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Abstract
In the past decade, a concerted effort to successfully capture specific tertiary packing interactions
produced specific three-dimensional structures for many de novo designed proteins that are
validated by nuclear magnetic resonance and/or X-ray crystallographic techniques. However, the
success rate of computational design remains low. In this review, we provide an overview of
experimentally validated, de novo designed proteins and compare four available programs,
RosettaDesign, EGAD, Liang-Grishin, and RosettaDesign-SR, by assessing designed sequences
computationally. Computational assessment includes the recovery of native sequences, the
calculation of sizes of hydrophobic patches and total solvent-accessible surface area, and the
prediction of structural properties such as intrinsic disorder, secondary structures, and three-
dimensional structures. This computational assessment, together with a recent community-wide
experiment in assessing scoring functions for interface design, suggests that the next-generation
protein-design scoring function will come from the right balance of complementary interaction
terms. Such balance may be found when more negative experimental data become available as
part of a training set.
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INTRODUCTION
De novo protein design refers to computational design of new protein molecules that possess
desired biological functions. Such computational design is needed to supplement and
accelerate naturally occurring processes that can create conformationally and functionally
novel proteins, as naturally occurring processes are constrained by biological functional
requirements and limited by the tools available in nature. For example, one naturally
occurring process that produces new topologically linked protein structures is circular
permutation, a process that closes the N and C termini with a short loop and opens another
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loop for new termini (16, 71). This single-loop permutation, however, often results in
essentially the same structure prior to circular permutation (42, 48). By comparison, new
topologically folded structures can be generated more frequently in silico by changing the
connections of multiple, rather than single, loops while maintaining the core packing (20).
This and other studies (14, 111) suggest the existence of a vast, unexplored space of possible
structural folds of proteins. A limited exploration of the protein structural space is more
obvious for proteins with a knot in their polypeptide backbones. There are only 78
nonredundant knotted proteins in the entire Protein Data Bank of 30,000 structures (90%
sequence identity cutoff), a number much lower than would be expected to occur by chance
(46, 113). Most of these 78 knots are the simple three-point crossing (trefoil) knot, and the
most complex is a six-point crossing knot for one protein called α-haloacid dehalogenase
(the Stevedore knot) (55, 61). The rarity and simplicity of knotted proteins again suggest the
opportunity to supplement natively knotted proteins with designed ones (20, 53). The
functional space of proteins is also far from fully explored by nature. For example, enzymes
can catalyze only a selected set of chemical reactions required for the life cycle of living
organisms. Such vast unexplored structural and functional space of proteins has motivated
active research in protein design, which is steadily increasing our knowledge of protein
structure and function while more clearly defining opportunities for future explorations.

Significant strides in a number of areas have been made in the past two decades. In the early
1990s, most designed proteins had molten-globule-like structures with low stability (43, 52,
91, 92). Currently, on the other hand, specific structures of de novo designed proteins are
routinely validated by NMR or X-ray structure determination (5, 9, 17, 21, 27, 41, 56, 60,
82, 104, 115). New structural folds were also successfully designed in 2003 (58) and 2009
(65). Progress in structural specificity and stability was accompanied by novel proteins
designed with functions ranging from protein binding (3, 40, 54, 59, 74, 93, 105) to catalytic
activities (7, 29, 50, 62, 84, 106) to conformational switches (1, 2). Such advances make it
clear that de novo protein design holds promise to significantly accelerate the development
of novel proteins for diagnostic, therapeutic, and industrial purposes.

This promise, however, is still unfulfilled largely because of the low success rate of de novo
design (12, 34, 63, 72, 109). Dantas et al. (22) performed a large-scale test of nine proteins
designed by RosettaDesign and found that only “half of the folded designs have NMR
spectra and temperaturemelts typical of tightly packed proteins.” Schreier et al. (103)
reexamined five computationally designed proteins and found that none of them performed
as expected due to instability, aggregation, or lack of detectable designed ligand binding.
Fleishman et al. (34) showed that only 2 of 73 designed proteins will bind with detectable
binding affinity to the targeted stem region of influenza hemagglutinin.

To improve the success rate of de novo protein design, we must overcome two practical
challenges. First, because experimentally measuring the success rate of designed proteins is
time-consuming and costly, many studies have relied on manual inspection and human
expertise in selecting designed sequences likely to be successful (72). As a result, we have
yet to construct and test a fully automated design process that could offer an actual success
rate high enough to warrant routine usage by biochemists. Second, because most protein
design software is not openly available for academic users, few comparisons between
different computational techniques have been made. These factors have made it difficult to
determine what makes one design successful and another design unsuccessful.

