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Searching for pharmacogenomic markers:
The synergy between omic and
hypothesis-driven research

John N. Weinstein∗
Laboratory of Molecular Pharmacology, National
Cancer Institute, Bethesda, MD, USA

With 35,000 genes and hundreds of thousands of protein states
to identify, correlate, and understand, it no longer suffices to
rely on studies of one gene, gene product, or process at a time.
We have entered the “omic” era in biology. But large-scale
omic studies of cellular molecules in aggregate rarely can
answer interesting questions without the assistance of infor-
mation from traditional hypothesis-driven research. The two
types of science are synergistic. A case in point is the set of
pharmacogenomic studies that we and our collaborators have
done with the 60 human cancer cell lines of the National Can-
cer Institute’s drug discovery program. Those cells (the NCI-
60) have been characterized pharmacologically with respect
to their sensitivity to > 70, 000 chemical compounds. We are
further characterizing them at the DNA, RNA, protein, and
functional levels. Our major aim is to identify pharmacoge-
nomic markers that can aid in drug discovery and design, as
well as in individualization of cancer therapy. The bioinfor-
matic and chemoinformatic challenges of this study have de-
manded novel methods for analysis and visualization of high-
dimensional data. Included are the color-coded “clustered
image map” and also the MedMiner program package, which
captures and organizes the biomedical literature on gene-gene
and gene-drug relationships. Microarray transcript expres-
sion studies of the 60 cell lines reveal, for example, a gene-
drug correlation with potential clinical implications – that be-
tween the asparagine synthetase gene and the enzyme-drug
L-asparaginase in ovarian cancer cells.
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1. Introduction

A prediction: Future historians of science will refer
to the turn of the millennium as a watershed, the start
of a Golden Age of biomedical science [1]. They will
note – in passing and without much excitement – the
half-century prodromal period after Watson-Crick in
1953, during which increasingly powerful techniques
were developed to study one gene or gene product
at a time and during which the foundations of high
throughput molecular biology were laid down. But,
they will be distinctly impressed by completion of the
DNA sequences of small organisms just before the turn
of the century and quasi-completion of the human se-
quence soon after it. Beyond simply the sequence,
they will focus on development at this time of large
databases on transcript and protein expression patterns,
single nucleotide polymorphisms, chromosomal aber-
rations, and epigenetic changes. They will appreciate
the increasing integration of these massive new molec-
ular biology databases with those from structural and
combinatorial chemistry, x-ray crystallography, mag-
netic resonance spectroscopy, high-throughput screen-
ing, two-hybrid and fluorescence energy transfer stud-
ies of protein-protein interaction, epidemiological stud-
ies, and the clinic.

All of these developments – which are rapidly trans-
forming our ability to identify and use molecular mark-
ers of disease – reflect what can be termed “omic” re-
search [1–3]. Omic research includes studies in ge-
nomics, proteomics, transcriptomics, CHOmics (for
the carbohydrates), kinomics (for the kinases), and
methylomics (for epigenetic methylations and imprint-
ing), among many others. It also includes compound
forms like pharmacogenomics, functional genomics,
structural genomics, and pharmacomethylomics [3].
Notions such as immunomics, metabolomics, toxi-
comics, literomics, and ecogenomics have been intro-
duced, not entirely in jest. It’s not that we really need
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more jargon, but, aside from any amusement value, the
omic terminology can be a useful shorthand – and it is at
least etymologically respectable. Webster’s dictionary
defines “-ome” as an abstract entity, group, or mass,
so omic research in biology is the study of entities in
aggregate – DNA, RNA, protein, or other molecular
components of a cell, tissue, or organism. The substan-
tive point here is that omic research requires a different
mind-set from the more traditional study of one gene,
gene product, or process at a time [1–3]. One gener-
ally ends up knowing a little about a lot, rather than
a lot about a little. Often, the databases of molecular
information are generated without knowing what about
them will prove most valuable, but that fact in no way
obviates the need for careful design and rigorous atten-
tion to experimental detail. In a sense, the guiding hy-
pothesis in omic research relates to information and its
utility, rather than to biological specifics. But anyone
who does omic research quickly realizes its dependence
on traditional one-at-a-time hypothesis-driven studies.
The former type of research establishes context in a
world of 35,000 genes and hundreds of thousands of
interesting protein states; the latter identifies what data
to generate and which relationships in the final database
are worth further pursuit.

