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Abstract. The ability to identify patterns of diagnostic signatures in proteomic data generated by high throughput mass spec-
trometry (MS) based serum analysis has recently generated much excitement and interest from the scientific community. These
data sets can be very large, with high-resolution MS instrumentation producing 1–2 million data points per sample. Approaches
to analyze mass spectral data using unsupervised and supervised data mining operations would greatly benefit from tools that
effectively allow for data reduction without losing important diagnostic information. In the past, investigators have proposed
approaches where data reduction is performed bya priori “peak picking” and alignment/warping/smoothing components using
rule-based signal-to-noise measurements. Unfortunately, while this type of system has been employed for gene microarray
analysis, it is unclear whether it will be effective in the analysis of mass spectral data, which unlike microarray data, is comprised
of continuous measurement operations. Moreover, it is unclear where true signal begins and noise ends. Therefore, we have
developed an approach to MS data analysis using new types of data visualization and mining operations in which data reduction
is accomplished by culling via the intensity of the peaks themselves instead of by location. Applying this new analysis method
on a large study set of high resolution mass spectra from healthy and ovarian cancer patients, shows that all of the diagnostic
information is contained within the very lowest amplitude regions of the mass spectra. This region can then be selected and
studied to identify the exact location and amplitude of the diagnostic biomarkers.
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1. Introduction

The serum proteome is an unexplored archive of
metabolic and physiologic information that can reflect
the pathologic changes within an organ system. Within
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defined clinical trial study sets, experimentalists have
used serum proteomic information content to detect the
onset of disease at a very early stage, thus maximizing
the likelihood of successful outcomes with therapeutic
intervention [10,11]. However, this new source of in-
formation has its challenges, one being datasets mas-
sive in size and dimension. Current embodiments of
high-resolution mass spectrometry (MS) based analy-
sis of a single patient blood sample results in the gener-
ation of 350,000 to 400,000 records, with each record
consisting of two numbers, a double precision float for
the mass-to-charge (m/z) ratio and integer for the rela-
tive amplitude of the ion(s) being measured. The work-
ing hypothesis is that somewhere in the massive set of
data there contains patterns of diagnostic information.
Therefore, to maximize biomedical gain from this new
and unexplained information source, innovative and ro-
bust bioinformatic methods are required.

Several clinical pilot studies have shown that a set or
group of biomarkers will greatly improve the ability to
discriminate the absence or presence of cancer and thus
improve risk stratification and outcome. New detection
methods based on pattern sets of biomarkers obtained
from serum proteomic spectra have been proposed and
developed [10,11], and confirmed by other centers [1,6,
12]. Current biomarkers are based on solitary proteins,
i.e., Cancer Antigen 125 (CA-125) for ovarian cancer,
and Prostate Specific Antigen (PSA) for prostate can-
cer. The predictive power of these tests to indicate the
presence or absence of disease is sub-optimal. New
biomarkers are needed for improvement in the early
detection of cancer, and MS derived pattern based di-
agnostics have shown potential for superior discrimi-
natory accuracy [1,4,6,10–12].

Massive multi-dimensional datasets containing di-
agnostic information bring a unique challenge in re-
gard to the perceived clinical utility of a proteomic pat-
tern based diagnostic system. Diagnostic information
can be contained within specific sets of ions that ex-
hibit a greater, or a lesser, abundance in the diseased
state compared to the unaffected state. While earlier
work utilized low-resolution mass spectrometry based
platforms to generate data, recently investigators have
found that increasing mass spectrometer resolution may
yield greater clinical diagnostic utility [4]. Thus analy-
sis of data streams with 15,000 to 40,000 data points is
now expanded to pattern hunting on higher resolution
MS platforms where data streams may be comprised of
300,000 to a few million data points per subject. These
data sets are then analyzed with a set of sophisticated
bioinformatics tools that render a decision on the patho-

physiological condition of the patient from which the
clinical sample was obtained (e.g. healthy or cancer-
affected). Ultimately investigators and physicians must
understand and feel comfortable with the use of such
tests, or as shown by Spiegelhalter and Knill-Jones,
physicians would reject a system that gave insufficient
explanation even if the diagnostic model has good ac-
curacy [13]. Therefore, significant efforts have begun
to bring a more intuitive understanding of this new and
complex data. The use of visualization tools to assist
with experimental analysis of very large datasets has
been successfully used for hypothesis testing, discov-
ery and data reduction in the field of physics and com-
munication theory. Analogous data mining and visu-
alization tools have been applied to the field of diag-
nostic proteomics in this report. In support of these ef-
forts, an information architecture has been formulated
as illustrated in Fig. 1.

