may require a three-dimensional
graph, as all neighboring soil voxels are interconnected.
The integration of the plant tree and the environment
graph requires a complex modeling framework in which
the positioning of the different structures can be matched
in time and space. Indeed, since most of the processes are
computed locally, the exact position of every plant and
environment element is needed.

Soil-root models developed in the last two decades
address mostly water and nutrient dynamics. SimRoot
(Lynch et al., 1997; Postma and Lynch, 2011a) and
ROOTMAP (Diggle, 1988; Dunbabin et al., 2002) link
root growth and root system architecture with nutrient
acquisition (for review, see Dunbabin et al., 2013).
SimRoot, for example, was used to demonstrate the
influence of root-type gravitropism on phosphorus
acquisition in bean (Phaseolus vulgaris; Ge et al., 2000).
Other models have been developed to analyze the
dynamics of water flow in the soil-root system, taking
into account the long-distance movement of water in
the soil (Doussan et al., 1998; Javaux et al., 2008;
Schröder et al., 2008; Lobet and Draye, 2013; Fig. 2C).
The three-dimensional model R-SWMS, for example,
simulates the uptake of water by individual root seg-
ments as a function of the root hydraulic architecture
and soil properties (Doussan et al., 2006; Draye et al.,
2010) and will help our understanding of the contri-
bution of long-distance regulatory signals (e.g. ABA)
to whole-plant hydraulics and water use.

The recent development of methods for imaging live
roots in real soil at the microscopic scale (Mooney et al.,
2012) enables a step change in the modeling of nutrient
uptake. The ability to uncover the three-dimensional
interactions between the root surface and soil porosity
has allowed the development of a model of phosphate
uptake by root hairs based directly on the real geometry
of hairs and associated soil pores (Keyes et al., 2013).
The new model questioned the currently accepted rel-
ative contribution of the root surface versus root hairs
during the uptake of phosphorus.

The interface between the root and its environment
also has many biological interactions between the root
system and its surrounding communities. The German
plant physiologist Lorenz Hiltner in 1904 coined the term
“rhizosphere” to describe the region inhabited by a
unique population of microorganisms, which he pos-
tulated were influenced by the chemicals released from
plant roots (Hartmann et al., 2008). Root exudation
represents a significant carbon cost to the plant (Lynch
and Whipps, 1990). In addition, the presence of exu-
dates and microbes profoundly affects the physical
properties of the soil-root interface, such as its hydraulic
conductivity (Carminati and Vetterlein, 2013). There-
fore, understanding plant behavior in the field requires
a fundamental understanding of the rhizosphere. The
functional structural plant models framework has all
the required components to address the spatiotemporal
dynamics of the rhizosphere, yet such work remains to
be initiated.
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Crop-Scale Systems Models

At the crop scale, the description of plants can be
further simplified, mainly to reduce computational cost
as the total number of plants (and, subsequently, of in-
dividual plant elements) increases. Compared with the
plant-environment scale, modeling at the crop scale still
requires the space and time localization of the plants,
but to a lesser extent; for example, the position of every
root is not required anymore. Such models mainly aim
to predict the construction of final crop yield under
different environmental conditions, in different agro-
nomic management practices, or in different genetic
backgrounds.
Despite the fact that plants are conceptualized at a

higher level than in lower scale models, some crop
models include physiological and genetic modules
influencing crop development. For example, SUNFLO
(Casadebaig et al., 2011) models sunflower (Helianthus
annuus) adaptation to environmental stimuli (water and
nitrogen stress) and aims to assess genotypes for their
success in these changing environments, as evaluated
by their yield. The SUNFLO model successfully pre-
dicted genotype when tested against validation data
from over 50 field experiments. This could be due to the
incorporation into the model of genotype via the gene
relationship to dynamic processes such as nutrient up-
take and oil content rather than to the model’s inherent
predictive power. These results also highlight the need
to incorporate information about rooting phenotypes
to enhance the model’s applicability in water stress
situations.
In development for more than 15 years, the crop-