This synergy between traditional and omic ap-
proaches to biology is reflected in the way we identify
and validate molecular markers of disease and molec-
ular markers for therapy. The aim of this article is to
illustrate that synergy through our studies with the drug
discovery and development program of the National
Cancer Institute (NCI). The NCI’s cell-based screen,
in which > 70, 000 chemical compounds plus natural
products have been tested one at a time and indepen-
dently over the last 11 years, provides a unique oppor-
tunity complementary to the study of clinical tumors.
Cancer cell lines clearly are not the same as cancer
cells in vivo. Even primary cultures from tumors are
artificial in that they have been removed from their nat-
ural state and society in the body. But cultured cells
do at least circumvent many of the logistical, techni-
cal, ethical, and conceptual difficulties that complicate
work with clinical materials, and one can step into the
same stream multiple times. Most of our present under-
standing of basic molecular pharmacology has come
from studies in cultured cells, not from clinical materi-
als. However, projecting in the other direction – from
cultured cells toward the clinic – is more dangerous.
One can hope to find clues with which to formulate
hypotheses for further study.

2. The NCI-60 panel of human cancer cell lines

In 1990, the NCI Developmental Therapeutics Pro-
gram (DTP) began operation of what was then consid-
ered a rather high-throughput screen, in which com-
pounds are tested for their ability to inhibit growth of
60 different human cancer cell lines (the NCI-60) in
culture [4–9]. Included currently are melanomas (8
cell lines), leukemias (6), and cancers of breast (8),
prostate (2), lung (9), colon (7), ovary (6), kidney (8),
and central nervous system (6) origin. The assay is
a simple one. The cells are incubated with various
concentrations of drug for 48 hours, and growth in-
hibition is then assessed using a sulforhodamine B
assay for the amount of protein in the well. Fifty
percent growth inhibitory concentrations (GI50’s) and
other indices of potency are then read from the result-
ing dose-response curves. The top section of Figure 1
shows a highly schematic view of this part of the NCI
drug discovery-development process. The compounds
have come largely from synthetic chemistry and natu-
ral product sources, but biologicals and combinatorial
libraries are also being tested. In recent years, the role
of this process has changed progressively from primary
screening to secondary testing as compounds have, in-
creasingly, been selected for the assay on the basis of
interesting prior information, and as molecular screens
have been established in the program.

This cell-based strategy for drug discovery was orig-
inally based on the hypothesis that selective activity in
vitro against cancer cell lines from a particular organ
would predict selective activity against the correspond-
ing tumor types in humans. For present purposes, how-
ever, we will avoid the endless arguments about the best
way to screen or test for anticancer agents and focus
on the screen as a generator of profile data on the po-
tencies of compounds tested and the drug sensitivities
of the 60 cell types. Patterns of activity against the
NCI-60 have proved predictive at the molecular level;
they often provide incisive information on mechanisms
of action and also on molecular targets and modulators
of activity within the cancer cells.

The patterns of activity were first analyzed using
the COMPARE algorithm developed by the late K.D.
Paull [5,10,11]. Given one compound as a “seed”,
COMPARE searches the database of agents screened
and generates a list of those most similar to the seed
in their patterns of activity against the 60 cell lines.
Similarity in pattern generally indicates similarity in
mechanism of action, mode of resistance, and molec-
ular structure [10–14]. This form of analysis has been
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Fig. 1. Schematic of the NCI-60 screen and profiling system, with associated databases of activities (A), molecular structure descriptors of the
compounds tested (S), and molecular “targets” in the cells (T). The T-database includes measurements of one target at a time and aggregate
(omic) measurements at the DNA, mRNA, and protein levels. Conceptually, there is also a clinical features database (C), not shown here. The
informatics challenge is to analyze and understand each of these databases separately, then to integrate them with each other and with public
information resources to address pharmacogenomic questions. Modified from [14].

applied productively to topoisomerase 2 inhibitors [15],
pyrimidine biosynthesis inhibitors [16], and tubulin-
active compounds [17,18], among many other classes
of agents. We have used back-propagation neural net-
works and predictive methods from classical statistics
to find ways in which the patterns of activity could in-
deed predict a compound’s mechanism of action [12].
More detailed information on the relationship between
pattern and mechanism has come from a variety of other
statistical and artificial intelligence techniques [13,14,
19–26].