To limit our scope, this review focuses on de novo design of protein structures. We compare
four available protein design programs by computationally assessing designed sequences.
We show how different balances of energetic terms lead to different outcomes in native
sequence recovery, sizes of hydrophobic patches, and intrinsic disorder, among others. We
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propose that inaccurate scoring functions are the origin of low success rates of protein
design. Locating the right balance for the right energy terms is the key to further improving
protein design.

DE NOVO DESIGNED AND STRUCTURALLY VALIDATED PROTEINS
To retrieve all de novo designed and structurally validated proteins, we searched for the
keywords “synthetic,” “de novo designed,” or “designed proteins” in the Protein Data Bank
and excluded coiled coils, peptides, and those proteins that were not computationally
designed (i.e., not designed by energy optimization). We also excluded those protein
structures that have not been published in peer-reviewed publications. This leads to a small
list of 12 proteins (see Table 1) whose structures were determined by NMR or X-ray
diffraction over the span of 15 years. As shown in Figure 1, various structural folds have
been successfully designed with increased complexities and sizes (defined as the number of
amino acid residues); these range from all α, mixed α and β, and all β proteins. The largest
computationally designed protein has 127 residues. Six of the 12 proteins listed were
designed by RosettaDesign (21, 27, 36, 45, 58, 81), which utilized a mix of knowledge-
based and physical-based energy terms with heavy emphasis on specific packing of
hydrophobic and hydrophilic residues. The use of knowledge-based and/or physical-based
energy functions for packing interactions is also crucial for other computational techniques
(9, 17, 47, 65, 104, 108) to achieve structural specificity. However, over the past 15 years
we have seen no significant change in the number of proteins that are de novo designed and
structurally validated in a given year. It is either 0, 1, or 2 per year. This low number of
designed proteins suggests lack of a broader utilization of computational design, lack of
improvement in success rates, or both.

ORIGIN OF LOW SUCCESS RATES IN PROTEIN DESIGN
For a given protein length, an astronomically large number of possible sequences can be
generated from different combinations of amino acid residues (20100 for a 100-residue
protein). Only a tiny fraction of those sequences can be folded into specific structures by the
water-mediated interactions among these residues. Thus, the observed low success rates in
de novo design can be due to an inaccurate description of the interaction free energy
function, a failure to locate the global minimum specified by the free energy function, or
both. To assess which one is the likely cause, we examined 100 sequences designed by
RosettaDesign 2.3 on the basis of different initial conditions. We (19) found that these
sequences are highly homologous among each other, with an average sequence identity of
68% based on a database of 944 proteins. In other words, all designed sequences are
converging around a single solution, suggesting that searching for a global minimum is not a
major issue, at least for proteins designed with a fixed backbone. To confirm this, we added
a harmonic restraint to the RosettaDesign energy function [E = −wseq(SeqID-SeqID0)2 with
wseq = 10,000] so that we could sample sequences around a fixed sequence identity (SeqID0)
to the wild-type sequence of the target structure. Figure 2 shows the RosettaDesign energy
scores for 1,010 sequences designed for the structure of the acyl carrier protein from
Thermus thermophilus HB8 (PDB ID: 1×3o) at different SeqID0 ranging from 0 to 1
(100%). Without the harmonic restraint, the average sequence identity to the wild-type
sequence of the acyl carrier protein is around 50%. The energy score increases significantly
when sequence identity moves toward either 0% or 100% sequence identity. This finding
indicates that the wild-type sequence is not part of the solution. Because each RosettaDesign
energy unit is 0.5–1 kcal mol−1 according to some estimates (23, 44, 106), the energy
difference between the sequence at 100% sequence identity and the sequence at 50%
sequence identity is about 15 RosettaDesign energy units or approximately 8–15 kcal mol−1.
Although a wild-type sequence is not necessarily optimized for its structure, this energy
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difference is too large to be true because it is close to the typical stability free energy of
proteins (−10 kcal mol−1) (90). The limitation of existing energy functions is further
reflected from poorer performance in designing for NMR structures than for X-ray
structures (57, 102). In other words, the quality of an energy function remains the main
obstacle to successful computational design.

