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Abstract. The role of biomarkers in disease prognosis continues to be an important investigation in many cancer studies. In
order for these biomarkers to have practical application in clinical decision making regarding patient treatment and follow-up, it
is common to dichotomize patients into those with low vs. high expression levels. In this study, receiver operating characteristic
(ROC) curves, area under the curve (AUC) of the ROC, sensitivity, specificity, as well as likelihood ratios were calculated to
determine levels of growth factor biomarkers that best differentiate lung cancer cases versus control subjects. Selected cut-off
points for p185erbB−2 and EGFR membrane appear to have good discriminating power to differentiate control tissues versus
uninvolved tissues from patients with lung cancer (AUC= 89% and 90%, respectively); while AUC increased to at least 90%
for selected cut-off points for p185erbB−2 membrane, EGFR membrane, and FASE when comparing between control versus
carcinoma tissues from lung cancer cases. Using data from control subjects compared to patients with lung cancer, we presented
a simple and intuitive approach to determine dichotomized levels of biomarkers and validated the value of these biomarkers as
surrogate endpoints for cancer outcome.

1. Introduction

The role of biomarkers in disease prognosis contin-
ues to be an important investigation in many cancer
studies. More specifically, the central role of growth
factors and their receptors in the neoplastic process
makes evaluation of these biomarkers pivotal in the
early detection, diagnosis and development of targeted
therapies [1]. Biomarkers have also been used as surro-
gate endpoints for cancer outcome. For example, many
Phase II chemoprevention studies in patients at high-
risk for cancer utilize biomarkers as surrogate endpoints
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of efficacy [2]. This allows for smaller, less expensive,
and faster studies as compared to studies that utilize
cancer as the endpoint [3].

Many studies have identified EGF-r3 and two of its
ligands, EGF and TGF-α, and a closely related re-
ceptor, p185erbB−2, as some of the major growth fac-
tors and growth factor receptors involved in neoplas-
tic formations [4]. The role of these biomarkers in
lung cancer has been studied by many investigators [5–
12]. However, a great heterogeneity in the incidence
of overexpression and in the prognostic significance of
these growth factors and receptors has been observed
both within and between various tumor types, including
cancers of the lung.

In order for these biomarkers to have practical ap-
plication in clinical decision making regarding patient
treatment and follow-up, it is common to dichotomize
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patients into those with low vs. high expression lev-
els [13]. Receiver operating characteristic (ROC) anal-
ysis is a widely-used method for comparing diagnostic
accuracy of laboratory tests. The ROC curve is con-
structed by plotting the true positive rate (sensitivity)
on the y-axis as a function of false positive rate (1-
specificity) on the x-axis. An ideal ROC curve climbs
rapidly towards the upper left corner of the graph which
indicates good discrimination property. Pina et al. [13]
showed the use of ROC in obtaining optimum cut-
off points for serum tumor markers in lung cancer pa-
tients. They also calculated the area under the ROC
curve as a quantitative measure of the discrimination
power of tumor markers between lung cancer cases
vs. healthy controls or subjects with non-neoplastic-
type pulmonary pathologies. Furthermore, Choi has
discussed how the slope of the ROC can be used to
calculate different types of likelihood ratios [14].

This paper utilizes a case-control study of 60 lung
cancer patients and 60 control patients (without lung
cancer) to determine levels of biomarkers of growth fac-
tors (specifically EGFR, TGF-α, p185erbB−2) and fatty
acid synthase (FASE), a major component of the de
novo fatty acid biosynthetic pathway, that will best dif-
ferentiate between the two groups. These biomarkers
were measured on a semi-quantitative scale using im-
munohistochemistry techniques [15]. Receiver operat-
ing characteristic (ROC) curves, area under the curve
(AUC) of the ROC as well as likelihood ratios were
calculated to determine levels of biomarkers that best
differentiate lung cancer cases and control subjects.