3. Structure, activity, and target databases

The bottom half of Fig. 1 shows three types of
databases that arise from the NCI-60 screen [14]: (A)
contains the activity patterns, (S) contains molecular
structural features of the tested compounds, and (T)
contains characteristics of the cells that may be targets
or modulators of drug activity or may be neither.

The chemical structures in (S) can be coded in terms
of any set of 1-, 2- or 3-dimensional molecular structure
descriptors, or a combination thereof. The NCI’s Drug
Information System (DIS) contains structural builds for
∼ 500, 000 molecules, including most of the > 70, 000
tested to date ([27] and D. Zaharevitz, et al., unpub-
lished). This database provides a basis for pharma-

cophoric searches; if a tested compound is found to
have an interesting pattern of activity, its structure can
be used to search for similar molecules in the DIS
database that have not been tested.

More pertinent for present purposes is the target (T)
database, each row of which defines the 60-cell line
pattern of a measured cell characteristic [14]. Many
laboratories at the NCI and elsewhere have been as-
sessing these targets one at a time (or a restricted class
at a time). The list includes oncogenes, tumor sup-
pressor genes, molecules of the cell cycle and apop-
totic pathways, drug resistance-mediating transporters,
metabolic enzymes, cytokine receptors, heat shock pro-
teins, telomerase, DNA repair enzymes, intracellular
signaling molecules, and components of the cytoarchi-
tecture. But a number of years ago, we decided to
take a broader brush, omic approach to characterization
of these cells – at the DNA, RNA, and protein levels.
We started where any molecular pharmacologist would,
given a choice: with the proteins.

4. Pharmacoproteomics and the NCI-60

In collaboration with Leigh Anderson (Large Scale
Biology, Inc.), we [28] assessed patterns of protein ex-
pression by two-dimensional polyacrylamide gel elec-
trophoresis (2-D PAGE) with detection by colloidal
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Fig. 2. Proteomic profiling of the NCI-60 cell lines [28]. A: 2-D gels were run for duplicate harvests of the 60 cell lines, the aim being to index
spots across the 60 and develop quantitative patterns of protein expression analogous to those for compound activities. B: Computer-processed
pseudocolor image of the central section of a master gel based on breast cancer line MCF-7. The spots are modeled as bivariate Gaussians
of Coommassie blue intensity, and spot “volumes” are calculated as the integral of intensity over the area of the spot. Red indicates spots in
a quality-controlled database of 151; blue indicates additional spots in the overall cross-indexed database of 1,014 spots. C: Clustered image
map (CIM) showing cell-cell relationships in terms of patterns of protein expression. Red indicates positive Pearson correlation coefficient;
blue indicates negative Pearson correlation coefficient. The cells are clustered in the same order on both axes, so there is, by definition, 100%
correlation on the main diagonal. This is a TT.T CIM (see discussion of CIMs later in text). Modified from Buolamwini, et al. (in preparation).

Coomassie blue and image processing by the Kepler
program package. Figure 2 summarizes that project,
which established an early link between the enterprise
of proteome research [29,30] and the molecular phar-
macology of cancer. The database generated consisted
of 1,014 indexed and quantitated protein spots,of which
151 were quality-controlled over all 60 cell lines and
incorporated into a primary data set for analysis [28].
The database was informationally coherent in the sense
that different harvests of the same cell line were more
highly correlated with each other in expression pattern
than were parallel harvests of different cell lines. That
is, the signal-to-noise ratio was sufficiently high to per-
mit meaningful clustering of the cell lines on the basis
of their patterns of protein expression. For this pur-
pose, the 2-D gel spots were quantitated in terms of

spot “volume”, intensity of staining integrated over the
area of the computer-processed spot image.

