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SUMMARY

Glucagon, secreted by pancreatic islet a cells, is
the principal hyperglycemic hormone. In diabetes,
glucagon secretion is not suppressed at high
glucose, exacerbating the consequences of insuffi-
cient insulin secretion, and is inadequate at low
glucose, potentially leading to fatal hypoglycemia.
The causal mechanisms remain unknown. Here we
show that a cell KATP-channel activity is very low
under hypoglycemic conditions and that hyperglyce-
mia, via elevated intracellular ATP/ADP, leads to
complete inhibition. This produces membrane depo-
larization and voltage-dependent inactivation of the
Na+ channels involved in action potential firing that,
via reduced action potential height and Ca2+ entry,
suppresses glucagon secretion. Maneuvers that
increase KATP channel activity, such as metabolic
inhibition, mimic the glucagon secretory defects
associated with diabetes. Low concentrations of
the KATP channel blocker tolbutamide partially
restore glucose-regulated glucagon secretion in
islets from type 2 diabetic organ donors. These
data suggest that impaired metabolic control of the
KATP channels underlies the defective glucose regu-
lation of glucagon secretion in type 2 diabetes.

INTRODUCTION

Glucagon and insulin are the body’s principal plasma glucose-

regulating hormones. They are secreted from the a and b cells

of the pancreatic islets, respectively. Physiologically, glucagon

is released in response to a fall in plasma glucose levels, an in-

crease in amino acids, and b-adrenergic stimulation (Gromada

etal., 2007).Diabetes isabihormonaldisorder involvingboth inad-
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equate insulin secretion and defective glucagon secretion. The

glucagon secretory defects include oversecretion at high glucose

(when it is not needed) and inadequate release at low glucose

(when it is needed) (Cryer, 2002; Unger and Cherrington, 2012).

Whereas the cellular regulation of insulin secretion is fairly well

understood (Remedi andNichols, 2009; Seino et al., 2011), much

less is known about the control of glucagon secretion (Gaisano

et al., 2012). Hypotheses for the regulation of glucagon secretion

include paracrine effects, mediated by factors released from

neighboring insulin-secreting b cells or somatostatin-secreting

d cells, or innervation (Gromada et al., 2007). However, in both

human and rodent islets, glucagon secretion is strongly inhibited

by glucose concentrations that have little stimulatory effect on

insulin secretion (Walker et al., 2011), and glucose remains

capable of suppressing secretion following pharmacological or

immunological inhibition of somatostatin signaling (de Heer

et al., 2008; Vieira et al., 2007). Moreover, glucagon secretion

responds normally to hypoglycemia after denervation of the

pancreas (Sherck et al., 2001). These considerations suggest

that a cells, in addition to being under paracrine control, possess

an intrinsic glucose-sensing mechanism. This remains poorly

defined, but studies on KATP-channel knockout mice indicate

that KATP-channels are somehow involved (Cheng-Xue et al.,

2013; Gromada et al., 2004; Muñoz et al., 2005; Shiota et al.,

2005) and the inhibitory effect of high glucose can be reversed

by low concentrations of the KATP-channel activator diazoxide

(Göpel et al., 2000b; MacDonald et al., 2007). In pancreatic b

cells, closure of these channels by metabolically generated

ATP leads to membrane depolarization, electrical activity, and

insulin secretion. It is not immediately evident, however, how

regulation of the same channels by glucose in a cells could sup-

press glucagon secretion. To date, most studies have failed to

detect an effect of glucose on a cell KATP-channel activity

(Barg et al., 2000; Bokvist et al., 1999; Quoix et al., 2009;

Ramracheya et al., 2010), but one study reported a small

glucose-induced decrease in KATP channel activity that, para-

doxically, was associated with stimulation rather than inhibition

of glucagon secretion (Olsen et al., 2005). Notably, all these
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Figure 1. Regulation of Glucagon Secretion

by Glucose and Tolbutamide

(A) Glucagon secretion from mouse islets at 1 mM

and 6 mM glucose in the absence and presence of

10 mM mannoheptulose (MH, n = 6). *p < 0.05

versus 1 mM glucose; yp < 0.05 versus 6 mM

glucose without mannoheptulose.

(B) (Left) Representative traces of the increase

in [ATP/ADP]cyt measured as D(F/F0) recorded

from individual a cells within the islet, in res-

ponse to 6 mM glucose and 2 mM FCCP. The

gray line represents parallel measurements of

tdRFP fluorescence in the a cell. The data

are representative of 44 a cells in 9 intact

islets from 3 different animals. (Right) Confocal

images of Perceval (green), tdRFP (red), and the

combination of the two (yellow). Scale bar,

200 mm.

(C) Glucagon secretion from muse islets in the

absence or presence of CYN154806 (which

blocks SSTR2, the main somatostatin receptor

subtype in a cells; Yue et al., 2012) at 1 mM or

6 mM glucose (left) or with and without tolbuta-

mide (0.1 mM, right; n = 6–7). *p < 0.05 or **p <

0.01 versus 1 mM glucose; yyp < 0.01 versus 6 mM

glucose without CYN154806.