2. Methods

2.1. Study population

Study subjects were selected from patient popu-
lations of the Veterans Administration Hospital and
University Hospital in Birmingham, AL. Sixty non-
cancer specimens of the lung (controls) were selected
at random from a list of lung surgeries performed
between 1988–1998 for lung diseases or conditions
other than lung cancer. From a patient list of SCC of
the lung who had undergone surgery between 1989–
1996, sixty cases were selected at random. Formalin
fixed, paraffin embedded sections of the lung were ob-
tained from the archival collection. One tissue block
from each non-cancer patient was selected to pro-
vide a section that contained adequate normal speci-
men. Tissue blocks from each SCC patient were se-

lected to provide sections that contained uninvolved and
carcinoma specimens. Immunohistochemistry scores
were evaluated for 4 biomarkers (EGFR, p185erbB−2,
TGF-alpha, FASE). Methods of immunohistochemical
analysis have been reported previously [15]. Briefly,
biomarkers were graded on the intensity of immunos-
taining (0–4) as well as the percentage of cells at each
intensity. The sum of the product of the intensity of im-
munostaining and percent cells at each intensity were
calculated to arrive at a semi-quantitative immunohis-
tochemistry score.

2.2. Analysis methods

Descriptive statistics were calculated to summarize
immunohistochemistry scores from normal tissues of
control subjects and from uninvolved and carcinoma
tissues in lung cancer cases. Univariate comparison
of scores between lung cancer cases versus controls
were performed using Wilcoxon rank-sum tests while
within patient comparison of scores were performed
using Wilcoxon signed-ranks test.

Continuous levels of immunohistochemistry scores
for each biomarker were grouped into multiple cate-
gories based on the distribution of biomarker scores.
For each biomarker, a logistic regression model was
fitted for cases versus controls using categorized levels
of the biomarker score as independent variable. ROC
curves based on the logistic regression model were con-
structed. Sensitivity, specificity, likelihood ratios (LR),
and AUC of the ROC based on the trapezoidal rule were
calculated. Values of AUC closer to 100% indicate bet-
ter discrimination power of a biomarker between cases
versus controls. The slope of the ROC curve represents
a likelihood ratio for a diagnostic test [14,16]. The mul-
tiple LR [14] was calculated and presented in this paper.
Optimal cut-off points for biomarkers were determined
based on the best balance of sensitivity and specificity
along with larger increases in LR’s. Logistic regres-
sion models and the corresponding ROC curves were
generated for the comparison of normal specimens in
controls versus uninvolvedspecimens from lung cancer
cases and for the comparison of normal specimens in
controls versus carcinoma specimens from lung cancer
cases.

3. Results

Table 1 shows mean± standard deviation, median,
and range of immunohistochemistryscores in lung can-
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cer cases and controls by cellular localization (i.e. basal,
luminal, cytoplasm, membrane). Across all biomark-
ers, lung cancer cases exhibited higher scores compared
to control subjects. For example, the mean level of
basal p185erbB−2 score was 0.51 for controls compared
to 0.86 from uninvolved tissues of lung cancer cases.
Furthermore, an increasing trend of scores from normal
tissues of controls to carcinoma tissues of lung cancer
cases was evident. For example, mean EGFR cyto-
plasm scores were equal to 0.38, 0.74, and 1.32 for con-
trols, uninvolved tissues, and carcinoma tissues from
lung cancer cases, respectively. A similar trend of in-
creasing mean EGFR scores was observed in the mem-
brane layer. The average of scores from the cytoplasm
and membrane layers are also presented. Statistically
significant differences in these scores between controls
vs. uninvolved tissues from lung cancer cases were ob-
served for all biomarkers in all locations (p < 0.0001).
These differences also were observed for all biomarkers
in all locations when comparing controls vs. carcinoma
tissues from lung cancer cases (p < 0.005).