In this study, a variety of computational techniques
have been used to evaluate a large and complex low
molecular weight (LMW) proteomic dataset (m/z 700–
12,000) derived from MS analysis of human serum
from a cohort of 171 patients. The overall aims were
as follows: a) identify global trends in thefull dataset
(171 patients spectra); b) apply these global trends to
successfully isolate reduced datasets for subset analy-
ses; and c) test whetherreduced datasets and derived
patterns can be linked to specific questions of biolog-
ical significance, as well as be isolated as support for
additional development and discovery activities.

2. Materials and methods

All patient samples were obtained from the same
cohort as the original ovarian cancer cohort study [4,
10] that originated from the National Ovarian Cancer
Early Detection Program (NOCEDP) clinic at North-
western University Hospital (Chicago, IL, USA) and
the Simone Protective Cancer Institute (Lawrenceville,
NJ, USA). This cohort is composed of serum sam-
ples from 113 ovarian cancer patients and 58 con-
trols. The datasets used in this study have been pro-
cessed on a high-resolution QSTAR pulsar i hybrid
triple quadrupole time-of-flight (QqTOF) MS (Ap-
plied Biosystems Inc., Framingham, MA) fitted with a
PCI1000 interface (Ciphergen, Fremont, CA). Details
of this instrument and associated spectrum analyzer
methods have been described elsewhere [4].
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Bayesian

Fig. 1. Information architecture of the NCI-FDA Clinical Proteomics Program.

2.1. Analytical procedure

Following a routine blood draw, serum separation is
performed using WCX2 ProteinChip arrays (Cipher-
gen) processed in parallel using a Biomek Laboratory
workstation (Beckman-Coulter) modified to make use
of a ProteinChip array bioprocessor (Ciphergen Biosys-
tems Inc.). One hundredµl of 10 mM HCL was ap-
plied to the WCX2 protein arrays and allowed to incu-
bate for 5 minutes. The HCl was aspirated, discarded
and 100µl of distilled, deionized water (ddH2O) was
applied and allowed to incubate for 1 minute. The
ddH2O was aspirated, discarded, and reapplied for an-
other minute. One hundredµl of 10 mM NH4HCO3

with 0.1% Triton X-100 was applied to the surface and
allowed to incubate for 5 minutes after which the so-
lution was aspirated and discarded. A second applica-
tion of 100µL of 10 mM NH4HCO3 with 0.1% Tri-
ton X-100 was applied and allowed to incubate for 5
minutes after which the ProteinChip array bait surfaces
were aspirated. Fiveµl of raw, undiluted serum was
applied to each ProteinChip WCX2 bait surface and
allowed to incubate for 55 minutes. Each ProteinChip
array was washed 3 times with Dulbecco’s phosphate
buffered saline and ddH2O. For each wash, 150µl of
either phosphate buffered saline or ddH2O was sequen-
tially dispensed, mixed by aspirating, and dispensed
for a total of 10 times in the bioprocessor after which
the solution was aspirated to waste. This wash process
was repeated for a total of 6 washes per ProteinChip
array bait surface. The ProteinChip array bait sur-
faces were vacuum dried to prevent cross contamina-

tion when the bioprocessor gasket was removed. After
removing the bioprocessor gasket, 1.0µl of a 30% solu-
tion of α-cyano-5-hydroxycinnamic acid in 50% (v/v)
acetonitrile, 0.5% (v/v) trifluoroacetic acid was applied
to each spot on the ProteinChip array twice, allowing
the applied solution to dry between applications using
a liquid robotic handling station Genesis Freedom 200
(TECAN, Research Triangle Park, NC).