(D) Insulin and glucagon secretion were

measured using the perfused pancreas pre-

paration. Data are normalized to the maximal insulin or glucagon secretion in each mouse (n = 5–7). For clarity, significances are not indicated, but effects

of glucose and tolbutamide on insulin and glucagon secretion were statistically significant (*p < 0.05 or better).

Error bars indicate SEM.
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studies of KATP-channel activity used isolated a cells in tissue

culture. Tissue culture and/or deprivation of the normal intercel-

lular milieu following islet dissociation may affect a cell function

via altered gene transcription, protein expression, or loss of

normal paracrine signaling. To avoid such potential confounding

effects, the experiments now reported were (whenever techni-

cally feasible) performed on a cells in freshly isolated intact islets.

Here we show that glucose-induced inhibition of KATP-chan-

nels in a cells results in inhibition of glucagon secretion, that

the glucagon secretory defects associated with diabetes can

be mimicked by experimental conditions leading to a tiny in-

crease in KATP-channel activity, and that glucose-regulated

glucagon secretion can be restored in diabetic or metabolically

compromised islets by low concentrations of the KATP-channel

blocker tolbutamide.

RESULTS

Glucose Regulates Glucagon Secretion by an Intrinsic,
Nonparacrine Mechanism
We first established that the inhibitory effect of glucose on

glucagon secretion is secondary to glucose metabolism.

Mannoheptulose, an inhibitor of glucose phosphorylation,

abolished the inhibitory effect of 6 mM glucose on glucagon

secretion, without affecting hormone release at 1 mM glucose

(Figure 1A).

We used the fluorescent probe Perceval to measure the cyto-

solic ATP/ADP ratio ([ATP]/[ADP]cyt) in a cells of intact mouse

islets (Figure 1B). Addition of the mitochondrial uncoupler

FCCP promptly decreased [ATP]/[ADP]cyt.. On average, glucose

increased [ATP]/[ADP]cyt (measured as relative increase in
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Perceval fluorescence above basal) by 33% ± 2% (n = 44; p <

0.02, Mann-Whitney U test for independent samples). In these

experiment, a cells were identified by tdRFP fluorescence. We

have considered the possibility that tdRFP might interfere with

the ATP measurements. However, we do not think this is the

case. First, background tdRFP fluorescence was stable and un-

affected by glucose or FCCP (Figure 1B). Second, effects of

glucose in a cells identified by spontaneous oscillations in

[Ca2+]i at 1 mM glucose were very similar to those seen in a cells

identified by tdRFP fluorescence. Thus, we conclude that

glucose increases ATP in a cells. These findings are in agree-

ment with earlier reports of a small (10%–20%) increase in cyto-

plasmic [ATP] (Ishihara et al., 2003; Ravier and Rutter, 2005) and

of total ATP and ADP (Detimary et al., 1998) in response to

glucose in a cells using alternative methods of measurement.

Both somatostatin and insulin have been proposed to mediate

the inhibitory effects of glucose on glucagon secretion in intact

islets (Unger and Cherrington, 2012; Unger and Orci, 2010).

The somatostatin receptor subtype 2 (SSTR2) antagonist

CYN154806 increased glucagon secretion at both 1 and 6 mM

glucose, suggesting a cells are under tonic somatostatin inhibi-

tion. In freshly isolated islets, tolbutamide (unlike what was pre-

viously observed in cultured islets; Cheng-Xue et al., 2013)

remained inhibitory on glucagon secretion when somatostatin

signaling was acutely inhibited using CYN154806 (Figure 1C).

Figure 1D shows the reciprocal increase in insulin secretion

and decrease in glucagon secretion produced when glucose is

lowered from 6mM to 1 mM. Glucagon secretion was maximally

stimulated before any detectable inhibition of insulin secretion.

Tolbutamide produced a transient 10-fold stimulation of insulin

secretion and mimicked the inhibitory effect of glucose on
hors
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Figure 2. Effects of Glucose, Tolbutamide, and Diazoxide on

Electrical Activity in a Cells

(A–C) (Left) Electrical activity in mouse a cells (identified by action potential

firing at 1 mM glucose) at 1 mM and 6 mM glucose (A, n = 9), 200 mM tolbu-

tamide (B, n = 5), or 1 or 100 mM diazoxide (C, n = 5). (Right) Averaged action

potentials recorded around the indicated time points, shown on an expanded

timescale (averages of 308 and 181 spikes at 1 and 6 mM glucose in A; 54 and

223 in the absence and presence of tolbutamide in B; and 277, 560, and 190 at

1 mM and 6 mM glucose, and 6mM glucose + 1 mM diazoxide in C). See also

Figures S1 and S2 and Table S1.
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glucagon secretion, but glucagon secretion remained sup-

pressed even when stimulated insulin release had decayed by

80%. The report that glucagon secretion evoked by insulin-

induced hypoglycemia is not very different in control mice and

in mice lacking insulin receptors in a cells (Kawamori et al.,

2009) provides additional evidence for a dissociation between

insulin and glucagon secretion.