ENERGY FUNCTIONS FOR PROTEIN DESIGN
Energy functions for protein design are typically modified from the energy functions for
protein folding or dynamics studies (for a discussion, see 6, 13, 72, 85, 88, 97, 109, 114).
Because no major change in energy functions for protein design has occurred in the past
decade, we do not provide a comprehensive summary of all existing energy functions
employed in protein design. Instead, we describe in detail the energy functions of three
programs [RosettaDesign (49, 57, 94), EGAD (87), and Liang-Grishin (66)], which are
fairly representative of current state-of-the-art energy functions. RosettaDesign is dominated
by knowledge-based energy functions derived from protein structures, with the exception of
van der Waals and hydrogen bonding terms. EGAD attempts to build its energy function
largely on a physical-based molecular mechanics force field. The Liang-Grishin scoring
function, on the other hand, is an empirical mix of various geometry-based, knowledge-
based, and physical-based terms. More importantly, these programs are available for our
comparative studies.

RosettaDesign Energy Function
The RosettaDesign energy function (49, 57, 94) is made of 14 terms as shown in Equation 1
below:

1.

where Eref and W are the optimized reference energy and weight factors for different energy
terms, respectively. Eback is a backbone energy term for ϕ and ψ angles based on the

Ramachandran diagram (75).  is a statistical ω-angle potential. Erotamer is a
backbone-dependent side chain rotamer energy term (28), which is a knowledge-based self-
energy of an amino acid residue at a specific rotameric state derived from known protein
structures. Eattr and Erepul are attractive and repulsive portions of the 12–6 Lennard-Jones
potential, respectively. Erepul is finite and linearly dependent on distance for rij < 0.89σij (rij
and σij are the distance between atoms i and j and the average van der Waals radius of atoms
i and j, respectively). Intraresidue repulsive interactions are weighted separately. Esolv is the
Lazaridis-Karplus implicit solvation energy (64). Ekele is a knowledge-based, electrostatic
interaction based on the probability of two polar amino acid residues at a given distance
(107). Ehbond is a geometry-based hydrogen bonding term that is weighted separately for
local backbone-backbone (lb), nonlocal backbone-backbone (nlb), side chain–backbone
(scb), and side chain–side chain (sc), respectively. EPro is a specific energy term for proline
ring closure. There are also four additional terms for disulfide bonds. We do not list them
here because RosettaDesign typically fixes Cys residues. All parameters and reference state
values were optimized by native sequence recovery and amino acid compositions. Here we
employ RosettaDesign 2.3 only because more recent versions do not make significant
changes to its energy function.
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EGAD Energy Function
An EGAD energy function (87) contains four terms:

2.

where T is temperature. EOPLS-AA is the molecular mechanics energy function from the
OPLS-AA (optimized potentials for liquid simulations–all atom) force field (51) that
includes a van der Waals term, the Coulombic interaction, and torsion-angle terms, as well
as truncated electrostatic energies between close atom pairs and a finite, linear repulsive
term for the van der Waals interaction at rij < 0.82σij. The purpose of modification was to
reduce hard-core overlap energies due to approximations introduced from fixed backbone
and discrete side chain rotamers as in RosettaDesign. Esolv is the solvation free energy from
the generalized Born model for electrostatic interactions and a solvent-accessible, surface-
area-dependent term for hydrophobic interactions (86). Eref is a reference state energy
estimated from the average of interaction energies for a given residue type in random
sequences threaded onto protein structures. Sunfolded is side chain entropy (dependent on
residue types only) in the unfolded state estimated from peptide simulations and rotamer
statistics (15). In this equation, only two parameters for softening van der Waals repulsions
were optimized for reproducing experimental mutation-induced change in protein stability.
Pro, Gly, and Cys residues are fixed in the program.

Liang-Grishin Energy Function
The energy function for the Liang-Grishin method (66) is shown in Equation 3:

3.

where Eref and W are the optimized reference energy and weight factors for different energy
terms, respectively. Esurface and Evolume are the contacting surface area and overlapping
volume between a rotamer and surrounding protein atoms (68), respectively. Ehbond is an
empirical, geometry-based hydrogen bond energy function. Eelec represents CHARMM
electrostatic interactions based on distance-dependent dielectric constants (8). Four

desolvation energy terms are based on the buried hydrophobic surface area ( ), the

hydrophilic surface area ( ), the fraction of buried surface area of non-hydrogen-bonded

hydrophilic atoms (  ), and the solvent-exclusion volume of charged atoms Vexcl.
Erotamer is an intrinsic rotamer energy term calculated on the basis of the expected rotamer
frequency for a given amino acid residue type multiplied by the frequency of that amino acid
type for given backbone torsion angles. The program also utilizes a specific disulfide bond
term based on the number of disulfide bonds (Nssbond). All parameters and reference state
values were optimized by native sequence recovery and amino acid compositions as in
RosettaDesign.