The bottleneck in the project turned out to be iden-
tification of the spots. It was possible to distinguish
meaningful patterns of association between spots or
between cell types without knowing the identities of
the spots. But for most purposes, including the search
for molecular markers, spot identity proved crucial.
For the identification, we developed our own version
of a rapid MALDI-TOF mass spectrometric technique
based on peptide mapping [31]. The essential steps
in the method included in-gel digestion of the proteins
with combinations of proteases, purification of the pep-
tides, analysis by MALDI-TOF mass spectrometry, and
peptide fingerprinting. We used the method to identify
a number of spots but soon realized that it was not the
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job of a small academic laboratory to identify hundreds
of proteins in that way. Accordingly, we decided to
move on to mRNA expression profiling and wait for
high-throughput proteomics to catch up. The wait has
been longer than I expected. Despite numerous promis-
ing techniques, most of them based on mass spectrom-
etry for detection, there still does not seem to be a com-
plete solution to the proteomic profiling of mixtures as
complex as those of mammalian cells. Even the na-
ture and magnitude of the challenge become harder and
harder to define, given the increasing focus on alterna-
tive splicings, post-translational modifications, and ex-
tensive, complex family relationships among proteins
and their domains. We will all await with interest the
results of ongoing large-scale proteomic efforts in the
public and private sectors.

5. Transcriptomics and the NCI-60

Most drug targets are proteins, and, clearly, pro-
teomic status cannot be inferred or predicted from data
on the RNA. Not yet, at least. Complicating factors in-
clude the complexities of translational regulation, post-
translational modifications, and differing patterns of
protein metabolism and degradation. However, mRNA
expression levels are a useful second best, and the tech-
nology for determining them is considerably more ad-
vanced than it is for proteins. Most important, it is
easier to establish identities. We have performed gene
expression profiling studies of the NCI-60 using cDNA
microarrays [32,33] with the Brown/Botstein labora-
tory at Stanford University and Affymetrix oligonu-
cleotide chips [34] with the Lander/Golub group at the
Whitehead Institute. The cDNA microarray studies
profiled approximately 8,000 distinct genes using the
two-color methodology [32,33]. Figure 3 shows hierar-
chical clustering of the cells based on gene expression
patterns (left) and on drug sensitivities (right). In each
case, the cells group in part by organ of origin but in part
according to other principles. It was a surprise, though
perhaps it should not have been, that the two cluster-
ings are very different. The correlation of correlations
between them [33] is only +0.21. At least one reason
is that particular gene products, for example mdr1/Pgp,
can influence the activities of many drugs across or-
gan of origin categories but, being only single genes,
have little effect on the clustering by gene expression
pattern. We have since gone on to cross-compare the
cDNA array and oligonucleotide chip databases gene
by gene and establish a robust database of > 2, 000

transcripts for which results from the two very differ-
ent technologies are reasonably concordant across the
60 cell types (J.K. Lee, et al., in preparation). This
concordance set is as well validated as any gene ex-
pression database of which we are aware. Conceptu-
ally, it is almost as if one had done northern blots or
real-time RT-PCR studies for all of the genes across
60 cell lines to validate the cDNA array results. The
drug and cDNA gene expression databases used in this
study, along with tools of analysis, can be found at
our web site, http://discover.nci.nih.gov. The oligonu-
cleotide chip data will appear there soon. Additional
data and the COMPARE program can be found at the
DTP’s web site, http://www.dtp.nci.nih.gov.

6. Color-coded clustered image maps (CIMS)

One useful and compact way to represent patterns in
the data from “high-dimensional” datasets such as gene
expression profiles is what we have termed the “clus-
tered image map” (CIM) (sometimes called a clustered
“heat map”). The principle is illustrated in Fig. 4 for
gene expression over the 60 cell lines. We developed
CIMs in the early 1990’s for data on drug activities, tar-
get expression levels, gene expression values, and pro-
teomic profiles [13,14,28,33]). The clustering of both
axes (or sometimes only one if there is another organiz-
ing principle for the second axis) puts like together with
like and brings out patterns. A red-green color scheme
for the CIM has been popularized by our collabora-
tors [35]. A flexible program for producing CIMs can
be found at our web site, http://discover.nci.nih.gov.