Collectively, these data suggest that glucose inhibits glucagon

secretion by mechanisms that do not require paracrine effects

of insulin or somatostatin (or signals coreleased with these

hormones). However, paracrine mechanisms may become

functionally more significant under physiological situations

associated with strong stimulation of insulin and somatostatin

secretion.

Effects of Glucose and Pharmacological Modulators of
KATP Channel Activity on a Cell Electrical Activity
Unlike insulin-secreting b cells and somatostatin-secreting

d cells (Göpel et al., 2000a), pancreatic a cells in intact mouse

islets exposed to 1 mM glucose (i.e., when glucagon secretion

is stimulated) generate spontaneous action potentials (Fig-

ure 2A). The frequency, the peak voltage, and the most negative

membrane potential attained during action potential firing aver-

aged 1.4 ± 0.3 Hz, 2 ± 3mV, and�54 ± 2mV (n = 9). Correspond-

ing values in the presence of 6 mM glucose (when glucagon

secretion is maximally suppressed) were 3.0 ± 0.5 Hz (p <

0.02), �7 ± 2 mV (p < 0.002), and �45 ± 2 mV (p < 0.01; n = 9).

Averaged action potentials (see Experimental Procedures) re-
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corded under the indicated experimental conditions are shown

on the right on an expanded time base.

Tolbutamide mimicked the effect of elevating glucose (Fig-

ure 2B). It depolarized a cells by 11 ± 3 mV (p < 0.02), reduced

action potential peak voltage by 17 ± 6 mV (p < 0.02), and

increased firing frequency to 3.3 ± 0.7 Hz (p < 0.02; n = 5).

The effect of the KATP-channel activator diazoxide on a cells

exposed to 6 mM glucose was concentration dependent (Fig-

ure 2C). At 100 mM, it hyperpolarized a cells to �74 ± 4 mV

(p < 0.01; n = 4) and abolished action potential firing. At 1 mM it

hyperpolarized a cells by 9 ± 2mV (p < 0.01) yet increased action

potential peak voltage by 7 ± 2 mV (p < 0.02, n = 5).

The maximum rate of depolarization (dV/dtd) during the up-

stroke of the action potential averaged 37 ± 6 V/s (n = 11) at

1mMglucose, 15 ± 3 V/s (n = 11; p < 0.001 versus 1mMglucose)

at 6mMglucose (or 0.2mM tolbutamide), and 33 ± V/s (n = 5; p <

0.02 versus 6 mM glucose) in the presence of 6 mM glucose and

1 mM diazoxide. Corresponding values for the maximum rate of

repolarization (dV/dtr) averaged �24 ± 3 V/s, �13 ± 1 V/s (p <

0.01 versus 1 mM glucose), and �31 ± 6 V/s (p < 0.05 versus

6mMglucose).We attribute the slower repolarization in the pres-

ence of glucose or tolbutamide to reduced voltage-dependent

activation of the K+-channels involved in action potential repolar-

ization when spike height is reduced.

In a small number of experiments (4 of 29 cells), elevating

glucose transiently hyperpolarized the a cell and suppressed

action potential firing (Figure S1A available online). This could

be antagonized by CYN154806, suggesting it may result from

somatostatin released by neighboring d cells (Figure S1B).

Some a cells hyperpolarized spontaneously in the continued

presence of 1 mM glucose (Figure S1C). This repolarization

and suppression of electrical activity lasted �5 min, after which

the a cell depolarized and action potential firing resumed. Spon-

taneous membrane potential oscillations were seen in a cells

exposed to 1 mM glucose in 60% of experiments. These prob-

ably account for the [Ca2+]I oscillations with a period of �5 min

seen in isolated islets at low glucose (Figure S1D). The frequency

and amplitude of these oscillations were little affected by 6 mM

glucose, as previously reported (LeMarchand and Piston, 2010).

Effects of Glucose and Tolbutamide on Whole-Cell KATP

Channel Activity
Figures 2A–2C suggest that, at 1 mM glucose, a cells exhibit low