2.2. QqTOF MS analysis

ProteinChip arrays were analyzed using a hybrid
quadrupole time-of-flight mass spectrometer (QSTAR
pulsari, Applied Biosystems Inc., Framingham, Mas-
sachusetts) fitted with a ProteinChip array interface (Ci-
phergen Biosystems Inc.). Samples were ionized with
a 337 nm pulsed nitrogen laser (ThermoLaser Sciences
model VSL-337-ND-S, Waltham, Massachusetts) op-
erating at 30 Hz. Approximately 20 mTorr of nitro-
gen gas was used for collisional ion cooling. Each
spectrum represents 100 multi-channel averaged scans
(1.667 min acquisition/spectrum). The mass spectrom-
eter was externally calibrated using a mixture of known
peptides. The output file of each serum mass spectrum
contains approximately350,000 to 400,000 records [4].
Each record consists of two numbers representing the
m/z value of the ionic species (subsequently referred to
asmass in this document and in graphic images) and
intensity (subsequently referred to asamplitude or amp
in this document and graphic images).
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2.3. Preprocessing of MS data

Preprocessing of MS datasets, including computa-
tional quality assurance and quality controls methods
are performed prior to analysis by subsequent model-
ing and visualization tools to screen for potential bias.
Preprocessing uses binning, a standard technique used
to group multivariate data. All preprocessing compu-
tational methods are performed in a Microsoft SQL
Server 2000 database by computer programs composed
of suites of T-SQL stored procedures. For each pa-
tient’s spectra all mass values are binned and a sum
is generated representing the amplitude values within
that binned mass values, and sum associated ampli-
tude values (for that bin). For all patient data in the
proteomic database we normalized the summed am-
plitude values per mass species (following the mass
bin size). Normalization is performed independent of
the patient’s disease/health state (labeled DzState in
graphic images).

Since the resolution of the QqTOF-MS used in this
study scales linearly as them/z ratio increases, the bin-
ning technique uses a linear binning window that grows
in size as them/z value increases. A mass bucket is de-
fined as the mass values residing within the upper and
lower limits of the particular binning window. Vari-
ous binning techniques have been evaluated and remain
under investigation. Binning can introduce coarseness
and thus subtle trends or findings can then be masked.
The current binning procedure aggregates each patient
spectrum to a fixed size of 7105 records. Since binning
resolution can affect accuracy of subsequent analysis
methods, these techniques were linked to accuracy ex-
periments of the mass spectrum analyzer to empirically
derive the current method.

The binning formula begins by using a base value of
400 parts per million. The bin window size is deter-
mined by multiplying the base value by the mass value
lower limit of the current bin window. The upper limit
of the binning window is simply the lower limit plus
the current size of the bin window. Thus, the binning
window widens in a linear manner as them/z value
increases.

A mass species is defined as all the mass values con-
tained within a particular binning window or bucket.
For each mass bucket, the minimum and maximum am-
plitude values are determined. The normalized ampli-
tude value is converted to a double precision floating
point number between zero and one, and becomes a part
of the record for that database entry. The normalization
method is a linear scaling transform:

– While there are mass buckets to process:

∗ Normalize all raw amplitude values for the cur-
rent mass bucket

∗ Normalized Amp= (RawAmp – MinAmp) /
(MaxAmp – MinAmp)

The database can then be queried and various types
of datasets constructed. Datasets are then transferred
over a network connection to an SGI graphics super-
computer for visualization and data mining operations
using the MineSet visualization toolset [8,9].

3. Results

A summary of the visualization tools used in this
study, the datasets to which they were applied, general
type of data display, and indication for use, is shown in
Table 1. Conventions used in this study for discrimi-
nating ovarian cancer patients verses normal in all the
graphics include the following: the color blue or num-
ber zero (0) refers to control/normal, and the color red
or number one (1) refer to ovarian cancer.