level model Agricultural Production Systems Simula-
tor (APSIM) aims to integrate genetic information,
management practices, and environmental conditions
to predict the yields of economically important crop
plants (Keating et al., 2003). APSIM has been used to
test the effect of genetic variation either at the root
(Hammer et al., 2010; Manschadi et al., 2010) or the
shoot (Chenu et al., 2008) level. Using APSIM, Chenu
et al. (2009) modeled the effect of organ-level quanti-
tative trait loci (QTLs) on maize (Zea mays) yield. Using
the model, they simulated the effect of QTLs of two
selected developmental processes (leaf and silk elon-
gation) by generating hundreds of hypothetical re-
combinant inbred lines and testing them across several
patterns of drought seasons. The simulations predicted
the QTL-by-environment interactions observed under
field conditions. In particular, yield increase depended
on higher leaf elongation rate in well-watered condi-
tions but depended on decreased anthesis to silking
interval in all environments. Additionally, the pleio-
tropic effects of the different QTLs limited possible
trait combinations. Using APSIM, Manschadi et al.
(2010) evaluated the effect on final yield of specific root
traits. By reducing the insertion angle of primary roots
in wheat (Triticum aestivum), the authors demonstrated
the capacity of the crop as a whole to extract more
water and increase yield. Hence, the integration of

local processes (root emergence, leaf growth rate) at
the crop scale can be useful to help understand the
crop system as a whole.

Crop models initially aimed to simulate yield con-
struction over the season based on resource capture and
environmental conditions. They do not obviously lend
themselves to organ-based representation of the plant,
because the elementary unit is the crop itself. Rather,
parameters such as mass, leaf area index, and root
depth represent aspects of plant architecture. These
variables are essential to compute light interception or
soil resource capture. Although crop models are much
less mechanistic than the previous examples discussed,
reasons to include them into the root systems biology
approach include the following. (1) Crop models rep-
resent one further step in upscaling, and, in essence,
that step resembles the step from cell to organ or from
organ to plant. Each step requires the identification of
the most relevant source of variation between elemen-
tary units. (2) These models generate unique paths in
time that integrate environmental, management, and
genetic factors that influence the future of the crop.
They have been used to simulate the emergence of
genotype-environment interactions, which remain one
of the major challenges to moving from the laboratory
to the field. Therefore, they provide very useful insights
to orient research at lower scales. (3) They offer the only
simulation framework that allows testing (systemati-
cally) of many (virtual) genotypes in many seasons,
which has become a major step in plant breeding, and
provide a means to address the agronomic potential of
gene targets identified in basic research.

MULTISCALE ROOT SYSTEMS
BIOLOGY APPROACHES

Multiscale models consider behaviors on two or
more scales, ranging from the subcellular up to whole-
organism scales and beyond (Fig. 3). They must also
incorporate different temporal scales, ranging from min-
utes for transcription to weeks for developmental adap-
tation. Relatively few examples of multiscale models have
been described to date for roots (or other plant organs).
We selected the following examples to illustrate the po-
tential for developing multiscale models to probe the
mechanisms underlying complex, nonlinear biological
processes in roots. One key to predicting the relationship
between genotype and phenotype is linking the spatio-
temporal concentrations of regulators, such as auxin, with
cell growth and division. We currently lack a mechanistic
understanding of the effect of auxin on growth, but sev-
eral existing examples employ multiscale approaches,
incorporating phenomenological models to describe this
missing step.