KATP-channel activity and that glucose acts by modulating this

activity. We therefore recorded whole-cell KATP-current under

voltage-clamp conditions in identified a cells (Figures S2C and

S2D) in intact islets (Figure 3A). Data are expressed as changes

in whole-cell conductance (G). At 1 mM glucose, G was 270 ±

50 pS (n = 16). Increasing glucose to 6 mM, or addition of tolbu-

tamide, reducedG by 75 ± 39 pS (p < 0.05; n = 16) and 76 ± 32 pS

(p < 0.01; n = 14), respectively. Tolbutamide was ineffective at

6 mM glucose (data not shown), as expected if glucose had

already closed KATP-channels. The glucose- and tolbutamide-

induced changes in G were small—less than 3% of those seen

in b cells under comparable conditions (Zhang et al., 2008). How-

ever, intracellular application of 0.1 mM ADP (to maximally acti-

vate KATP-channels) increased G from an initial value of 0.30 ±

0.03 nS to 11 ± 2 nS (n = 5; Figures S2A and S2B). Thus, the

KATP-channel is under strong tonic inhibition (>99%) in a cells.
etabolism 18, 871–882, December 3, 2013 ª2013 The Authors 873
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Figure 3. Modulation of KATP Channel Activ-

ity by Glucose in Mouse Pancreatic a Cells
(A) (Left) Perforated patch whole-cell currents in

mouse a cells evoked by ±10 mV voltage pulses

(indicated schematically above the current traces)

at 1 mM glucose (black) and 6 mM glucose

(red, +glc.) or 1 mM glucose plus 100 mM tolbu-

tamide (red, +tolb.). Histograms (right) show mean

whole-cell KATP-currents (expressed as mem-

brane conductance) in glucose and tolbutamide,

as indicated. *p < 0.05 versus 1 mM glucose.

(B) Dose-response curve for the effects of

increasing concentrations of diazoxide (1–300 mM)

on the whole-cell KATP-channel activity (expressed

as membrane conductance) in a cells within intact

islets. *p < 0.05 versus no diazoxide for concen-

trations >1 mM (not indicated for clarity). (Inset)

Perforated patch whole-cell currents in mouse a

cells evoked by ±10 mV voltage pulses at 6 mM

glucose (black) and 6 mM glucose + 3 mM diazo-

xide (red, +diaz.).

(C) Relationship between glucagon secretion and

mean whole-cell conductance (G, perforated

patch) in mouse a cells at 6 mM glucose and the

indicated diazoxide concentrations (black). Red

square, glucagon secretion and G at 1 mM

glucose. ***p < 0.001 versus no diazoxide.

(D) Effects of glucose and diazoxide on glucagon

secretion in the absence and presence of 2–6 mM

of amino acidmixtures (see Table S1). Glucose and

diazoxide were also added to the medium, as in-

dicated. n = 8–9 experiments. **p < 0.01 for effects

of 1 mM glucose versus 6 mM glucose (at 0, 2, or

6mMAAM); zp< 0.05 for effect of diazoxide versus

no diazoxide at 6 mM glucose in the presence of

2 mM AAM; {p < 0.05 for effect of diazoxide at

1 mM glucose in the presence of 6 mM AAM.

Error bars indicate SEM. See also Figure S2 and

Table S1.
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The reported >5-fold greater ATP sensitivity of KATP-channel ac-

tivity in a cells than in b cells (Leung et al., 2005) might contribute

to the strong tonic inhibition of KATP-channels in a cells.

Relationship between KATP Channel Activity and
Glucagon Secretion
Diazoxide activated KATP-channels inhibited by glucose, with

half-maximal stimulation occurring at 29± 6 mM (n= 5; Figure 3B).

Glucagon secretion was measured in the presence of 6 mM

glucose (to maximally inhibit secretion) and increasing concen-

trations of diazoxide. This enables the relationship between

KATP conductance (G, determined as above) and glucagon

secretion to be determined over a wider range of conductance

than can be obtained by varying glucose concentration (Fig-

ure 3C). The G-secretion relationship was bell shaped, being

maximal at �280 pS (3 mM diazoxide), where both G and secre-

tion were similar to that at 1 mM glucose. Importantly, both small

(�100 pS) increases and decreases in G inhibited glucagon

secretion. The ability of diazoxide to reverse the effects of

glucose cannot be explained by relief from paracrine suppres-

sion of glucagon secretion by insulin or somatostatin, as

glucose-induced release of these hormones is unaffected by

diazoxide concentrations as high as 30 mM and 200 mM, respec-

tively (MacDonald et al., 2007; Zhang et al., 2007).
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The data of Figure 3C confirm our earlier finding (MacDonald

et al., 2007), that low concentrations of diazoxide antagonize the

inhibitory effect of glucose on glucagon secretion. We also tested

the effects of glucose and diazoxide in the presence of two

different amino acid mixtures, AAMa (2 mM) and AAMb (6 mM),

designed to simulate theconditionsoccurringduring fasting (Rud-

man et al., 1989) and following a protein-rich meal, respectively

(Figure3D). AAMadid not detectably enhance glucagon secretion

beyond that evokedby1mMglucose. Increasingglucose to6mM

in the presence of AAMa inhibited glucagon secretion as strongly

as it did under control conditions, an effect that was prevented by

diazoxide. In fact, diazoxide stimulated glucagon secretion in the

presence of 6 mM glucose. AAMb stimulated glucagon secretion

�4-fold at 1 mM glucose and elevation of glucose to 6 mM

reduced glucagon secretion by >60%. Again, no inhibitory effect

of glucosewasobserved in thepresenceof 3mMdiazoxide. These

observations argue that KATP-channel closure plays a key role in

the modulation of glucagon secretion by glucose in both the

absence and presence of amino acids.