3.1. Results from processing the full dataset

The tools used to process and analyze the full dataset
produced the set of graphics shown in Fig. 2. A global
discriminating trend is present in the low amplitude
regions of all these tools and can be readily identified
on most of the graphics. Concordance of multiple tools
using different algorithmic methods lends significant
support to this finding. The following are details of the
discovered global discriminating trend.

The results of the visualization tool called the Splat
Visualizer are shown in Figs 2(A–C). The Splat Visu-
alizer allows for a global view of the entire proteomic
dataset. This tool allows a user to interactively visual-
ize and explore relationships among several variables
and is particularly suited for datasets containing a large
number of records. The displayed landscape is three
dimensional, and has the ability to be manipulated (via
rotation, zoom, pan, and drill/fetch type operations)
with very quick rendering speed. The Splat Visualizer
shows an approximation of a three-dimensional scatter
plot through the use of aggregation techniques [8].

In this example, the x-axis represents binned mass
values (betweenm/z 700 and 12,000). The y-axis rep-
resents normalized amplitude values (ranging from 0 to
1). The disease state (DzState) is represented on the z-
axis with the first position occupied by normal/controls,
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Table 1
Summary Table of Visualization Tools and Data Sets

Visualization tool name Data set Display type Indiations

Splat viz Full, stage 3D Graph Global trends in large datasets
Evidence visualizer Full 2D tabular Global trend analysis
Decision table Full, reduced, stage 2D & 3D tabular Subet analysis of contiguous mass & amplitude pairs
Scatter plot Reduced 3D graph Graphical subet analysis
Decision tree Full 3D graph Global analysis, search for interesting rules
Option tree Reduced 3D graph Subset analysis, search for interesting rules

and the second position occupied by ovarian cancer
patients. Therefore, the aggregated spectra of normal
and cancer patients are segregated both by voxel color
and position on the z-axis, and have been normalized
independent of DzState but on a bucket-by-bucket ba-
sis, thus bringing out the difference between the two
groups. The red patterns on Figs 2 (A) and (B) along
the x-axis are due to a relative signal void present in
the low amplitude mass values of the normal dataset
component allowing the red voxels to bleed through.
The spectral signal homogeneity in the cancer group is
shown in Fig. 2(C).

Results of the visualization tool called the Evidence
Visualizer are shown in Fig. 2(D), and the Decision Ta-
ble in Fig. 2(E). The Evidence Visualizer uses a Naı̈ve
Bayesian classification method, and the Decision Table
uses a variant of a decision tree method. Both employ
computer graphic techniques to present the findings in
a comprehensible tabular form. Applying visual aids
to the structure of a probabilistic relationship, algorith-
mic finding, or statistic results in the transformation of
columns of data into an intuitive graphic picture, espe-
cially for large and complex datasets [3]. In both tool
displays, the left pane contains attributes (features) that
have been aggregated according to their ability to dis-
criminate the class assignment variable, DzState. The
right pane of both tools contains the class assignment
variable, whose outcome metric changes dynamically
as different sets of attributes are selected, thus allow-
ing interactive “what if” type questions to be inves-
tigated and answered quickly. In the construction of
these models, the inducer component of these tools ex-
amines class assignment of each dataset record using
a wrapper-based approach, and eventually produces a
descriptive classifier.

Visualization tools were used to probe the mass am-
plitude ranges containing the majority of the diagnostic
information in the MS spectra of the serum samples
acquired from both healthy and ovarian-cancer affected
patients. Both tools (Evidence and Decision Table)
show significant ability to discriminate a cancer class
assignment within the low amplitude ions (predomi-

nantly red color). Ionic species in mid to high ampli-
tude regions do not discriminate well as shown by the
mixture of red and blue within this region.

A three-dimensional view of a decision tree graphic
derived from the Full Dataset is shown in Fig. 2(F).
Decision trees partition the data of a problem domain
by progressively splitting the data space into smaller
subsets. These subsets are constructed as a function of
inequality-based rules that segment the data space so
that the outcome indicator (DzState) is best classified.
In this example approximately one-third of the dataset
was reserved for testing and blind validation. The tree
above reported better than a 99% accuracy following
validation. Due to the size of the dataset, the depth
of the tree averaged over 100 levels, thus diminishing
its potential utility to interactively explore the dataset.
Following exploratory analysis of the tree, it was again
empirically noted the low amplitude ions had discrim-
inatory abilities with lower probability of error verses
ions having mid-range or higher amplitudes.