Grieneisen et al. (2007) proposed that a gradient of
auxin controls the specification of the root’s develop-
mental zones, supposing that cell division occurs at high
hormone concentrations and cell elongation at lower
concentrations. Due to the predicted auxin distribution,
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the model simulates cell division and growth dynamics
in the meristem and elongation zone, capturing the
gradual expansion of the meristem over the first 8 d post
germination and the reduction in meristem size after root
excision. Chavarría-Krauser et al. (2005) modeled the
growth dynamics at the root tip, supposing that the ratio
between auxin and cytokinin governs the production
and degradation of a remodeling enzyme, which in turn
regulates cell growth and division. For root develop-
mental responses, Lucas et al. (2008), in predicting lateral
root initiation, considered a pool of auxin at the root tip
that is consumed by root gravitropic bending and/or
emergence. Using such a phenomenological model be-
tween auxin and root development, the authors accu-
rately predicted experimentally observed perturbations
in lateral root initiation for the aux1 root gravitropic and
lax3 lateral root emergence mutants.

The hormone GA controls root growth by, for ex-
ample, controlling cell growth within the elongation
zone (Ubeda-Tomás et al., 2008). Band et al. (2012b)
recently developed a multiscale model of GA dynam-
ics in the Arabidopsis root elongation zone, prescribing
cell growth (using experimental measurements) and
simulating GA dilution, the diffusion of GA between
cellular compartments, and the response network through
which GA degrades the growth-repressing DELLA pro-
teins (describing the dynamics with a system of ordinary
differential equations). The model (Fig. 3) revealed that, as
cells pass through the elongation zone, dilution (rather
than degradation) creates a decline in GA concentration,
leading to spatial gradients in the levels of downstream
DELLA mRNAs and proteins. This model prediction was
confirmed experimentally with knockout mutants lacking
every root-expressed GA2ox degradation enzyme. The
study also considered the dynamics in plants treated with
paclobutrazol (an inhibitor of GA biosynthesis) and plants
with mutations in the GA biosynthesis and signaling
pathways; these cases revealed that the growth rates ap-
pear to reflect the fold change in DELLA as cells traverse
the elongation zone. Furthermore, the model provided
new insights into the normal phenotype exhibited in the
ga1-3/gai-t6/rga-24 triple mutant. The model demonstrated
that the effect of the ga1-3 mutation in reducing GA bio-
synthesis (leading to higher functional DELLA levels)
counteracts the effect of the gai-t6/rga-24 mutation in

reducing the translation of functional DELLA; if these two
processes are suitably balanced, the levels of functional
DELLA are similar to that in the wild type, explainingwhy
the triple mutant exhibits normal cell elongation. In sum-
mary, by assimilating a range of data and knowledge, the
model revealed the dominant effect of GA dilution (rather
than degradation) on the emergent DELLA distribution,
providing new insights into GA’s growth regulation.

Jeuffroy et al. (2012) also used multiscale modeling to
identify genotypes with desirable characteristics for
breeding programs. The pea (Pisum sativum) crop model
AFISOL for yield characteristics (incorporating water
and nitrogen flow) was linked to SISOL modeling soil
parameters (soil moisture content, soil biota activity
effects, impacts of machinery, and natural soil weath-
ering) and OTELO for farm practices (fertilizer, pesti-
cides, and soil amendments). These models all include
dynamic parameters, and this work demonstrates the
capability to link several models of different scale, re-
vealing the applicability of crop models in the systems
biology approach across multiple plant physical and
temporal scales. Additionally, the model assessment
included real and virtual genotypes, which shows the
value of isolating desirable characteristics that could
then be harnessed through more molecular techniques.

FUTURE CHALLENGES FOR ROOT
SYSTEMS BIOLOGY

Major advances have recently been made employing
top-down systems approaches to identify the key mo-
lecular players (genes, RNAs, proteins, etc.) and to
elucidate several GRNs that control root growth and
development (Benfey et al., 2010; Ruffel et al., 2010;
Bassel et al., 2012). However, regulatory networks not
only operate at the molecular scale but must also inte-
grate information from cell to organ to rhizophere
scales, to probe the mechanisms controlling root de-
velopment. Mathematical and computational models
provide invaluable tools to bridge these distinct spatial
and temporal scales and generate new mechanistic in-
sights about the regulation of root growth and devel-
opment (Band et al., 2012a). Nevertheless, we are only
at the beginning of this new research area, and several