Membrane Potential-Dependent Reduction of Action
Potential Height
Figures 2 and 3 suggest KATP-channel closure leads to mem-

brane depolarization and reduced action potential amplitude.
hors
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Figure 4. Impact of Membrane Potential on

Action Potential Amplitude

(A) Electrical activity in mouse a cells hyper-

polarized to ��80 mV by injection of �5 pA and

stimulated by 5 s current pulses to different

membrane potentials applied at a frequency of

0.2 Hz.

(B) Individual spikes from (A), as indicated by

asterisks, shown on an expanded timescale.

(C) Relationship between interspike membrane

potential and action potential peak voltage (Vp).

The amplitude of each action potential and the

associated interspike voltage were measured.

For display, data were binned according to the

most negative interspike potential (bin width,

5 mV) and averaged (n = 7–12 action potentials

for each data point). The line is a Boltzmann fit

to the mean data with a midpoint of �52 mV.

The red arrow indicates the decrease in peak

voltage predicted from the 9 mV glucose-induced

depolarization.

(D) Voltage-dependent inactivation of Na+-current

in identified a cells in intact islets. Peak currents

during a 1 ms test pulses to 0 mV are displayed

against the membrane potential during the

preceding 200 ms conditioning pulses (fre-

quency, 1 Hz). Current responses are presented as

hN (= I/Imax). The response following a conditioning

pulse to �100 mV was taken as unity (n = 6). The

midpoint of inactivation was �47 mV. Arrow in-

dicates the decrease in hN predicted from the

glucose-induced depolarization. (Inset) Na+-cur-

rents during depolarizations to 0 mV following

conditioning pulses to �100 mV, �55 mV, and

�45 mV. See also Table S1.

(E) Examples of action potentials recorded from an a cell in an intact islet exposed to 1 mM glucose under control conditions, after addition of TTX (0.1 mg/ml) and

following washout of the blocker (ten individual spikes averaged for each experimental condition).

(F) Effects of TTX on glucagon secretion measured from isolated NMRImouse islets at 1 mMglucose in the absence and presence of TTX (as indicated). *p < 0.05

versus 1 mM glucose without TTX.

(G) Absolute (left) and relative (right) glucagon secretion from mouse islets at 1 mM glucose and different [K+]o (n = 6). Relative release is normalized to that at

3.6 mM [K+]o). The red arrow indicates the equivalent decrease (47% ± 4%) in glucagon secretion produced by increasing glucose from 1 mM to 6 mM in control

experiments (at 3.6mM [K]o; seven different experimental series performed over several years). (Inset) Stimulation of glucagon secretion by 70mM [K+]o. *p < 0.01

and ***p < 0.001 versus 3.6 mM [K+]o.

Error bars indicate SEM.
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We investigated the relationship between interspike membrane

potential and the voltage at the peak of the action potential

(Figures 4A and 4B). Peak voltage decreased with interspike

depolarization, from +18 ± 6 mV at negative membrane poten-

tials (below �60 mV) to �14 ± 2 mV at depolarized potentials

(above �40 mV), being half-maximal at �52 ± 3 mV with a slope

factor of 4 ± 1 mV (n = 4 cells from four different islets and three

different mice; Figure 4C). Using these values, we estimate that

the 9 mV depolarization produced by increasing glucose from

1mM to 6 mMwill reduce action potential peak voltage from +6-

mV to �9 mV, in reasonable agreement with values observed

experimentally (Figure 2A). Thus, the glucose-induced changes

in membrane potential are sufficient to account for the reduction

of action potential height.

Action potential firing in a cells depends on the opening of

voltage-gated Na+-channels (Göpel et al., 2000b). We reasoned

that glucose-induced membrane depolarization might reduce

action potential height by voltage-dependent inactivation of

Na+-channels. In agreement with this idea, the Na+-channel
Cell M
blocker TTX (0.1 mg/ml) reduced action potential peak voltage

in a cells exposed to 1 mM glucose by 14 ± 4 mV (n = 5; p <

0.01; Figure 4E), reduced dV/dtd from 37 ± 12 V/s to 11 ± 2 V/s

(p < 0.05 versus no TTX), and reduced dV/dtr from �22 ± 4 V/s

to�13 ± 3 V/s (p < 0.05 versus no TTX). It also inhibited glucagon

secretion at 1 mM glucose by �40% (Figure 4F). The peak Na+-

current amplitude in identified a cells decreased steeply at po-

tentials positive to �60 mV (Figure 4F): the relationship between

membrane potential and peakNa+-current predicts that the 9mV

depolarization produced by glucose will reduce the fraction of

active Na+-channels (hN) from 0.7 to 0.3 (red arrow). These

data argue that glucose-induced membrane depolarization me-

diates its effect on action potential height via (partial) voltage-

dependent inactivation of voltage-gated Na+-channels.

