Skip to main content
. 2013 Sep 26;14:285. doi: 10.1186/1471-2105-14-285

Table 3.

The performance of NHMC and competitive methods in predicting gene function for different datasets and PPI networks

 
All genes
Network
 
DIP
BioGRID
Method
CLUS-HMC
NHMC
FF
H
NHMC
FF
H
Dataset   α = 0 α = 0.5     α = 0 α = 0.5    
seq
0.030
0.025
0.025
0.003
0.002
0.022
0.022
0.004
0.006
pheno
0.021
0.018
0.019
0.002
0.001
0.018
0.018
0.004
0.002
struc
0.018
0.012
0.016
0.002
0.000
0.012
0.012
0.004
0.002
homo
0.040
0.013
0.031
0.001
0.001
0.013
0.013
0.002
0.002
cellcycle
0.017
0.297
0.273
0.004
0.002
0.013
0.013
0.006
0.006
church
0.017
0.013
0.012
0.003
0.002
0.012
0.012
0.006
0.006
derisi
0.018
0.022
0.021
0.004
0.002
0.039
0.315
0.006
0.006
eisen
0.025
0.020
0.020
0.004
0.002
0.021
0.335
0.006
0.008
gasch1
0.020
0.017
0.017
0.003
0.002
0.029
0.339
0.006
0.006
gasch2
0.019
0.020
0.018
0.004
0.002
0.015
0.016
0.006
0.006
spo
0.018
0.019
0.018
0.004
0.002
0.017
0.017
0.006
0.006
exp
0.020
0.017
0.017
0.002
0.002
0.018
0.018
0.006
0.006
Average: 0.022 0.041 0.041 0.003 0.002 0.019 0.094 0.005 0.005

We use the 3-fold cross-validation evaluation schema. The averageAUPRC¯ (estimated by 3-fold CV) of the CLUS-HMC (α = 1), NHMC (α = 0.5 and α = 0), FunctionalFlow (FF), and Hopfield (H) methods, when predicting gene function in yeast using GO annotations. We use 12 yeast (Saccharomyces cerevisiae) datasets. Results for two PPI networks (DIP and BioGRID) are presented.