Table 2 shows biomarker cut-off points when com-
paring control versus uninvolved tissues from lung can-
cer cases. The optimal cut-off points were selected
based on levels of each biomarker that provide the best
balance of sensitivity, specificity as well as larger in-
creases in LR’s. Levels of p185erbB−2 scores that pro-
vide the best discrimination point between lung can-
cer cases versus controls were equal to 0.70, 1.30, and
0.40 for basal, cytoplasm, and membrane, respectively.
These cut-off points provided moderate levels of sensi-
tivity for basal and cytoplasm (60% and 65%, respec-
tively) and a higher sensitivity for p185erbB−2 in mem-
brane (80%). Correspondingly, the highest AUC was
achieved at 89% for p185erbB−2 membrane. Thus, it
appears that p185erbB−2 membrane levels provide bet-
ter discriminationpower between lung cancer cases and
controls. Specificity levels for these cut- off points were
at least 85%; while the LR’s indicate that p185erbB−2

levels greater than or equal to the cut-off points were
at least 2.0 times as likely to be found in lung can-
cer cases than in controls. EGFR cut-off points were
equal to 1.00, 0.40 and 0.10 for basal, cytoplasm, and
membrane, respectively. Moderate levels of sensitivity
for these cut-off points were observed for both basal
and cytoplasm while sensitivity was equal to 91% for
EGFR membrane with a corresponding AUC equal to
90%. Similar to p185erbB−2, the best discrimination
power was observed for levels of EGFR measured from
the membrane layer. Cut-off points for TGF-α and
FASE indicate only moderate but slightly better lev-

els of discrimination from measurements in the basal
layer (AUC=86% and 78%, respectively) as opposed
to carcinoma layer.

Table 3 shows biomarker cut-off points based on
comparison between controls versus carcinoma tissues
of lung cancer cases. The cut-off point equal to 0.40 for
p185erbB−2 membrane provided 89% sensitivity and
92% specificity with an AUC equal to 93%. A similar
cut-off point of 0.40 was obtained for EGFR membrane
providing high levels of sensitivity and specificity with
an AUC equal to 97%. Interestingly, a cut-off point
for FASE equal to 0.70 provided strong discrimina-
tion power (AUC= 99.6%) between controls vs. lung
cancer cases.

Finally, attributable proportions (AP) were calcu-
lated which provide a measure of cases that is at-
tributable to a biomarker [17] (Table 4). Values of AP
closer to 1.0 indicate a more valid biomarker as a sur-
rogate endpoint for cancer outcome. Using the optimal
cut-off points from Tables 2 and 3, the corresponding
AP for each biomarker were calculated (Table 4). As
shown in Table 4, all biomarkers exhibited only small
to moderate levels of AP. EGFR levels from the mem-
brane exhibited the highest AP equal to 79% while only
63% of lung cancer cases is attributable to high lev-
els of p185erbB−2 from the membrane. As indicated
by Schatzkin et al. [17], individual biomarkers are at
best marginal surrogates for cancer outcome. Higher
levels of AP were obtained from cut-off points arising
from the comparison between controls vs. carcinoma
tissues from lung cancer cases. Attributable propor-
tions were equal to 83% and 78% for EGFR membrane
and p185erbB−2 membrane, respectively. In addition
to providing strong discrimination power between con-
trols versus tumor tissues from lung cancer patients
(Table 3), FASE appears to be a good surrogate for
lung cancer outcome providing an AP equal to 96%.
A study by Piyathilake et al. [18] suggests that ex-
pression of FASE is an early event in the development
and progression of SCC of the lung. Combinations of
biomarkers also were evaluated in a multiple logistic
regression model (data not shown). The combination
of p185erbB−2 and EGFR membrane levels improved
AUC to 96% from an AUC of about 90% with either
biomarker alone (Table 2) when comparing controls
versus uninvolved tissues from lung cancer cases. The
combination of FASE and EGFR membrane levels did
not improve the AUC of 99.6% from the model with
FASE alone when comparing controls vs. carcinoma
tissues from lung cancer cases.
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Table 1
Descriptive Statistics for Biomarkers in Lung Cancer Cases versus Controls