We next explored the effect of membrane potential on

glucagon secretion, by varying the extracellular K+ concentration

([K+]o) (Figure 4G). In the presence of 1 mM glucose, elevation of

[K]+o from 1.5 mM to 12 mM progressively decreased glucagon

secretion and thus mimicked the effect of high glucose. High
etabolism 18, 871–882, December 3, 2013 ª2013 The Authors 875
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Figure 5. Ca2+ Channel Activation and

Exocytosis in a Cells

(A) Voltage dependence of a cell exocytosis (n = 5)

was measured as changes in membrane capaci-

tance (DCm) in response to 500 ms voltage pulses

(holding potential �70 mV) using the standard

whole-cell configuration. DCm was normalized to

the largest response in each cell (DCmax). The red

arrow indicates the 75% suppression of exocy-

tosis predicted to result from a 9 mV reduction of

the action potential.

(B) Glucagon secretion from islets exposed to

glucose and u-agatoxin, as indicated (n = 6). **p <

0.01 versus 1 mM glucose under control condi-

tions; yyyp < 0.001 versus 1 mM glucose under

control conditions.

(C) DCm recorded during 500 ms depolarizations

to 0 mV in a cells with/without 200 nM u-agatoxin

(n = 4). *p < 0.05 versus no u-agatoxin.

(D) u-agatoxin-sensitive Ca2+-currents (lower)

evoked by voltage-clamp commands based on

the averages of 20 action potentials recorded in

the presence of 1 and 6 mM glucose (top).

(E and F) DCm recorded during 50 and 300 ms depolarizations to 0 mV with intracellular EGTA included in the pipette medium at 50 mM (E) or 1 mM (F).

(G) DCm recorded in the perforated patch whole-cell configuration at 1 and 6 mM glucose in response to 500 ms voltage pulses from �70 mV to 0 mV (n = 10).

Error bars indicate SEM. See also Figure S3 and Table S1.
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[K+]o (70mM) stimulated glucagon secretion >4-fold (inset). From

the relationship between [K+]o and glucagon secretion we

estimate that elevating [K+]o from 3.6 mM to 9 mM is required

to produce the same inhibition of glucagon secretion as that

resulting from an increase in glucose from 1mM to 6mM (arrow).

This increase in [K+]o corresponds to an estimated 13 mV

depolarization (estimated from the relationship between [K+]o
and a cell membrane potential reported previously; De Marinis

et al., 2010), which is in reasonable agreement with the

9 mV glucose-induced depolarization observed experimentally

(Figure 2A).

Glucose Inhibits Glucagon Secretion by Reducing
P/Q-Type Ca2+ Channel Activation
Figure 5A summarizes the voltage dependence of exocytosis in

identified a cells in intact islets. The relationship predicts that the

9 mV reduction in spike height produced by glucose reduces

exocytosis by 75%.

Glucagon exocytosis is dependent on Ca2+ entry via voltage-

gated Ca2+-channels (see Figure S3). The P/Q type Ca2+-chan-

nel blocker u-agatoxin mimicked the inhibitory effect of 6 mM

glucose (Figure 5B) and inhibited depolarization-evoked exocy-

tosis (Figure 5C). The reduction in action potential height pro-

duced by 6 mM glucose resulted in 66% ± 10% (n = 5; p <

0.01) inhibition of the peak P/Q type Ca2+-current evoked by

simulated action potentials (Figure 5D). During brief depolariza-

tions (%50 ms), exocytosis proceeded only during the depolari-

zation (Figure 5E), and not subsequent to it (cf. Zhang et al.,

2007). This suggests exocytosis in a cells is controlled by rapid,

local [Ca2+]i increases, close to the Ca2+-channel, and thus

echoes Ca2+-channel activity. Accordingly, exocytosis elicited

by short depolarizations was hardly affected by inclusion of the

Ca2+-chelator EGTA (1 mM) in the intracellular medium (Fig-

ure 5F). On average, 50 ms depolarizations evoked capacitance

increases of 14 ± 6 fF (n = 8) and 11 ± 2 fF (n = 5) in the presence
876 Cell Metabolism 18, 871–882, December 3, 2013 ª2013 The Aut
of 50 mM and 1 mM intracellular EGTA, respectively. However,

exocytosis evoked by 300 ms depolarizations was reduced

from 80 ± 20 fF to 30 ± 11 fF (p < 0.05), suggesting that Ca2+ diffu-

sion during longer depolarizations may trigger exocytosis of

granules not situated in the immediate vicinity of the Ca2+-

channels.

Glucose (6 mM) did not inhibit a cell exocytosis evoked by

membrane depolarization to 0mV in perforated patch recordings

(Figure 5G). This indicates that the glucose-induced suppression

of glucagon secretion is secondary to changes in membrane

potential rather than a direct effect of the sugar on exocytosis.