3.2. Results from processing reduced datasets

Noting the agreement in regard to the analysis of the
full dataset by multiple visualization tools, and taking
into account the concordant discovery of a common
global discriminatory trend involving the low abundant
species of manym/z values, the natural question is as
follows: “Can a function based only on the values of
low amplitude ions be assembled to effectively discrim-
inate the ovarian cancer cohort?” To test this hypothe-
sis reduced datasets comprised on only the low ampli-
tude ion signals were constructed. The tools used to
process and analyze the reduced datasets produced the
set of graphics contained in Fig. 3. The first reduced
dataset was constructed by querying the database for
all records having normalized amplitude values in the
range of 0 through 0.1085981. The query resulted in
the exclusion of one patient from the normal group and
five patients from the cancer group. The total number
of records was decreased from approximately 1.2 mil-
lion to 71,584, effectively decreasing the size of the ini-
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(A) (B)

(C)

(D)

(E)

(F)

Fig. 2. Graphics from the analysis of the full dataset from the MS proteomic patterns.
A) Splat Visualizer results using the full dataset. B) Alternate view of Fig. 2(A) after rotation and zoom. C) Alternate view of Fig. 2(a) after
180◦ rotation. D) Evidence Visualizer analysis of full dataset. E) Decision Table analysis of full dataset. F) Decision Tree derived from the full
dataset.
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(A) (B) (C)

(D) (E)

(F)

(G)

Fig. 3. Plot and table graphics from the analysis of the reduced datasets.
A) Three dimensional scatter plot of a low amplitude ion signal reduced dataset. B) Decision Table analysis of a low amplitude ion signal reduced
dataset. C) Decision table analysis of a high amplitude ion signal reduced dataset. D) Decision Table analysis of a reduced dataset comprised
of m/z values between 4000 and 4283. E) Decision Table analysis of a reduced dataset comprised ofm/z values between 7519-8028. F) Tree
oriented graphics from the analysis of the reduced dataset showing the option tree derived from this dataset. G) Aerial view of the option tree
derived from the reduced dataset.
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tial dataset by more than an order of magnitude. This
reduced dataset was then re-introduced to the visual-
ization tool suite for spectral trend analysis.

The results of the scatter plot visualization tool pro-
duced a non-aggregated three-dimensional plot of the
cancer spectra (red) verses normal/control (blue), as
shown in Fig. 3A. The horizontal axis represents them/z
values in the range of 700 to just less than 12,000. The
vertical axis displays the normalized amplitude values
of this reduced dataset clipped according to the database
query. The differences in the spectral patterns are ev-
ident, as a group; there is a significant discriminatory
ability of numerous low abundant ion signals. Next,
the following question was posed: “Can this dataset
that represents a simple function of low abundant sig-
nals be mapped to find corresponding discriminating
m/z values?”

The same reduced dataset was introduced to the De-
cision Table Classifier, with the results of this analysis
shown in Fig. 3(B). Mass values were found to have
a significant role in segregating disease states. Multi-
ple contiguous regions of mass values show a defini-
tive ability to discriminate cancer (red) verses normal
(light blue). The horizontal axis displays a full com-
plement of contiguous regions of mass values and the
vertical axis contiguous subsets of amplitude values in
the queried range. We have now discovered multiple
contiguous regions ofm/z values in the low abundant
region of the cohort spectra that segregate well for the
cancer cohort.

Based on these findings, the full dataset was then
computationally divided as a function of contiguous
graduated segments of normalized amplitude values.
The low amplitude ion signals continued to show a sig-
nificant discriminatory ability in identifying spectral
regions associated with cancer. The mid amplitude ion
signals were not found to have significant discrimina-
tory ability. A few of the high amplitude ion signals
showed discriminatory ability in identifying spectral
regions associated with patients known to be normal
(i.e. no evidence of cancer). A slice through the re-
duced dataset that isolates the high amplitude ions (0.9
to 1.0) is shown in Fig. 3(C). All patients were included
in the high amplitude reduced dataset. The axes are ori-
ented the same as for Fig. 3(B). Visualization tools have
successfully isolated contiguous regions ofm/z values
with high signal intensity that effectively discriminate
controls.