The gene-cell CIM in Fig. 4 is simple in that, in
terms of Fig. 1, it involves only a single database, T.
If we want to assess relationships between drug activ-
ity and gene expression, it is necessary to map the A
database into the T database (which can be done most
straightforwardly by multiplying A by the transpose of
T and normalizing so that entries in the product ma-
trix (A·TT) are Pearson correlation coefficients [14,
33]. Figure 5 shows such a drug-target CIM. Alterna-
tively, CIMs can be formed by multiplying a database
(i.e., matrix) times its own transpose to produce a sym-
metrical product matrix [13,14,28,36]. For example,
the TT·T CIM expresses the correlation of each cell
type with each other cell type in terms of pattern of
expression, as in Fig. 2(C).

Each point and each patch of color in a CIM (such as
that in Fig. 5) represents a possible story. But how can
one determine whether a patch represents a causally
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33]). Average linkage clustering and a correlation coefficient similarity metric were used in this analysis. Modified from [33].

interesting story, an epiphenomenal correlation (which
still may identify a useful molecular marker), or statis-
tical coincidence? The statistical robustness of asso-
ciation can be assessed in various ways, for example
by using the bootstrap [37] to obtain approximate con-
fidence limits on the estimated correlation coefficient
and to test the null hypothesis that the true correlation
is zero. But Fig. 5, which represents a small set of
drugs and a relatively small set of genes, still reflects
about 160,000 drug-gene pairs. By definition, 5% of
these pairs (i.e., 8,000 of them) would appear to be
statistically significant at the P = 0.05 level even if

the data were just noise. There are too many false-
positives. If this “multiple comparisons” problem is
taken into account by making a Bonferroni correction
(which assumes statistical independence), then almost
all of the true correlations will be thrown out. There
are too many false negatives. Other, more sophisticated
corrections can be made but, ultimately, in this type of
situation, the statistics can take one only so far. We are
left with a long list of gene-drug (or gene-gene) cor-
relations, each of which must be assessed for its bio-
logical sense. This problem is most acute for database
associations such as those considered here, but it also
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pertains to the simplest binary experiments in which,
for example, a malignant cell type or tissue is compared
with its normal counterpart. Even with enough repli-
cates to obviate the question of statistical significance,
such experiments typically produce lists of hundreds of
genes that differ in expression, and one is left to figure
out which differences have biological plausibility.

This is where synergy between omic research and
hypothesis-driven studies of particular genes and drugs
becomes necessary. To figure out where to look in the
massive databases that arise from the former, we gen-
erally need to make use of the latter. That can mean
experiments done after the fact, it can mean plumbing
rich public databases such as those of the NCI’s Can-
cer Genome Anatomy Project [38,39], or it can mean
laboriously searching the extant literature. Because lit-
erature searching quickly becomes tedious, we devel-
oped web-based text-mining and literature-organizing
tools, MedMiner [40] and EDGAR [41], to facilitate
the process.

7. Organizing the literature on gene-gene and
gene-drug correlations: MedMiner and
EDGAR

MedMiner, which is publicly available at our web
site (http://discover.nci.nih.gov), can be used for gene,
gene-gene, gene-drug, drug-drug, or more general lit-
erature queries. Input can include gene accession num-
bers, gene names, drug NSC numbers, drug names,
and/or free text (e.g., “apoptosis” or “transport”). In
the case of microarray analysis, the user can specify a
list of arrayed genes. MedMiner uses a combination
of GeneCards from the Weizmann Institute, PubMed
from the National Library of Medicine (NLM), syn-
tactic analysis, truncated-keyword filtering of relation-
als, and user-controlled sculpting of a Boolean query
to generate key sentences from the pertinent abstracts.
Those sentences are then organized so that the user can
access the most pertinent ones directly by clicking on
a relevance-term. Whole abstracts deemed to be of in-
terest can then be accessed fluently and dropped into
a “shopping basket” for display or for automated en-
try into an EndNote library. Experienced users have
estimated that MedMiner speeds up 5- to 10-fold the
process of capturing and organizing the literature from
PubMed searches on lists of gene-gene and gene-drug
relationships [40].

