
Alström syndrome (AS; OMIM: 203800) is a rare and 
autosomal recessive hereditary disease with an estimated 
prevalence of less than 0.001% [1,2]. AS is caused by muta-
tions in the ALMS1 gene, which is located on chromosome 
2p13 [3,4]. ALMS1 is localized to centrosomes and ciliary 
basal bodies [5,6] and has been implicated in the func-
tion, formation, and maintenance of primary cilia [5,7–9]. 
Dysfunction of primary cilia caused by mutations in genes 
such as ALMS1 leads to a multitude of human monogenic 
disorders known as ciliopathies [10,11]; these include plural 
systemic diseases, such as AS, Usher syndrome, Bardet–
Biedl syndrome (BBS), Senior–Løken syndrome, Joubert 
syndrome, Meckel–Gruber syndrome, and orofaciodigital 
syndrome 1 [11,12]. The majority of ALMS1 mutations are 

nonsense and frameshift variations (primarily clustered in 
exons 8, 10, and 16) that are predicted to cause truncated 
proteins [3,4,13]. In the photoreceptors, ALMS1 mutations 
lead to defective function of the connecting cilium.

AS is characterized by a wide spectrum of disorders, 
such as early onset severe retinal degeneration, obesity 
from childhood, hyperinsulinemia, type 2 diabetic mellitus 
(T2DM), hepatic dysfunction, heart failure, sensory hearing 
loss, and renal failure [14]. Other manifestations include acan-
thosis nigricans, alopecia, hypogonadism, hypothyroidism, 
hyperlipidemia, short stature, and scoliosis [15,16]. In most 
cases of AS, cone–rod degeneration in the first decade, 
normal intelligence, and no polydactyly serve as a differential 
diagnosis of BBS, which exhibits similar clinical findings to 
AS [17].

Almost all patients with AS show nystagmus and severe 
photophobia from infancy [14,18]. Visual impairment is 
usually seen at an age younger than 1 year [18]. Although 
the rate of progression of vision loss is variable, all patients 
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Purpose: No mutations associated with Alström syndrome (AS), a rare autosomal recessive disease, have been reported 
in the Japanese population. The purpose of this study was to investigate the genetic and clinical features of two brothers 
with AS in a consanguineous Japanese family.
Methods: Whole-exome sequencing analysis was performed on two brothers with AS and their unaffected parents. We 
performed a complete ophthalmic examination, including decimal best-corrected visual acuity, slit-lamp and funduscopic 
examination, visual-field and color-vision testing, full-field electroretinography, and optical coherence tomography. 
Fasting blood tests and systemic examinations were also performed.
Results: A novel mutation (c.6151C>T in exon 8) in the Alström syndrome 1 (ALMS1) gene that causes a premature 
termination codon at amino acid 2051 (p.Q2051X), was identified in the homozygous state in the affected brothers and 
in the heterozygous state in the parents. The ophthalmologic findings for both brothers revealed infantile-onset severe 
retinal degeneration and visual impairment, marked macular thinning, and severe cataracts. Systemic findings showed 
hepatic dysfunction, hyperlipidemia, hypogonadism, short stature, and wide feet in both brothers, whereas hearing loss, 
renal failure, abnormal digits, history of developmental delay, scoliosis, hypertension, and alopecia were not observed 
in either brother. The older brother exhibited type 2 diabetic mellitus and obesity, whereas the younger brother had 
hyperinsulinemia and subclinical hypothyroidism.
Conclusions: A novel ALMS1 mutation was identified by using whole-exome sequencing analysis, which is useful not 
only to identify a disease causing mutation but also to exclude other gene mutations. Although characteristic ophthal-
mologic findings and most systemic findings were similar between the brothers, the brothers differed slightly in terms 
of glucose tolerance and thyroid function.
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show progressive retinal degeneration, with 90% becoming 
totally blind by the age of 16 years [19] and all becoming 
blind eventually [14,19]. Due to severe retinal degeneration 
and visual impairment during the first months of life, AS is 
often confused with congenital retinal degenerations, such as 
Leber congenital amaurosis (LCA) and congenital achroma-
topsia (ACHM) [20,21]. There are several reports of Japanese 
patients with AS [22–24]; however, there has been no report 
identifying any ALMS1 mutation associated with AS in the 
Japanese population.

Recently, the development of next-generation sequencing 
technology has facilitated biologic and biochemical research 
by enabling the broad analysis of genomes [25–28]. The 
whole genome of an individual can now be sequenced at great 
depth, and genomic capture technology can be used to isolate 
sequences of interest [29–32].