Balancing Nonlocal and Local Interactions
All three energy functions, similar to other energy functions for protein design (6, 13, 72,
85, 88, 97, 109, 114), heavily emphasize nonlocal interactions between residues that are
located close to each other in the three-dimensional space but far from each other in
sequence positions. These nonlocal interactions (including van der Waals, electrostatic,
hydrogen bonding, and solvation energies) were built for capturing tight and specific tertiary
packing interactions. By comparison, local interactions between neighboring residues along
a protein sequence are limited to a single-residue property such as secondary structure
propensity as used in ORBIT (17), backbone torsion-angle terms (RosettaDesign and
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EGAD), and backbone torsion-angle-dependent rotamer energy (RosettaDesign and Liang-
Grishin). On the other hand, secondary structures (or backbone torsion angles) are
determined largely by a local sequence segment of 20 residues at about 80% accuracy for
three-state secondary structures (32, 96) or 83% accuracy for both backbone φ and ψ torsion
angles within 60° of their native values (31). Thus, going beyond single-residue properties
may be required to account for the coupling between local backbone structures and
sequences for protein design.

RosettaDesign-SR Energy Function
In order to examine the effect of local sequence-structure coupling, we modified the
RosettaDesign energy function by adding three additional terms (19):

4.

where Pprofile(i, Ii) is a structure-derived sequence profile (probability of an amino acid
residue type, I, at a given sequence position, i). This sequence profile is generated by using
target structural fragments to search for matching structural fragments stored in a fragments
library. The sequences of the matching structural fragments are used to produce the
probability of a given amino acid residue type at a given sequence position. The sequence
profile for the whole target structure can be produced by a sliding window from the N
terminus to the C terminus. This structure-derived sequence profile was successfully
employed for protein structure prediction (121) and protein design (112). This profile term,
however, leads to an increase in the number of repeats of same residue types, such as LLL
and VVV, and a reduction in the complexity of designed sequences. Because protein
sequences of low complexity are often associated with intrinsically disordered regions of a
protein (95), such a low-complexity region is not desirable in designing structured proteins.
Thus, to penalize a repetitive sequence segment, the second term in Equation 4 was

introduced by calculating , the number of nearest and second-nearest neighboring
residues (i − 2, i − 1, i + 1, i + 2) that repeat the residue type at the sequence position i. This
second term is a simplified measure of the extent of sequence randomness by Shannon’s
entropy (117). The third term in Equation 4 reflects the change to the reference state energy
due to the introduction of new energy terms.

COMPUTATIONAL ASSESSMENT OF DESIGNED PROTEINS
How to make an accurate computational assessment of designed sequences remains an
unsolved problem. We attempted to assess RosettaDesign, EGAD, Liang-Grishin, and
RosettaDesign-SR (structure-derived sequence profile and repetitive penalty) on the basis of
several criteria by employing a dataset of monomeric proteins to avoid possible
complications due to interprotein interactions. The stably folded monomeric proteins are
obtained by searching the Protein Data Bank for the following criteria: (a) X-ray-determined
structures without DNA, RNA, hybrid, or other ligands; (b) proteins having only one chain
(both biological assembly and asymmetric unit); (c) high resolution (≤3.0 Å), with the
number of residues ≥70 and ≤400; and (d) proteins with no missing residues (except
terminal regions) or abnormal amino acid types. A total of 616 proteins were obtained after
removing redundant chains at 30% sequence identity. These proteins were then clustered
according to their fractions of surface residues (fsr) in all amino acid residues of a protein,
because proteins with more surface residues are more difficult to design owing to larger
conformational freedom and more direct interactions with solvent molecules. We defined a
residue as “on surface” if its solvent-accessible surface is greater than or equal to 20% of its
reference value (99). We divided the target proteins according to the ranges of their fsr
values {[0.4, 0.45), [0.45, 0.5), [0.5, 0.55), [0.55, 0.6), [0.6, 0.65), [0.65, 0.7), [0.7, 0.75),
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and [0.75–0.85)}. We started from 0.4 because few proteins have fsr values less than 0.4. For
the same reason, the last bin was combined from two bins, [0.75–0.8) and [0.8–0.85).
Because designing proteins with EGAD and Liang-Grishin programs is computationally
intensive, we only designed 15 of the smallest proteins per bin, although the last bin had
only 7 proteins, all from the dataset of 616 proteins. A total of 112 proteins were designed
by four programs. (The list of 112 proteins is provided at http://
sparks.informatics.iupui.edu.) We employed all default settings in those programs for fixed
backbone design to increase computational efficiency, and removed all side chains from
these structures prior to computational design.