Effects of KATP Channel Mutations Associated with
Reduced ATP Sensitivity on Glucagon Secretion
An increase in KATP-channel activity either stimulates or inhibits

glucagon secretion, depending on the magnitude of the increase

in the KATP current (Figure 3C). The question then arises as

to whether gain-of-function mutations found in patients with

neonatal diabetes (Gloyn et al., 2004) affect glucagon secretion.

We addressed this by generating mice expressing KATP-chan-

nels with reduced ATP-sensitivity in a cells (a-V59Mmice). These

had normal body weight (data not shown) and fasting blood

glucose levels but exhibited mild glucose intolerance (Figures

S4A and S4B) and increased insulin sensitivity (Figure S4C).

In 1 mM glucose, the membrane conductance (G) was >13-

fold larger in metabolically intact a cells in islets isolated

from a-V59M mice than in control islets (�1.5 nS/pF versus

0.11 nS/pF; p < 0.03; a cells identified by expression of tdRFP).

Whereas 6 mM glucose reduced G in control a cells by 17% ±

5%, no reduction was detected in a-V59M a cells (Figure 6A).

Tolbutamide reduced G by >50% in mutant a cells (Figure 6B),

but it still remained >4-fold higher than in control a cells.

We next measured a cell electrical activity in intact control and

a-V59M islets. In contrast to control cells (which resemble wild-

type cells), only 20% (n = 10) of a-V59M a cells were electrically
hors
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Figure 6. Effects of the Kir6.2-V59M Muta-

tion on Glucagon Secretion

(A and B) Whole-cell resting conductance (Gr)

measured with the perforated patch method in a

cells within control (A; n = 6–7) and a-V59M islets

(B; n = 6) at the indicated concentrations (mM) of

glucose and tolbutamide. *p < 0.05 versus 1 mM

glucose. yp < 0.05 versus 1 mM glucose in control

a cells. Inset in (A) shows conductance changes on

an expanded vertical axis.

(C) Electrical activity in a cells in a-V59M islets at

the indicated glucose (black bar) and tolbutamide

(red bar) concentrations. Examples showing a

cells (i) refractory to glucose but responding to

tolbutamide and (ii) stimulated by glucose and

where tolbutamide reduced spike height.

(D) Glucagon secretion from control (left and black;

n = 15–21 from 8mice) and a-V59M islets (right and

red; n = 26 from 12 mice) at the indicated glucose

and tolbutamide concentrations (in mM). ***p <

0.001 versus 1 mM glucose (control islets), yyp <

0.01 versus 1 mM glucose (a-V59M islets), and
zp < 0.05 versus 6 mM glucose in control islets.

(E) Effects of adrenaline (adr.; 5 mM) on glucagon

secretion at 1 mM glucose in wild-type type (left;

n = 6) and a-V59M islets (right; n = 9). *p < 0.05 and

**p < 0.01 versus 1 mM glucose (for comparisons

within strain).

(F) As in (E), but testing the effects of membrane

depolarization produced by increasing extracel-

lular K+ to 70 mM. *p < 0.05 and **p < 0.01 versus

3.6 mM [K+]o (for comparisons within strain) and
zp < 0.05 versus 70 mM [K+]o in control islets.

Error bars indicate SEM. See also Figure S4 and

Table S1.
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active in 1 mM glucose. The other 80%were inactive and hyper-

polarized (�79 ± 3 mV). When glucose was elevated to 15 mM,

two cells depolarized and generated electrical activity, five

were refractory to glucose but responded to tolbutamide, and

one did not respond to either agent (Figure 6C).

Glucagon content was similar in wild-type and a-V59M islets,

averaging 1,589 ± 213 pg/islet and 2,093 ± 207 pg/islet, respec-

tively. Unexpectedly, although 80% of a-V59M a cells were elec-

trically silent at 1 mM glucose, glucagon secretion from a-V59M

islets was not less than from control islets (Figure 6D). Notably,

the inhibitory effect of glucose was halved in a-V59M islets

(�18% versus �35%) whereas tolbutamide was as inhibitory as

in control islets (�30%). In control islets, adrenaline (5 mM) stimu-

lated glucagon secretion �4-fold, but this effect was strongly

reduced ina-V59M islets (Figure6E); theadrenaline-inducedstim-

ulation averaged 7 ± 1 and 24 ± 4 pg/islet/hr (p < 0.05), respec-

tively. By contrast, glucagon secretion evoked by 70 mM K+

was 2.9-fold larger in a-V59M than in wild-type islets (Figure 6F).