Here, we used whole-exome sequencing to identify a 
novel ALMS1 mutation in two Japanese brothers with AS. 
We also examined the clinical features of the two brothers 
in detail.

METHODS

The protocol of this study was approved by the Institutional 
Review Board of the Jikei University School of Medicine 
and National Hospital Organization Tokyo Medical Center. 
The protocol adhered to the tenets of the Declaration of 
Helsinki, and written informed consent was obtained from 
all participants.

Clinical studies: The study was conducted in one consan-
guineous Japanese family (JU#0769–095JIKEI) with AS 
(Figure 1). The parents were second cousins. The clinical 
history was taken in detail, and the following ophthalmic 
examinations were performed: decimal best-corrected visual 
acuity (BCVA), slit-lamp and fundus examinations, and time-
domain optical coherence tomography (TD-OCT; OCT3 
Stratus; Carl Zeiss Meditec AG, Dublin, CA) or spectral-
domain OCT (SD-OCT; Cirrus HD-OCT; Carl Zeiss Meditec 
AG). In color-vision tests, we used the Ishihara test (38-plate 
edition) and the Farnsworth Panel D-15 (Panel D-15). Visual-
field testing by kinetic perimetry was conducted by using 
the Goldmann perimeter (GP; Haag Streit, Bern, Switzer-
land). Full-field electroretinography (ERG) was performed 
according to the protocols of the International Society for 

Figure 1. A consanguineous family 
(JU#0769–095JIKEI) with Alström 
syndrome. Two affected brothers 
(II-1 and II-2) with Alström 
syndrome and their unaffected 
parents are depicted.

http://www.molvis.org/molvis/v19/2393
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Clinical Electrophysiology of Vision. The procedure and 
conditions for ERG recording have been detailed previously 
[33].

Fasting venous blood samples were analyzed for glucose, 
lipid, lipoprotein, and hemogram levels and renal, liver, and 
thyroid function tests. In addition, hemoglobin A1c, insulin, 
anti-thyroid peroxidase, anti-thyroglobulin antibodies, 
cortisol, luteinizing hormone, follicle stimulating hormone, 
testosterone, estradiol, prolactin, parathyroid hormone, and 
thyroid receptor antibody levels were examined. Chest X-rays 
and electrocardiograms were also performed.

DNA preparation and exome sequencing analysis: We 
obtained venous blood samples from the affected brothers 
and their unaffected parents. Genomic DNA was extracted 
from the blood samples by using a Gentra Puregene Blood 
kit (Qiagen, Tokyo, Japan) and sheared with a Covaris Ultra-
sonicator (Covaris, Woburn, MA). Construction of paired-
end sequence libraries and exome capture were performed 
by using the Agilent Bravo automated liquid-handling plat-
form with SureSelect XT Human All Exon kit V4 + UTRs 
kit (Agilent Technologies, Santa Clara, CA) according to 
the manufacturer’s instructions. Enriched libraries were 
sequenced by using in Illumina HiSeq2000 sequencer (San 
Diego, CA), according to the manufacturer’s instructions for 
100-bp paired-end sequencing. Reads were mapped to the 
reference human genome (1000 genomes phase 2 reference, 
hs37d5) with Burrows–Wheeler Aligner software version 
0.6.2 [34]. Duplicated reads were then removed by Picard 

MarkDuplicates module version 1.62, and mapped reads 
around insertion–deletion polymorphisms (INDELs) were 
realigned by using the Genome Analysis Toolkit (GATK) 
version 2.1–13 [35]. Base-quality scores were recalibrated 
by using GATK. Calling of mutations was performed by 
using the GATK UnifiedGenotyper module, and called 
single-nucleotide variants and INDELs were annotated by 
using snpEff software version 3.0 [36]. The mutations were 
annotated with the snpEff score (“HIGH,” “MODERATE,” or 
“LOW”) and with the allele frequency in the 1000 genomes 
database. The mutations were then filtered so that only those 
with “HIGH” or “MODERATE” snpEff scores (indicating 
that the amino acid sequence would be functionally affected) 
and a frequency of less than 1% in the 1000 genome data-
base were analyzed further. We also used new variations, 
which were not found in the in-house database of seven 
people exome data with control individuals without ocular 
diseases. Mutations were classified by hereditary information 
into homozygous recessive, heterozygous recessive, and de 
novo mutations in the family members. Filtered mutations 
were scored with PolyPhen software version 2.2.2 [37], 
which predicts the effect on the structure and function of the 
protein. The above exome analysis pipeline is available at 
Cell Innovation.