Sequence Assessment: Native Sequence Recovery
One commonly employed approach for assessing designed sequences is to calculate the
sequence identity to the wild-type (or native) sequence or the recovery rate of the native
sequence for a given target structure. The reported sequence identities range from 30% to
37% (45, 57, 66, 73, 87). These results were often based on a small number of proteins.
Moreover, some methods fixed certain types of amino acid residues such as Gly, Cys, or
Pro. Figure 3a compares the average sequence identity of designed sequences to their
respective wild-type sequences at different fractions of surface residues without fixing any
residue types. RosettaDesign-SR gives the highest sequence identities, ranging from 36% to
44%, which are 4–8% better than the next best shared by RosettaDesign and Liang-Grishin
that yield similar sequence identities. The lowest sequence identity was given by EGAD in
all methods examined, likely because EGAD was not optimized for the native sequence
recovery.

Local Assessment: Secondary Structure Recovery
The effect of lacking the local coupling term between sequence and backbone structure can
be examined by comparing the accuracy of predicted secondary structures for designed
sequences or the ability of recovering native secondary structures. We employed SPINE-X
for secondary structure prediction, which achieves 81–82% accuracy for large benchmark
tests (32). Figure 3b shows that the average accuracy of predicted secondary structures for
sequences designed by RosettaDesign-SR is consistently higher than the accuracy of
structures predicted from wild-type sequences. This reflects the usefulness of utilizing the
local-structure-derived sequence profile in RosettaDesign-SR. The sequences designed by
the RosettaDesign and Liang-Grishin programs yielded more accurate secondary structures
than did wild-type sequences at low fractions of surface residues but not at high fractions of
surface residues. This suggests that local sequence-structure coupling is more effective for
capturing correct secondary structures in surface regions. EGAD has the lowest recovery of
native secondary structures, consistent with its low sequence identity to wild-type
sequences.

Local Assessment: Predicted Intrinsic Disorder
The possibility of low complexity in designed sequences leads us to examine predicted
intrinsically disordered residues in designed sequences. We employ SPINE-D (120) for this
task because it was one of the top disorder predictors in critical assessments of structure
prediction techniques in 2010 (CASP 9) (79). Figure 3c compares average fractions of
disordered residues given by wild-type sequences with those from designed sequences at
different fractions of surface residues. Except for one bin where a few wild-type sequences
have regions with predicted disorder probabilities at about 0.5, the fractions of disordered
residues in wild-type sequences are usually lower than those in designed sequences. This
suggests the usefulness of SPINE-D for detecting potentially unstable regions of designed
sequences. Liang-Grishin and EGAD programs yielded sequences with higher fractions of
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predicted disordered residues than did wild-type sequences, whereas the sequences
generated from RosettaDesign-SR and RosettaDesign programs and wild-type sequences
have a similar amount of disorder in most bins.

Surface Assessment: Solvent Accessibility Recovery
Another way to examine designed sequences is to test the conservation of solvent-accessible
surface area (ASA) of designed sequences relative to that of native structures of wild-type
sequences. We calculated the correlation coefficient between the ASA predicted by Real-
SPINE 3 (30) and actual ASA based on the corresponding wild-type sequence on the target
structure. Figure 3d shows that at low fractions of surface residues, all sequences yield
similar correlation coefficients for ASA (~0.75). The difference between different methods
increases for proteins with higher fractions of surface residues. Sequences designed by
RosettaDesign-SR and Liang-Grishin programs produced ASA closer to that of wild-type
sequences than did RosettaDesign and EGAD programs.