Figure 3. Root biological models can be multi-
scale. Band et al. (2012b) demonstrated the
power of multiscale modeling for understanding
GA dynamics during root elongation. The elon-
gation zone is modeled as a collection of cells
(organ scale; A) and used to motivate the mod-
eling of cell expansion and dilution in the vacu-
ole (cell scale; B). This naturally leads to the link
between cell partitioning of GA and subcellular
processes, revealing the influence of the dilution
of GA concentrations on DELLA expression and
growth. MZ, Meristematic zone.
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challenging issues remain to be addressed for this field
to move forward.

Integrating Models

In general, the models highlighted in this review have
been designed independently of one another, raising
important issues relating to interoperability. To proceed
further, models must start to be assembled into unified
frameworks. A number of conceptual and technological
factors make model integration challenging. First,
models may operate at different spatial resolutions or
dimensions. For example, coupling a two-dimensional
mechanical model of root tissues at a subcellular reso-
lution with a two-dimensional model of auxin transport
designed at a cellular resolution would require homog-
enizing the spatial resolution such that the mechanical
model updates cell geometries over time. Second,
models may also operate at different temporal reso-
lutions. For example, mechanical processes are often
assumed to be much faster than biochemical processes.
Hence, cell size and shape can be considered constant
in computing chemical simulations. Third, combining
different types of mathematical models (e.g. Boolean,
stochastic, ordinary differential equations, and partial
differential equations) can often prove challenging.
Nevertheless, models integrating mechanistic and sto-
chastic models have been successfully designed at the
organism level for aerial tissues (Costes et al., 2008).
Creating combinations of models often represents a

large amount of theoretical and experimental effort. Hence,
it is important that these models are freely available to the
community as shared data sets, open-source model for-
mats such as SBML (Hucka et al., 2003) or CellML
(Cuellar et al., 2003), or common modeling software
platforms such as VV (Prusinkiewicz, 2004), OpenAlea
(Pradal et al., 2008), or MorphoGraphX (Kierzkowski
et al., 2012). The move toward model integration and
flexibility in the crop-modeling community should be
translatable to the root systems biology ethos. For ex-
ample, RECORD (for Renovation and Coordination of
Agroecosystem Modeling) represents a concerted effort
by French researchers at INRA to develop an “integrated
modeling platform” that could eventually include Geo-
graphic Information System data, open source statistical
resources, and data-handling resources (Bergez et al.,
2012). Additionally, planned as a repository for crop
models, the RECORD platform includes many principles
of root systems biology, including multiple time scales
(seconds to months), spatial variation, and environmen-
tal dynamics. RECORD aimed to use as many existing
models as possible. However, to foster the incorporation
of sub-crop-scale models as advocated in root systems
biology, RECORD would need to look beyond crop-soil
interactions to the root system itself.

Toward Digital Plants and Populations

Developing a mechanistic model of a whole plant
represents a logical next step. Indeed, given the exchange

of water, nutrients, and signals between root and shoot
organs, developing a virtual root or shoot model inde-
pendent of each other could be considered naive in the
longer term. To date, models of diverse root system
subprocesses have been developed at different scales.
Compared with initial approaches in systems biology,
most of these models make explicit use of spatial infor-
mation. Such spatial information represents different as-
pects of realistic root structures and can take the form of a
continuous medium, a branching structure of connected
elements (e.g. root meristems), a multicellular population,
or a set of interacting subcellular compartments. By pro-
gressively integrating more functional aspects into these
realistic representations, researchers have created new
models (Sievänen et al., 2000; Godin and Sinoquet, 2005).
Functional structural plant models provide a promising
platform with which to create a digital plant model.