Figure 2. Full-field electroretinogram. The electroretinograms (ERGs; patient II-1) at the age of 9 years, showing no standard combined, 
photopic, or 30-Hz flicker responses in either eye. The ERGs (patient II-2) at the age of 7 years, showing no rod, standard combined, photopic, 
or 30-Hz flicker responses in either eye.

http://www.molvis.org/molvis/v19/2393
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
http://cell-innovation.nig.ac.jp/
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RESULTS

Ophthalmologic findings for patient II-1: Patient II-1, the 
elder of the two brothers, was referred to our hospital at the 
age of 7 years and 4 months for the assessment of poor visual 
acuity from infancy. His BCVA was 0.04 (with +2.00 diopter 
[dpt], cylinder [cyl] –1.00 dpt axis [Ax] 180°) in the right eye 

and 0.06 (with +2.00 dpt, cyl –1.00 dpt Ax 180°) in the left 
eye. Fundus examination showed slight retinal degeneration 
in both eyes. At the age of 9 years, the patient recognized only 
the first plate in the Ishihara test for color vision, the panel 
D-15 test for color vision showed irregular arrangements 
along no particular axis, and the ERG showed no standard 

Figure 3. Visual fields assayed by Goldmann perimetry in patient II-1. A–C: Visual fields at the age of 11 years (A), at the age of 16 years 
(B), and at the age of 22 years (C). Markedly constricted visual fields (V-4e and I-4e isopters) are observed in both eyes, and the visual 
fields become constricted as the patient ages.

http://www.molvis.org/molvis/v19/2393
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combined, photopic, or 30-Hz flicker responses in either eye 
(Figure 2). GP analysis at the age of 11 years showed mark-
edly constricted visual fields in V-4e and I-4e isopters of 
both eyes (Figure 3A). The fundus photographs at the age 
of 14 years showed retinal degeneration with attenuated 
vessels from the arcade to the periphery in both eyes (Figure 
4A). GP analysis at the age of 16 years showed more marked 
constricted visual fields of V-4e and I-4e isopters in both 
eyes than those observed at the age of 11 years (Figure 3B); a 
similar analysis at the age of 22 years showed a small visual 
field of V-4e isopter in the right eye and no visual field in the 
left eye (Figure 3C). TD-OCT at the age of 22 years showed 
total macular thinning in both eyes (Figure 5A). At the age of 
29 years, his BCVA was light perception (LP) in the right eye 
and no light perception in the left eye. Intraocular pressure in 
each eye was within the normal range. He had severe cortical 

and subcapsular cataracts in the right (Figure 6) and left eyes, 
and the fundi were not visible due to these cataracts.

Ophthalmologic findings for patient II-2: Patient II-2, the 
younger of the two brothers, visited our hospital at the age of 
2 years and 6 months with the main complaint of poor visual 
acuity and photophobia. At the age of 3 years, his BCVA was 
0.01 (+1.50 dpt) in the right eye and 0.01 (+1.50 dpt) in the left 
eye. Fundus examination showed retinal degeneration with 
slight attenuation of peripheral vessels. At the age of 4 years, 
he failed the Ishihara test. At the age of 6 years, the panel 
D-15 test showed irregular arrangements along no particular 
axis, and the GP could not be measured well because of low 
visual acuity and nystagmus. The ERG at the age of 7 years 
showed no rod, standard combined, photopic, or 30-Hz flicker 
responses in either eye (Figure 2). The fundus examination at 

Figure 4. Fundus photographs of patients II-1 and II-2. A and B: Fundus photographs of patient II-1 at the age of 14 years (A) and patient 
II-2 at the age of 8 years (B) show retinal degeneration with attenuated vessels in the posterior poles of both eyes.

http://www.molvis.org/molvis/v19/2393
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the age of 8 years showed retinal degeneration with attenu-
ated vessels from the arcade artery to the periphery in both 
eyes (Figure 4B). TD-OCT at the age of 16 years showed 
total macular thinning in both eyes (Figure 5B). At the age 
of 23 years, his BCVA was LP in both eyes, the intraocular 

pressure was within the normal range in both eyes, posterior 
subcapsular cataracts were present in both eyes, and SD-OCT 
showed total macular thinning with indistinguishable retinal 
layers in both eyes (Figure 5C).