Surface Assessment: Hydrophobic Patch
Aggregation is one common problem for designed proteins (103). Rate of aggregation is
associated with exposed hydrophobic surface areas (11). Figure 4a compares the average
largest hydrophobic patch area given by different methods. The hydrophobic surface patch
area on a target structure with a designed sequence was generated by the program QUILT
(70). RosettaDesign and RosettaDesign-SR programs produced significantly higher
hydrophobic patch areas (2–3 times higher) than wild-type proteins do. Remarkably, the
sequences designed by the Liang-Grishin program have smaller hydrophobic patch areas
than the wild-type sequences. This finding highlights the emphasis of the Liang-Grishin
energy function on surface-exposed residues with four separate solvation terms. EGAD-
designed proteins also produced smaller hydrophobic patches than wild-type proteins. One
should note, however, that designed sequences with large hydrophobic patches may be
filtered by manual selection of sequences for experimental validations.

Packing Assessment: Total Accessible Surface Area
Packing interaction is the dominant stabilization factor for specific tertiary structures. We
utilized the target structure with designed sequences to calculate total solvent accessible
surface areas for all residues in a protein normalized by their maximum total (reference)
solvent-accessible area. Figure 4b shows that RosettaDesign and RosettaDesign-SR
programs yielded higher values (about 8%) of total ASA than wild-type sequences did,
whereas the Liang-Grishin program gave significantly lower values of total ASA. The
EGAD program, on the other hand, yielded ASA values essentially equal to those of wild-
type sequences. This suggests that protein cores designed by RosettaDesign and
RosettaDesign-SR do not pack as tightly as EGAD and native proteins. The Liang-Grishin
program seems to pack protein cores more tightly than native proteins.

Global Structure Assessment
Designed sequences can also be assessed globally. One method to examine the stabilities of
designed proteins is to perform molecular dynamics simulations. A stably folded protein is
expected to maintain its structure after a long molecular dynamics simulation. For example,
Tsai et al. (112) designed two proteins (proteinGB1 domain and ubiquitin) by combinatorial
assembly of fragments in the Protein Data Bank. Stabilities of designed proteins were
evaluated by molecular dynamics simulations. Designed proteins for protein GB1 domain
and ubiquitin have higher root-mean-squared distances (RMSD) from the target structure
than wild-type proteins but lower RMSD than nonprotein controls (inverted hydrophobic/
hydrophilic residue patterns). Liang et al. (69) designed protein-protein interaction interfaces
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by grafting binding epitopes onto small proteins. Molecular dynamics simulations revealed
that some designed interfaces are not stable (disassociating) during the course of long
molecular dynamics simulations whereas interfaces and natively binding proteins remain
stable. Another way to assess designed proteins globally is to predict structures of designed
sequences. For example, Bazzoli et al. (4) assessed designed sequences using the fragment/
template-based structure prediction technique I-TASSER. They found that the majority of
top designed sequences have folded into the structures within 2 Å RMSD from the target
structure, even though different energy-scoring functions were used in design and folding
assembly. Here, we (118) employed the template-based structure prediction tool SPARKS-X
to predict structures of designed sequences where the target structures are contained in the
template library. The predicted structures were then compared to their respective target
structures by RMSD. Figure 5 shows that the performances of Liang-Grishin,
RosettaDesign, and RosettaDesign-SR programs are similar. EGAD performed the worst
largely because its low native sequence recovery makes recognizing correct template
structures difficult. Note that even wild-type sequences have small RMSD values because
SPARKS-X rebuilt and refined predicted structures using the program MODELLER (98).

Summary
On the basis of the results from Figures 3, 4, and 5, it is clear that introducing local sequence
structure coupling and sequence complexity terms into RosettaDesign (RosettaDesign-SR)
leads to the intended effect of increasing sequence identity to wild-type sequence (Figure
3a) and improving the consistency between predicted secondary structure and actual
secondary structure (Figure 3b), and between predicted ASA and actual ASA (Figure 3d).
However, the average largest hydrophobic patch area given by RosettaDesign-SR, as by
RosettaDesign, is too large, compared with that given by wild-type sequences. This result
points out an area for future improvement by introducing explicit (18, 49, 110) or implicit
(116) scoring methods for hydrophobic patches. Although reference energies, in principle,
can control the amount of the hydrophobic surface area exposed by controlling the ratio of
hydrophobic to hydrophilic residues, such reference states do not seem adequate in
RosettaDesign or RosettaDesign-SR. Another interesting result is that Liang-Grishin and
EGAD programs performed the best in terms of sizes of the largest hydrophobic patch.
However, too few hydrophobic residues on the surface may reduce the overall stability of
proteins because hydrophobic interactions are the major driving force of protein stability
(26). Even surface hydrophobic residues improve protein stability (89, 101). Thus,
weighting various energetic terms differently leads to different outcomes. Determining how
to balance these different interactions is the key to successful protein design.