Biomarker Location Normal Tissues
from Controls
Mean± SD
(median), range

Uninvolved Tissues
from Lung Cancer
Cases Mean± SD
(median), range

Carcinoma Tissues
from Lung Cancer
Cases Mean± SD
(median), range

p185erbB−2 Basal 0.51± 0.04 (0.50),
0–1.3

0.86± 0.04 (0.80),
0.2–1.6

–

Luminal,
Cytoplasm

0.99± 0.05 (1.05),
0.08–1.6

1.53± 0.07 (1.50),
0.5–2.8

1.27a ± 0.44 (1.30),
0.30 – 2.3

Luminal,
Membrane

0.23± 0.03 (0.20),
0–1.0

0.68± 0.04 (0.60),
0.1–1.5

0.97b ± 0.55 (0.80),
0.10–2.3

Average (C+M) 0.61± 0.04 (0.65),
0.04–1.30

1.11± 0.05 (1.05),
0.30–2.0

1.12± 0.44 (1.05),
0.20–2.10

EGFR Basal 0.70± 0.07 (0.70),
0–1.8

1.25± 0.08 (1.30),
0.2–2.5

–

Luminal,
Cytoplasm

0.38± 0.04 (0.30),
0–1.1

0.74± 0.05 (0.70),
0.2–1.6

1.32a ± 0.52 (1.50),
0.20–2.10

Luminal,
Membrane

0.09± 0.02 (0.20),
0–0.7

0.55± 0.04 (0.50),
0.01–1.4

1.68b ± 0.68 (1.80),
0–2.7

Average (C+M) 0.24± 0.03 (0.20),
0–0.85

0.65± 0.04 (0.60),
0.15–1.5

1.50± 0.59 (1.65),
0.10–2.35

TGF-α Basal 0.20± 0.03 (0.17),
0–0.80

0.60± 0.04 (0.60),
0.05–1.3

–

Carcinoma 0.61± 0.05 (0.60),
0.03–1.5

1.08± 0.05 (1.03),
0.20–1.9

1.26± 0.42 (1.30),
0.25–2.15

FASE Basal 0.07± 0.01 (0.03),
0–0.33

0.25± 0.02 (0.23),
0–0.73

–

Carcinoma 0.30± 0.03 (0.30),
0–0.87

0.55± 0.04 (0.52),
0.03–1.17

1.54± 0.43 (1.50),
0.60–2.70

aCarcinoma, cytoplasm.
bCarcinoma, membrane.

Table 2
Cut-off points, sensitivity, specificity, likelihood ratio (LR), and area under the curve
(AUC) of ROC. Normal tissues from controls versus uninvolved tissues from lung
cancer cases

Biomarker Cut-off Point Sensitivity Specificity LR AUC of ROC
(Location) (%) (%) (%)

p185erbB−2

Basal 0.70 60 85 3.14 80
Cytoplasm 1.30 65 85 1.99 82
Membrane 0.40 80 92 7.27 89

EGFR
Basal 1.00 64 83 3.96 76
Cytoplasm 0.40 78 58 1.22 76
Membrane 0.10 91 75 1.29 90

TGF-α
Basal 0.40 72 89 4.84 86
Carcinoma 0.70 83 67 1.47 80

FASE
Basal 0.10 74 79 2.90 78
Carcinoma 0.40 60 80 2.04 75

4. Discussion

Selected cut-off points for p185erbB−2 and EGFR
membrane levels appear to have good discriminating
power to differentiate controls versus patients with lung
cancer. This was true for both comparisons between

controls versus uninvolved tissues from lung cancer
cases and between controls versus carcinoma tissues
from lung cancer cases. In fact, better discrimination
based on higher AUC, was observed for the latter com-
parison, indicative of the trend of increasing levels of
biomarkers from controls to uninvolved tissues to carci-
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Table 3
Cut-off points, sensitivity, specificity, likelihood ratio (LR), and area under the curve
(AUC) of ROC. Normal tissues from controls versus carcinoma tissues from lung cancer
cases