MedMiner is fast enough and transparent enough for
real-world use on the Web, but it by no means cap-
tures all of the information that is theoretically avail-
able in the free text of an abstract. Natural language
processing (NLP) is one of the great intellectual chal-
lenges, and a number of attempts are being made to
harness NLP principles for omic studies. Our own ef-
fort in this direction is EDGAR, (Extraction of Data
on Genes and Relationships), a software tool for se-
mantic analysis and organization of the literature rele-
vant to our studies in the molecular pharmacology of
cancer [41]. Many different approaches can be used
to the extract factual assertions from biomedical text.
Methods used include syntactic parsing, processing of
statistical and frequency information, and rule-based
decision-making (reviewed in [41]). EDGAR draws
on all of these, using a stochastic part of speech tagger
in support of an underspecified syntactic parser. Fully
general semantic analysis is unrealizable, so we had
to develop suitable restricted ontologies and controlled
vocabularies. The goal was to extract factual assertions
in the form of first order predicate calculus statements
about the relationships between genes and drugs in can-
cer therapy. EDGAR is strong on the identification of
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Fig. 5. Clustered image map (CIM) relating activity patterns of 118 tested compounds to the expression patterns of 1,376 genes in the 60 cell
lines. Included in addition to the gene expression levels are data for 40 molecular targets assessed one at a time in the cells. A red point
(high positive Pearson correlation coefficient) indicates that the agent tends to be more active (in the two-day assay) against cell lines that
express more of the gene; a blue point (high negative correlation) indicates the opposite tendency. Genes were cluster-ordered on the basis of
their correlations with drugs (mean-subtracted, average-linkage clustered with correlation metric); drugs were clustered on the basis of their
correlations with genes (mean-subtracted, average-linkage clustered with correlation metric). Sharp edges of the colored patches reflect deep
forks in the corresponding cluster tree. Insert A shows a magnified view of the region around the point (white circle) representing the correlation
between the dihydropyrimidine dehydrogenase gene and 5-fluorouracil. Insert B is an analogous magnified view for the asparagine synthetase
gene and the drug L-asparaginase. Modified from [33].

“referential” (i.e., noun-related) relationships, weaker
with respect to “relational” (i.e., verb-related) ones. In-
terpretation of the referential vocabulary in EDGAR
is based on NLP tools and knowledge sources devel-
oped at NLM. The primary knowledge source support-
ing EDGAR is the Unified Medical Language System
(UMLS) Metathesaurus, a compilation of > 600, 000
concepts from controlled vocabularies in the biomed-
ical sciences. We tested EDGAR’s capability by ap-
plying it to a set of 383 literature abstracts related to
drug resistance mechanisms. The results, expressed in
a cluster tree with 383 leaves, showed considerable co-

herence by drug and mechanism of action [41]. That
was achieved without the manual reading of a single
abstract. EDGAR is Web-based but not yet fast enough
or transparent enough for public use. It illustrates, how-
ever, both the potential and the challenges of automated
literature analysis in omic studies.

8. Pharmacogenomic markers

The two white rectangles on the gene expression
vs. drug sensitivity CIM in Fig. 5 indicate stories with
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likely causal significance on the basis of literature in-
formation.

8.1. Dihydropyrimidine dehydrogenase and
5-fluorouracil

5-Fluorouracil (5-FU), an antimetabolite drug of-
ten used against colorectal and breast cancer, can in-
hibit both RNA processing and thymidylate synthesis.
Dihydropyrimidine dehydrogenase (DPYD), the rate-
limiting enzyme in uracil and thymidine catabolism,
is also rate limiting to 5-FU catabolism. Hence, high
DPYD levels might be expected to decrease the activity
of 5-FU. Consistent with this hypothesis, we found a
highly significant negative correlation (−0.53) between
DPYD gene expression and 5-FU potency against the
60 cell lines [33]. On closer examination, we found
that 14 of the 18 low-expressers of DPYD (> 4-fold
lower than the reference pool) are sensitive or highly
sensitive to 5-FU. Perhaps not coincidentally, given
the clinical use of 5-FU against colon cancer, all of
the colon-derived cell lines (7 out of 7) were sensi-
tive to 5-FU and low in DPYD expression. Previous
studies of DPYD correlations in clinical materials have
been difficult to interpret, but these microarray data
suggest further study of DPYD as a pharmacogenomic
marker [33].