COMMUNITY-WIDE SCORING FUNCTION ASSESSMENT
Recently, a large number of designed proteins targeting the conserved stem region of
influenza hemagglutinin (34) offered an unprecedented opportunity to examine the ability of
energy-scoring functions to separate binders from nonbinders by a blind-prediction,
community-wide experiment (35). Twenty-eight groups, including ours, armed with
different energy functions participated in this experiment. These energy functions range
from physical-based molecular mechanics force fields, knowledge-based energy functions,
empirical combinations of various knowledge-based and physical-based terms, to scoring
functions trained by machine learning techniques. The highest area under the receiver
operating characteristic curve for two-state binding/nonbinding prediction is 0.86 by three
scoring functions. Two scoring functions (Group 2 by J.C. Mitchell & O.N.A. Demerdash
and Group 6 by I.H. Moal, X. Li & P.A. Bates) are specifically trained for binding/
nonbinding classification by employing support vector machines (SVM) with many
knowledge-based and physical-based features. The third scoring function (Group 7 by M.
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Zacharias) is a coarse-grained force field with energy parameters optimized for scoring near-
native docking decoys (33). Yet, these best energy-scoring functions failed to adequately
separate native from designed interfaces and to identify an experimentally validated
designed binder (35). Thus, it is difficult to assess what really worked for these best energy-
scoring functions except that specific training is needed for balancing the terms in the
scoring functions.

CURRENT CHALLENGES AND FUTURE PROSPECTS
The above assessment of designed sequences highlights the importance of balancing
different types of interactions. Folded and functional proteins result from the interplay of
backbone and side chain interactions and delicate balance among van der Waals interactions,
electrostatic interactions, and solvation effects. Nature has mastered the art of balance via
trial and error over the course of billions of years. Furthermore, it employs quantum effects
to enhance its magic. Various knowledge-based, physical-based, and empirical energy
functions have been proposed over the years (6, 13, 72, 85, 88, 97, 109, 114, 123), including
a recent solvent-exposure-dependent potential (25) and structure-derived sequence profile
and sequence complexity (19). We believe that the next practical step for significantly
improving protein design is not to search for new terms but to select the correct terms whose
weights are optimized with appropriate objective functions. The usefulness of rebalancing
energy terms is suggested from the success of employing SVM-trained scoring functions to
separate binding from nonbinding designed interfaces (35) and of balancing local and
nonlocal interactions to achieve higher recovery of native sequence, secondary structure, and
solvent accessibility (19). Balancing stability and solubility (18, 49, 110) is another key
aspect for producing functional and foldable globular proteins.

Our optimism for individual energy terms is built on the discovery that in some cases
knowledge-based energy functions are directly comparable to quantum calculations.
Examples include the agreement between a statistical hydrogen-bonding potential and
quantum mechanical calculations (80) and the strong positive correlation between statistical
descriptions of cation-π and amino-π interactions and quantum calculations at the Hartree-
Fock and the second-order Möller-Plesset perturbation theory levels (38). In addition,
recently developed, orientation-dependent (10, 67, 76, 119) and multibody (39) energy
functions have yet to be tested for protein design. For example, the dipolar DFIRE
(Distance-scaled, Finite, Ideal-gas REference) energy function (119) based on a DFIRE state
(122) accounts for the orientation dependence of the interactions not only between
hydrogen-bonded polar atoms but also between other polar atoms and between polar atoms
and nonpolar atoms. The last interaction is known to play important role in secondary
structure formation (24, 77, 83).