Biomarker Cut-off Point Sensitivity Specificity LR AUC of ROC
(Location) (%) (%) (%)

p185erbB−2

Cytoplasm 1.00 70 50 0.90 67
Membrane 0.40 89 92 6.67 93

EGFR
Cytoplasm 1.00 74 98 10.2 91
Membrane 0.40 91 98 0.93 97

TGF-α 0.70 86 67 1.03 86
FASE 0.70 98 96 2.41 99.6

Table 4
Attributable proportion (APs) of Biomarkers

Biomarker Location AP AP
Uninvolved Tissues Carcinoma Tissues

From Lung Cancer Cases From Lung Cancer Cases

p185erbB−2 Basal 0.35 –
Cytoplasm 0.41 0.24 Carcinoma, Cytoplasm
Membrane 0.63 0.78 Carcinoma, Membrane

EGFR Basal 0.38 –
Cytoplasm 0.43 0.57 Carcinoma, Cytoplasm
Membrane 0.79 0.83 Carcinoma, Membrane

TGF-α Basal 0.52 –
Carcinoma 0.58 0.65

FASE Basal 0.50 –
Carcinoma 0.34 0.96

noma tissues of lung cancer patients. Interestingly, the
selected cut-off point for FASE showed superior dis-
criminating power between control versus carcinoma
tissues from cases. The study of Piyathilake et al. [18]
reported a statistically significant step-wise increase in
FASE expression from uninvolved bronchial mucosa
to epithelial hyperplasia to SCC suggesting its possi-
ble involvement in the development and progression of
SCC of the lung.

In this study, we utilized two independent patient
groups, i.e. controls and patients with lung cancer to
arrive at biomarker cut-off points that differentiate be-
tween the two samples. Methods for determining cut
points of a prognostic variable in instances wherein
only the sample of cancer patients are available include
the use of a biological criteria, medians and upper limits
of normality (mean± 2x standard deviations), and the
minimum p-value approach [19]. The latter approach
which involves a systematic cut point search leads to in-
flation of the type I error arising from multiple testing.
As such, the use of this method requires adjustment of
the inflated p-values; however, methods for adjustment
are not frequentlyused in many prognostic studies. The
availability of data from control subjects allowed us to

use a simple and intuitive approach that will best di-
chotomize biomarker levels into high expression/risk
vs. low expression/risk. This provides an alternative
approach to the use of arbitrarily defined cut points at
the median value or the use of multiple testing to search
for cut points. Since the cut-points were selected inde-
pendent of patient outcome (e.g. response rate, overall
survival, disease-free survival), they can then be used as
dichotomized prognostic variables without adjustment
on significance levels of hypothesis testing.

Our criteria for obtaining cut-off points was based
on the best balance between sensitivity and specificity
as recommended by Pina et al. [13]. However, our ref-
erence population consists of subjects with other types
of lung diseases besides lung cancer. As such, we were
not able to determine the potential improvement in sen-
sitivity levels from the use of healthy controls [13] in
this study. A cohort of healthy controls and additional
lung cancer cases is currently being evaluated by au-
thors of this study and will provide for this additional
evaluation as well as a serve as an independent patient
group to validate the biomarker cut-off points identified
in this study.
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The use of control subjects also allowed us to validate
the value of biomarkers as surrogate endpoints for can-
cer outcome. With the exception of FASE, this study
found only small to moderate proportions of lung can-
cer cases can be attributed to high levels of p185erbB−2,
EGFR, and TGF-alpha. This stresses the importance
of validating biomarkers in different study populations
and in other cancer sites in order to arrive at a more
definitive conclusion regarding the value of a biomarker
as a surrogate for cancer outcome.
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