Figure 5. Optic coherence tomography findings. A and B: Time domain optic coherence tomography (OCT; retinal mapping) of patient II-1 
at the age of 22 years (A) and II-2 at the age of 16 years (B) show total macular thinning in both eyes. C: Spectral-domain OCT (HD-5-line 
raster) of patient II-2 at the age of 23 years, showing marked macular thinning with indistinguishable retinal layers in the macular areas of 
both eyes.

http://www.molvis.org/molvis/v19/2393
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Systemic features except ocular findings: Systemic exami-
nations were performed for patient II-1 at the age of 29 
and patient II-2 at the age of 23. Both patients had hepatic 
dysfunction, hyperlipidemia, hypogonadism, short stature, 
and flat feet, and neither patient had hearing loss, renal 
failure, abnormal digits, history of developmental delay, 
mental retardation, scoliosis, hypertension, or alopecia. 
Obesity was present in patient II-1 only. Patient II-1 had 
T2DM, whereas patient II-2 showed hyperinsulinemia. 
Subclinical hypothyroidism was diagnosed in patient II-2 
only. Recurrent pulmonary infections were not observed, 
and chest X-rays showed neither fibrotic infiltrations nor 
cardiac dilation in either patient. Infantile asthma was expe-
rienced by both patients. Electrocardiogram analysis showed 
no arrhythmia in either patient. Summaries of the clinical 
features, bio-information, and detailed laboratory data are 
presented in Table 1 and Table 2. Collectively, the phenotypes 
of the brothers were consistent with those described for AS.

Exome sequencing analysis and identification of a gene 
mutation: We performed whole-exome sequencing of the two 
affected brothers and their parents by using the Agilent Sure-
Select Human All Exon kit followed by Illumina HiSeq 2000 
platforms. Sequences of average length 11.8 Gb were gener-
ated from 101-bp paired-end sequences. After eliminating 
reads from PCR duplicates by discarding reads with dupli-
cated start sites, we achieved 58-fold depth and 87% coverage 
in Refseq annotated regions (Table 3). When the sequences 
were compared with the reference human genome (hs37d5), 
3,506,741 mutations were found in the two brothers and their 

parents (Table 4). To distinguish potentially causal mutations 
from other mutations, we focused only on mutations that 
could change the amino acid sequence (19,574 mutations), 
such as nonsynonymous mutations, splice acceptor and donor 
site mutations, and INDELs. We also assumed the frequency 
of the mutations responsible for AS is likely to be under 1%. 
After filtering with snpEff score and frequency criteria, we 
filtered the remaining 3,685 mutations by using the pattern of 
inheritance and identified 17 gene mutations as causal candi-
dates. Among these mutations, nine mutations were found 
homozygous in the HECT domain containing E3 ubiquitin 
protein ligase 3 (HECTD3), the vitrin (VIT), the protein kinase 
domain containing, cytoplasmic (PKDCC), the ATP-binding 
cassette, sub-family G (WHITE), member 8 (ABCG8), the 
leucine-rich pentatricopeptide repeat containing (LRPPRC), 
the G protein-coupled receptor 75 (GPR75), the notochord 
homeobox (NOTO), the matrix-remodelling associated 5 
(MXRA5), and the ALMS1 genes. Eight mutations were found 
as compound heterozygous mutations within the PERP, TP53 
apoptosis effector (PERP), the transforming, acidic coiled-
coil containing protein 2 (TACC2), the zinc finger protein, 
FOG family member 1 (ZFPM1), and the lipoxygenase 
homology domains 1 (LOXHD1) genes. No de novo mutations 
were found. To determine the causative gene, we investigated 
SAGE (EyeSAGE) database to determine if the candidate 
genes are expressed in the retina. Nine candidate mutations 
were identified within VIT, LRPPRC, PERP, TACC2, ZFPM1, 
and ALMS1 genes. These nine candidate genes were further 
reduced by the BIOBASE Biologic Database and RetNet to 
determine which of the candidate genes would be likely to 

Figure 6. Anterior segment of the 
right eye in patient II-1. A severe 
cortical and anterior subcapsular 
cataract is present at the age of 29 
years.

http://www.molvis.org/molvis/v19/2393
http://neibank.nei.nih.gov/EyeSAGE/index.shtml
http://www.biobase-international.com/
https://sph.uth.edu/Retnet/
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progress known phenotype with syndromic disorders. Finally, 
ALMS1 was speculated to be the disease-causing gene. The 
ALMS1 sequence was compared with the NCBI reference 
sequence of the ALMS1 transcript (GenBank NM_015120.4).