Considering the findings using the low and high am-
plitude reduced datasets, we next studied whether or not
visualizations tools could assist in finding contiguous

regions ofm/z values displaying a sentinel (biomarker)
role as a DzState indicator. A disease state in this case
was again ovarian cancer versus unaffected. The result
of intersection analysis is shown in Figs 3(D) and (E).
All patients were included in these contiguousm/z spe-
cific reduced datasets. For both figures, the horizon-
tal axis displays the normalized amplitude values with
the lowest values appearing on the right. The vertical
axis represents the contiguous masses as a group (m/z
4000–4283 for one extraction andm/z 7519–8028 for
the second extraction). Both graphics show the high
amplitude values discriminating the normal component
of the cohort, and the low amplitude values discrim-
inating cancer. Therefore, through iterative activities
involving a series of datasets, we have progressed from
a very large and complex full dataset to a multitude of
reduced datasets, and finally to the initial steps consis-
tent with biomarker discovery in two distinct spectral
regions.

3.3. Results from processing the stage datasets

Visualization techniques were next applied to test
if the proteomic pattern in ovarian cancer differs as a
function of the stage of disease. The graphic images
contained in Fig. 4 are derived from aggregate spectra,
and were captured from a three-dimensional rendering
of ovarian cancer patients having either stage II, III, or
IV disease. The number of patients with stage II disease
was 13, there were 72 patients with stage III disease,
and 8 with stage IV. The complete spectral patterns were
successfully grouped, examined, and contrasted as a
function of stage. The x-axis represents binned mass
values (m/z range 700 to 12,000). The y-axis displays
normalized amplitude values (range 0 to 1). The stage
of disease is represented by the location on the z-axis,
with the first position occupied by stage II (blue voxels),
the second position by stage III (green), and the third
position by stage IV (red). The images of Fig. 4 are the
same composite three-dimensional image undergoing
a 180-degree rotation. The discriminating factors are
the amplitude values, not them/z values. Therefore,
visualization of spectral patterns as a function of stage
of disease may assist with a better understanding of the
heterogeneity of cancers.

4. Discussion

It is impossible to make sense of large and com-
plex datasets without appropriate bioinformatic tools.
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(A) (B)

(C)

Fig. 4. Graphics from the analysis of the ovarian cancer stage dataset.
A) Splat Viz results from the stage dataset (stage IV (red), stage II I (green), and stage II (blue)). B) Fig. 4A following 90◦ rotation. C) Fig. 4(A)
following 180◦ rotation.

It would be impractical to analyze these datasets with
traditional plotting methods and spreadsheet type pro-
grams. The process of cycling through hypothesis gen-
eration and discovery activities is greatly enabled by
the bioinformatic tools as illustrated in this study. Visu-
alization tools have been shown to greatly assist in find-
ing and isolating regions of the proteomic MS spectrum
containing important diagnostic information. In this
study, the full dataset acquired from the MS spectral
patterns was used to find a global discriminating pattern
leading to the construction of a reduced dataset. This
data reduction lead to the further subset type analysis
and the construction of a series of additional reduced
datasets that allowed the discovery of two small isolated
regions ofm/z values suggestive of a sentinel type role,
and logical progression to further biomarker validation
activities. Finally, visualization tools allowed for the
examination of a cancer stage reduced dataset, and to
begin considering variation in proteomic signature pat-
terns as a function of stage of disease. Visualization
tools and techniques have been found to have signifi-
cant utility in this study by working through cycles in-
volving discovery and hypothesis generation, in a large
and complex dataset with focused domain questions.