There is another balance that needs attention: the balance of speed and accuracy. Fixed
backbone structures were employed for all tests performed here in order to reduce
computing time. Fixing backbone structures may have made protein structures less favorable
to native sequences as a result of employing less accurate energy functions for compensating
the effects of rigid backbone and discretization of side chain conformations. Allowing
flexibility improved sequence identity between designed and wild-type sequences (100) and
in successful redesign of the hydrophobic core (81). Discretization of side chain rotamers is
another issue that may adversely affect the performance of an energy function. Gainza et al.
(37) showed that employing continuous rotamers leads to an impressive 10% improvement
in sequence identity by redesigning 12–15 selected core residues. That is, not all problems in
protein design are caused by defects in energy functions. Unfortunately, efficient sampling
of the conformational space of flexible proteins has not been resolved, although progress has
been made (78).
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The main obstacle to searching for the right balance of correct terms in energy functions is
the lack of a large number of negative experiments for understanding where designs have
failed and for training the delicate balance of various energetic terms. This lack is caused by
two factors. First, most publications reported only successfully designed sequences. Second,
few laboratories can afford a large number of experiments to measure the success rate of
protein design. The large number of designed proteins targeting influenza hemagglutinin
(34) is the first sizeable dataset of negative examples for protein-protein interactions.
Experiments such as this in de novo protein design are needed to further understand
deficiencies in existing energy-scoring functions and to achieve the optimal balance between
selected energetic terms. This balance will happen when inexpensive high-throughput
techniques for measuring the success rate of protein design become available.

Acknowledgments
Research reported in this publication was supported by the National Institute of General Medical Sciences of the
National Institutes of Health under award number R01GM085003. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National Institutes of Health. Helpful
discussions with Ken Dill, Amy Keating, and Shide Liang are gratefully acknowledged.

Glossary

De novo protein
design

computationally designed proteins that can fold into a target
structure with a desired function

Intrinsic disorder proteins or regions in a protein that do not have a unique three-
dimensional structure as a monomer at physiological conditions

Knowledge-based
energy function

an energy function derived from statistical or statistical
mechanical analysis of known protein structures

Physical-based
energy function

an energy function derived by the laws of physics that is
composed of many approximate terms

Energy function the scoring function that is minimized during iterative protein
design

Local interaction the interaction between amino acid residues that are sequence
neighbors

Nonlocal interaction the interaction between amino acid residues that are located close
to each other in three-dimensional space but far from each other in
their sequence positions
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SUMMARY POINTS

1. Low success rate is due largely to poor energy functions employed for protein
design.

2. The quality of an energy function can be significantly improved by locating the
correct interaction terms and optimizing their weights.

3. The correct balance of interaction terms may be found by incorporating
experimental negative data into training.
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Figure 1.
An increase in the sequence lengths of computationally designed and structurally validated
proteins over the past 15 years.
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Figure 2.
The RosettaDesign energy score (RosettaDesign 2.3) as a function of sequence identity from
the wild-type sequence of the acyl carrier protein from Thermus thermophilus HB8 (PDB
ID: 1×3o). Different sequence identities were sampled by a harmonic restraint. The curved
red line indicates the quadratic fit. Black circles at 100% sequence identity represent the
energy value of the native structure with its wild-type sequence after side chain optimization
from RosettaDesign (bottom), and the average energy value from 10 designed structures
from RosettaDesign after fixing all residues to wild-type sequences without a harmonic
restraint (top). The black circle at 0% sequence identity is the average energy value of 10
designed structures from RosettaDesign after excluding the type of wild-type amino acid
residue at each sequence position without the harmonic restraint.
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Figure 3.
(a) The average sequence identity of sequences designed by RosettaDesign-SR,
RosettaDesign, Liang-Grishin, and EGAD is compared to their respective wild-type
sequences as a function of the fraction of surface residues. (b) The average accuracy of
predicted secondary structures from the sequences designed by four computational methods
is compared with the results for wild-type sequences. SPINE-X was employed for sequence-
based secondary structure prediction. (c) The average fractions of predicted disordered
residues are compared. SPINE-D was employed for predicting intrinsic disorder for
designed and wild-type sequences. (d) The average correlation coefficients between
predicted and actual solvent-accessible surface areas (ASA) from the target structure are
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compared. Real-SPINE 3 was employed for solvent accessibility prediction from designed
and wild-type sequences.
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Figure 4.
(a) A comparison of the average largest hydrophobic patch area given by RosettaDesign-SR,
RosettaDesign, Liang-Grishin, and EGAD with that given by wild-type proteins. (b) A
comparison of the total solvent-accessible surface area (ASA) for all residues in a protein
normalized by their maximum possible total solvent-accessible surface area for the four
programs and wild type.

Li et al. Page 23

Annu Rev Biophys. Author manuscript; available in PMC 2014 February 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
The average root-mean-squared distance (RMSD) between the target structure and the
structure predicted by the template-based structure prediction method SPARKS-X, based on
designed sequences at different fractions of surface residues.
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