As a result, in the two affected brothers we identi-
fied a novel single-nucleotide substitution at position 6151 
(c.6151C>T in exon 8) that causes a premature termination 
codon at amino acid 2051 (p.Q2051X) of the ALMS1 gene 
resulting in a truncated protein. Both brothers were homo-
zygous for the mutant allele, whereas the unaffected parents 
were heterozygous carriers of the allele, also reconfirmed by 
Sanger sequencing. The novel ALMS1 mutation (p.Q2051X) 
was not found in any of 100 Japanese individuals without 
ocular disease in the Single Nucleotide Polymorphism Data-
base or in the Human Gene Mutation Database.

DISCUSSION

To date, no patient with ALMS1-associated AS has been 
reported in the Japanese population. Here, we identified a 
novel ALMS1 mutation (p.Q2051X) in two Japanese brothers 
with AS.

Marshall et al. advocate criteria for the diagnosis of AS 
[19]. In patients over the age of 15, it is necessary to fulfill 
“two major and two minor criteria” or “one major and four 
minor criteria” [19]. Our brother patients exhibited two major 
(ALMIS1 mutation and loss of vision, such as legal blind-
ness) and more than four minor criteria (obesity, insulin 
resistance, and/or T2DM, hepatic dysfunction, short stature, 
and hypogonadism). Also, the phenotypic expression of AS is 
differentiated from BBS characterized by later onset retinal 
dystrophy, polydactyly, central obesity, learning disabilities, 
hypogonadism, and renal anomalies [38].

In patients with AS, phenotypic variability in disease 
severity and retinal function assessed by electroretinographic 
and visual-field testing [39] and variability in pathological 

Table 1. Clinical characteristics

Clinical findings Patient II-1 Patient II-2
Percentage (%) in 182 
casesa

Low vision + + 100
Subcapsular cataracts + + 32
Hearing loss – – 88
Cardiomyopathy – – 62
Type 2 diabetes mellitus + – 68
Childhood obesity + – 98
Hyperinsulinemia – + 92
Short stature + + 98
Hypertriglyceridemia + + 52
Hypothyroidism – + (subclinical) 17
Hypogonadism + + 78
Elevated hepatic enzyme levels + + 92
Renal insufficiency – – 50
Renal hypertension – – 30
Pulmonary symptoms – – 52
Asthma + (childhood) + (childhood) 19
Muscle weakness – – 29
Global development delay – – 49
Wide feet + + ND
Abnormal digits – – ND
Scoliosis – – ND
Alopecia – – ND

ND, not described. aThe cases are cited  [13].

http://www.molvis.org/molvis/v19/2393
http://www.ncbi.nlm.nih.gov/nuccore/NM_015120.4
http://www.ncbi.nlm.nih.gov/projects/SNP/
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or anatomic changes of the retina [14,18,21,40] have been 
reported. For instance, a study of the pathology of the retina 
of a 2-year-old girl with AS showed hypocellularity of the 
ganglionic cell layer, the inner nuclear layer, and the outer 
nuclear layer (ONL) in addition to an absence of rod and cone 
outer segments and disruption of retinal pigment epithelium 
[18,21]; a study of a 42-year-old female with AS revealed 
severe reduction of all retinal layers containing a complete 
lack of photoreceptors and deposits of melanin pigments in 
the inner nuclear layer [14]; and OCT findings of a 5-year-
old boy with AS showed only a slight thinning of the central 
retina [40]. In our patients, OCT findings showed marked 
retinal thinning (Figure 5A,B). The retinal layers of patient 
II-2 could not be distinguished because of marked retinal 
thinning (Figure 5C).

A study using retinal sections of Alms1 knockout 
(Alms1−/−) mice showed loss of the cell bodies in the ONL, 
shortening of the inner and outer segments, and incorrect 
localization of rhodopsin to the ONL [7]. The mislocaliza-
tion of rhodopsin in the Alms1−/− mice indicates a defective 
rhodopsin transport system through the photoreceptor-
connecting cilium [7]. The connecting cilium, damaged by 
loss of function of ALMS1, modifies the outer segments of 
the photoreceptors. Therefore, it has been suggested that 
defective protein transport across the connecting cilium is the 
probable cause of early onset severe retinal degeneration in 
AS patients [10]. We consider that the marked retinal thinning 
(Figure 5) and loss of retinal function (Figure 2) observed in 

our patients are due to a defective transport system across the 
photoreceptor-connecting cilium, resulting from the homozy-
gous truncated mutation (p.Q2051X).