All datasets used in this study are derived from a
subset of ion signals found in the low molecular mass
region of the serum proteome (i.e.m/z 700 to 12,000), a
previously unexplored information archive. Mounting
scientific evidence shows support that this region effec-
tively reflects metabolic processes and can be used to
detect pathogenic changes in an organ system. There-
fore, there exits a pressing need for bioinformatic tools
to assist in the analysis of this new and rich information
archive. Challenges include not only the massive size
and dimensions of these datasets, but also the ability
to account for heterogeneity present in both the human
population and in disease processes proper. Therefore,
bioinformatic tools with the abilities of obtaining global
views of aggregated spectra, along with the ability to
isolated regions of interest for subset type analysis, are
vital in bringing scientific understanding and eventu-
ally clinical utility to this new data source. Analytic ap-
proaches employing probabilistic or likelihood scoring
strategies, begin to address the intrinsic diversity issues
of patient’s and their individual pathogenic processes,
when examining this new and uncharted proteomic in-
formation.
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Results of this study support the conclusion that dis-
criminatory diagnostic information is enriched in the
low abundance, low molecular weight region of the
serum proteome. This is not unexpected, considering
the pathophysiology, the physical size of an ovary har-
boring a stage I or II pathologic process, and the normal
physiologic role of the kidney to efficiently clear pep-
tides and cleavage products below a molecular weight
of approximately 45,000 Da. Recent advances support
the concept that cleavage products and small peptides
that are normally cleared by the kidney exist in asso-
ciation with circulating carrier proteins (i.e. albumin)
and thus become amplified by avoiding clearance and
assuming the half-life of that carrier protein. There-
fore the concentration of the ionic species (biomarker)
becomes a function involving the production rate from
the diseased tissues and clearance rate of the carrier
protein [7]. Physiologically, these discriminators exist
in the low abundant signal region of the mass spectrum.

Recently, investigators have proposed approaches
where data reduction is performed by a priori “peak
picking” and alignment/warping/smoothing compo-
nents using rule based signal-to-noise measurement [2,
5,14]. Unfortunately, while this type of system has
been employed for gene microarray analysis, it is un-
clear whether or not this will be effective in analyz-
ing mass spectral data, which unlike microarray data,
is comprised of a continuous measurement operation.
Moreover, it is unclear where true signal begins and
noise ends. Based on our findings presented here, a
priori peak selection may miss most of the diagnos-
tic information since this data is eliminated based on
low amplitude attributes and it supposes that one has
knowledge about what constitutes signal and real noise.
Approaches to reduce data based on amplitude, per-
haps only selecting out the lowest amplitude regions of
the mass spectral data streams, could become an im-
portant component of data mining operations for on-
going biomarker discovery. Logical search processes
that isolatem/z regions showing a sentinel type role via
discriminating characteristics of low abundance signals
for the cancer group and high abundance signals for
the control group (Figs 3(D) and (E)) show promise for
further biomarker discovery activities such as MS/MS
sequencing.

The clinical trial for validation of diagnostic pro-
teomic patterns is an ambitious undertaking. This tech-
nology is foreign to both the clinical laboratory as well
as regulatory agencies such as the Centers for Devices
and Radiological Health (CDRH), the regulatory body
responsible for the notification of new diagnostic tests

in the United States. As a result, it is necessary to
both have tools such as pattern recognition software to
present to these groups as well as mechanisms that will
demonstrate the robustness and verify the selection of
the selected pattern characteristics. The visualization
tools presented here are capable of presenting an enor-
mous amount of data in a format that can be easily un-
derstood. We are therefore planning on utilizing these
tools to present data to both clinicians and regulatory
bodies in an understandable and concise manner, and to
demonstrate the pattern differences discovered by the
pattern recognition software. Tools such as the Splat
Visualizer add powerful evidence to be used as part of
the verifications of pattern selection.

In conclusion, the data visualization tools presented
in this study provide a convenient method of examining
large data sets generated by MS analysis of human
serum. Through the use of these tools, data can be
reduced to a manageable size and presented in a concise
and easily understandable format for presentation to
scientists, physicians and regulatory agencies. Further
analyses on larger datasets are planned for validation of
MS proteomic patterns as an aid in disease diagnosis.
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