Compared with many previous models developed on
aerial parts (Vos et al., 2010) and on root systems (Bidel
et al., 2000; Pagès et al., 2004), recent functional structural
plant models also integrate gene regulation and signal-
ing as a new dimension in the analysis of development
(Prusinkiewicz et al., 2007; Han et al., 2010). Through the
combined modeling of genetic networks, physiological
processes, and spatial interaction between components,
development of a new generation of functional structural
plant models opens the way to building digital versions
of real plants (Coen et al., 2004; Cui et al., 2010) and
testing biological hypotheses in silico (Stoma et al., 2008;
Perrine-Walker et al., 2010).

Ultimately, breeders measure plant performance at a
population scale rather than an individual scale. Hence,
mechanistic multiscale models need to be developed that
bridge the remaining physical scale between the plant and
the field to relate genotype to phenotype and enable the
engineering of crop traits. Relatively few examples exist
where modeling results have been used to direct the se-
lection of new crop varieties. One promising example is
the optimization of bean root systems for phosphorus and
water acquisition. Using the model SimRoot, Lynch and
coworkers investigated the impact of root gravitropism
(Ge et al., 2000), root hair production (Ma et al., 2001), and
aerenchyma production (Postma and Lynch, 2011a,
2011b) on plant performance under various phosphorus
and/or water conditions. These results defined root sys-
tem ideotypes (Lynch and Brown, 2001; Lynch, 2011,
2013) and were validated by several experimental trials
(Bates and Lynch, 2001; Rubio et al., 2003). This identified
QTLs for basal root gravitropism (Liao et al., 2004) and
root hairs (Yan et al., 2004) and led to the selection of new
bean varieties, now used by breeding programs in South
America and Africa. This example illustrates how mod-
eling at the plant level can drive research, untangle pro-
cesses at the molecular level, and inform crop breeding.

Integrating Environmental Information

Phenotype represents the output of the interaction be-
tween genotype and environment. In this review, almost
all of the models described study intrinsic root regulatory
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processes. This provides a solid foundation for describing
basic developmental mechanisms, but to account for root
plasticity, models must also integrate environmental in-
formation. Developing mixed genetic-ecophysiological
models that bridge the gap between genetic and envi-
ronmental regulation represents an important goal (Roose
and Schnepf, 2008; Draye et al., 2010). These environ-
mental factors include soil physical properties; water,
nutrient, and macroelement/microelement availability
and distribution; mycorrhization and nodulation; and
competition and interaction with other root systems.
Obtaining such spatial information remains very chal-
lenging. Researchers traditionally assess soil structure by
imaging and then physically removing successive layers
of soil and examine root structure (of soil-grown roots) by
root washing. As both are destructive, the construction of
combined root and soil data sets requires the integration
of measurements obtained from different samples. High-
resolution synchrotron and x-ray micro-computed to-
mography imaging has the potential to provide rich data
sets from single samples, with concurrent measurements
of root and soil (Mooney et al., 2012; Keyes et al., 2013).

Root systems biology also urgently requires new
methods to assay rhizosphere parameters in addition to
root and soil. For example, having tools to dynamically
monitor quantitative changes in root biology (hormones,
water status, nutrients, etc.) and the root environment
(pH, nutrient content) would address a major challenge.
The development of novel biosensors based on new
understanding of the pathways responsible for the per-
ception of small signaling molecules and advances in
imaging technologies and mathematical modeling will
enable a truly quantitative analysis of biological pro-
cesses (Band et al., 2012b; for review, see Wells et al.,
2013). Combined with new dynamic sensors for envi-
ronmental parameters like optodes (Elberling et al.,
2011), new biosensors promise to provide a deeper un-
derstanding of how plant systems interact with their
environment. Moreover, these sensors could result in
innovative technologies to monitor biotic or abiotic
stresses in the field (Chaerle et al., 2009). Biosensors
could help optimize the use of inputs such as water,
fertilizers, or pesticides and, therefore, achieve more
environment-friendly and sustainable agricultural prac-
tices. Such tools and the information generated will also
greatly aid the development of more realistic root-
rhizosphere models and, ultimately, help optimize crop
root architectures for soil types and nutrient regimens.
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