Variability in the phenotypic expression of AS is 
observed within sets of affected siblings [14,41–43]. Most 
patients with AS eventually develop T2DM, although there 
is wide variability in the age of onset [14]. Here, patient II-1 
showed T2DM, but patient II-2 exhibited hyperinsulinemia, 
a predictor of T2DM (Table 2), suggesting that he might 
develop T2DM in the future. In addition, patient II-2 showed 
subclinical hypothyroidism, whereas patient II-1 did not 
exhibit hypothyroidism (Table 2). Hypothyroidism or subclin-
ical hypothyroidism is reported to exist in approximately 
20% of AS patients [14,19]. Most clinical features, such as 
retinal degeneration, hepatic dysfunction, hyperlipidemia, 
hypogonadism, short stature, and wide feet, were common 
features of the affected brothers (Table 1, Table 2); however, 
slight phenotypic differences in terms of glucose tolerance 
and thyroid function were observed between them.

ALMS1 protein has several notable sequence features, 
including an extensive tandem repeat domain (34×47 amino 
acid approximate tandem repeat, residues 538–2,199), a 
putative leucine-zipper motif (residues 2,480–2,501), and 
an ALMS motif (residues 4,035–4,167). Although the 
precise roles of the above domain and motifs are unknown, 
it is suggested that two regions of ALMS1—a relatively 
small internal region (residues 2,261–2,602) and a larger 
C-terminal region (residues 3,176–4,169)—play important 

Table 3. DNA sequence statistics

Family members Read length 
(bp)

Number of reads Mapping rate 
(%)

Mean depth 
(fold)

Coverage (%)

II-2 (younger brother) 101 47,724,724 99.4 46.6 88.5
II-1 (elder brother) 101 68,584,852 99.4 59.6 86.1
I-1 (father) 101 57,103,807 99.3 69.3 88.5
I-2 (mother) 101 59,776,264 99.3 56.8 86
Average 101 58,297,412 99.3 58.1 87.3

Table 4. Number of mutations after each filtering step

Filtering step Number of mutations
1. Raw single-nucleotide variants plus insertion–deletion polymorphisms 3,506,741
2. Mutations capable of changing amino acid sequence 19,574
3. Mutations filtering by the snpEff score and existing at a frequency of less than 1% in 1000 genomes 3,685
4. Mutations filtering by the pattern of inheritance 17
5. Mutations expressed in retina, confirmed by SAGE databasea 9
6. Mutations narrowed down using BIOBASE Biologic Databaseb and RetNet databasec 1

aSAGE: serial analysis of gene expression;bBIOBASE Biologic Database (EyeSAGE); cRetNet database.

http://www.molvis.org/molvis/v19/2393
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roles in targeting ALMS1 to the centrosomes and ciliary 
basal bodies [44]. In our patients, if the truncated protein 
caused by the mutation (p.Q2051X) is expressed in the retina, 
the protein would not contain the two regions important for 
targeting (residues 2,261–2,602 and residues 3,176–4,169) or 
the putative leucine-zipper and ALMS motifs. Therefore, this 
truncated mutation would cause loss of function of ALMS1, 
resulting in the AS phenotype. Although genotype–pheno-
type correlations are not clear among AS patients with 
ALMS1 mutations [45,46], patients with mutations in exon 8 
are reported to have delayed and milder renal complications 
compared with those with mutations in exons 10 and 16 [13]. 
In our patients, the p.Q2051X mutation was present in exon 
8, explaining normal renal function.

The syndromic disorder AS is often misdiagnosed as 
LCA, ACHM, or other ciliopathies [11,20,21], so the iden-
tification of diagnostic mutations is important. Also, early 
diagnosis may improve longevity and long-term quality of 
life. By the whole-exome sequencing analysis technique, we 
were able to comprehensively determine the disease-causing 
gene mutation by using the fewest samples possible from the 
pedigree and analyzing all exon sequences in a relatively 
short time. Because of the autosomal recessive inheritance 
pattern, the parents and two affected brothers were enough to 
narrow down the candidate genes. Consequently, we identi-
fied a single causative gene mutation (p.Q2051X of ALMS1). 
Whole-exome sequence analysis should play an important 
role in future diagnostics for AS.

In conclusion, there has been no report of any AS patient 
with an ALMS1 mutation in the Japanese population, prob-
ably because AS is an extremely rare inherited disease. 
We identified a novel ALMS1 mutation in two brothers of a 
consanguineous family and examined their clinical features 
in detail. Our results indicate the presence of different muta-
tions in AS between Japanese and other populations.
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