8.2. Asparagine synthetase (ASNS) and
L-asparaginase

Many acute lymphoblastic leukemias (ALL) lack as-
paragine synthetase (ASNS) and therefore must scav-
enge exogenous L-asparagine to survive (see Fig. 6).
This dependence is exploited by treating ALL and other
lymphoid malignancies with bacterial L-asparaginase,
which depletes extracellular L-asparagine and selec-
tively starves the cancer cells. As shown in Fig. 7, we
found a moderately high negative correlation (−0.44;
bootstrap 95% confidence interval−0.59 to −0.25) be-
tween expression of the ASNS gene and L-asparaginase
sensitivity in the 60 cell lines [33]. But we also knew
to look specifically at the leukemic subpanel, and there
the correlation was a striking −0.98 (bootstrap 95%
confidence interval −1.00 to −0.93). This value sur-
vived even a Bonferroni correction for the statistical
multiple comparisons problem. Furthermore, the two
ALL-derived lines expressed the lowest levels of ASNS
mRNA and were the most sensitive to L-asparaginase,
as might have been expected. These results supported

the possible use of ASNS as a marker for clinical deci-
sions about L-asparaginase therapy [33].

The next question was obvious: Would any other
cell line panel show similar correlation. The answer
was “yes”, though not as strongly. The correlation co-
efficient for the ovarian lines was −0.88 (confidence
interval−0.23 to−0.99) [33]. Early clinical trials done
with a scattering of solid tumors showed occasional re-
sponses to L-asparaginase in melanoma, chronic gran-
ulocytic leukemia, lymphosarcoma, and reticulum cell
sarcoma but not in other tumor types (see [33] for refer-
ences). The microarray findings support a closer look
at L-asparaginase therapy for solid tumors, particularly
for a low-ASNS subset of ovarian cancers. The pre-
ferred material for a clinical trial would be the polyethy-
lene glycol-modified forms of L-asparaginase, which
shows much better pharmacokinetic and immunologi-
cal properties than does the native bacterial form of the
enzyme. Studies of asparaginase/L-asparaginase cor-
relations in clinical materials are underway in collabo-
ration with D. Von Hoff and his research group at the
Arizona Cancer Center.

9. Concluding remarks

As indicated by the foregoing examples, omic and
hypothesis-driven research should be seen as synergis-
tic, not mutually exclusive. But there is a paradox:
the easiest associations to identify in an omic database
are the least interesting: ones that have been identified
previously. Next easiest to identify are those that, with
hindsight, make biological or pharmacological sense.
Hardest are those that would be most exciting: the un-
expected, the paradigm shifters. These tend to get lost
among the multitude of false-positives. The problem is
most acute for cross-database comparisons, less so but
still considerable for binary experimental designs and
time-course studies. In this paper, I have emphasized
the effort to find markers of sensitivity to a treatment.
One can also ask a complementary question about the
molecular consequences of therapy. Both omic and
hypothesis-driven studies to address the latter type of
question are ongoing in our own and many other labo-
ratories [42].

Another type of synergy deserves at least brief men-
tion. Gene expression profiling is in vogue at the mo-
ment, but, clearly, no single type of molecular infor-
mation can capture all of the pharmacological and tox-
icological phenomena relevant to drug discovery and
selection of therapy. Data on DNA sequence, transcript
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Fig. 6. Schematic of the mechanism of L-asparaginase activity in acute lymphoblastic leukemia. See explanation in text.
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Fig. 7. Relationship between asparagine synthetase transcript expression and chemosensitivity of the NCI-60 to L-asparaginase. Each point
represents one of the 60 cell types. Leukemia and ovarian points are larger, open circles. Main effects have been removed for both cells and
drugs. Hence, a -log(GI50) value of 1 for sensitivity indicates a 10-fold higher than average sensitivity of the cell line to the agent. The asparagine
synthetase expression level is plotted as the relative log2 abundance of the asparagine synthetase transcript. A value of +2 indicates 4-fold higher
expression than in the reference pool.

expression, protein expression, chromosomal aberra-
tions, chromosomal copy number changes, single nu-
cleotide polymorphisms, promoter methylation, and
molecular interactions, inter alia, can all contribute to
our understanding. But each provides only partial in-
sight. As our laboratory and collaborators combine
these different classes of information for the NCI-60,
it becomes progressively more apparent that they are
synergistic.
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