A Small Increase in KATP Channel Activity Mimics the
Effects of Type 2 Diabetes on Glucagon Secretion
Type 2 diabetes (T2D) is associated with loss of glucose-induced

suppression of glucagon secretion—indeed, stimulation may

occur instead (Dunning et al., 2005). We evaluated if this distur-

bance is intrinsic to the islet, using islets isolated from T2D and

nondiabetic (ND) organ donors (Figure 7A). In ND islets, glucose

(6 mM) inhibited glucagon secretion by �50%. No inhibition by
Cell M
glucose was seen in T2D islets. In fact, glucose stimulated

glucagon secretion in 5 of the 10 T2D preparations tested but

in only 4 of 46 ND preparations (p < 0.001 by c2). Glucagon con-

tent was 2.5-fold higher in T2D islets than in ND islets (2,457 ±

461 pg/islet versus 985 ± 105 pg/islet; p < 0.01). The relative

effect of glucose on glucagon secretion in ND and T2D islets

is summarized in Figure 7F. On average, glucose inhibited

glucagon secretion by 43%± 6% in ND islets but tended to stim-

ulate glucagon secretion by 15% ± 24% in T2D islets. In the five

preparations where glucose had the least inhibitory effect,

glucose enhanced glucagon secretion by 74% ± 28%. In the re-

maining five preparations, glucose inhibited glucagon secretion

by 44% ± 9% (data not shown).

The inverted response to glucose seen in 50% of T2D islet

preparations could be induced in ND islets by 2 mM diazoxide

(Figure 7B), which increases KATP-channel activity by �80 pS

(Figure 3B). In the presence of diazoxide, 6 mM glucose stimu-

lated rather than inhibited glucagon secretion. Similar results

were observed in mouse islets (data not shown).

A common variant (E23K; rs5219) in KCNJ11 (which encodes

the Kir6.2 subunit of the KATP-channel) is associated with en-

hancedT2D risk (Gloynetal., 2003), increasedKATP-channel activ-

ity (Schwanstecher et al., 2002), and impaired glucose-induced

suppression of glucagon secretion in vivo (Tschritter et al.,

2002). However, we found no difference in the inhibitory effect

of glucoseonglucagonsecretion in vitro inNDhuman isletshomo-

zygous for the high-risk TT or low-risk CC variants (Figure 7C).
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Figure 7. Glucagon Secretion and Type 2 Diabetes

(A) Glucagon secretion at 1 and 6 mM glucose in islets from human organ donors without (ND) and with known T2D normalized to glucagon content. White bars

show glucagon secretion in the five islet preparations where glucose stimulated glucagon release. ***p < 0.001 versus 6 mM glucose; yp < 0.02 versus 1 mM

glucose in five T2D preparations with no glucose-induced inhibition of glucagon secretion.

(B) Glucagon secretion in the absence (black) and presence (red) of 2 mMdiazoxide in ND human islets (n = 7 experiments, using islets from two donors). *p < 0.05

versus 1 mM glucose. yp < 0.05 versus 1 mM glucose in the presence of diazoxide.

(C) Glucagon secretion from islets of nondiabetic human donors homozygous for the high-risk (TT; n = 6) and low-risk (CC; n = 8) Kir6.2 (KCNJ11) alleles. *p < 0.05

and **p < 0.01 versus 1 mM glucose.

(D) Glucagon secretion from mouse islets at 1 mM and 6 mM glucose in the absence (black) and presence (red) of 0.5 mM oligomycin (n = 8–16). Tolbutamide

10 mM was added as indicated. ***p < 0.001 versus 1 mM glucose; yyyp < 0.001 versus 1 mM glucose plus oligomycin; zzp < 0.01 versus 1 mM glucose without

oligomycin; xp < 0.05 versus 1 mM glucose with oligomycin (no tolbutamide); {p < 0.05 versus 1 mM glucose plus oligomycin (with tolbutamide).

(E) Effects of glucose (1 or 6mM) on glucagon secretion normalized to glucagon content in islets from T2D donors in the absence (left) and presence (right; n = 4) of

tolbutamide (10 mM). *p < 0.05 versus 1 mM glucose.

(F) Relative effect (%) of elevating glucose from 1 to 6 mM on glucagon secretion in ND (black) and T2D islets (color coded as in A) and in four T2D preparations in

the presence of tolbutamide (far right). Significance between 1 mM and 6 mM glucose is indicated. ***p < 0.001, **p < 0.02, *p < 0.05.

Error bars indicate SEM. See also Figures S5 and S6 and Table S1.
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Treatment of NDmouse islets with oligomycin, a blocker of the

mitochondrial ATP synthase, converted the inhibitory effect of

glucose on glucagon secretion into stimulation (Figure 7D). The

ability of glucose to stimulate (rather than inhibit) glucagon

secretion in islets treated with oligomycin suggests a regulatory

role of nonmitochondrial metabolism in a cells. Interestingly,

tolbutamide (10 mM) restored normal glucose regulation of glu-

cagon release from oligomycin-treated islets (Figure 7D) without

correcting insulin secretion (data not shown). Collectively, these

data suggest that in 50% of T2D patients, possibly because of

a metabolic disturbance, KATP-channel activity is slightly in-

creased with resultant loss of glucose-induced suppression of

glucagon secretion. If this hypothesis is correct, then it should

be possible to reverse the glucagon secretion defect in T2D

with tolbutamide. Indeed, as shown in Figures 7E and 7F, tolbu-

tamide (10 mM) partially restored glucose inhibition of glucagon

secretion in islets from four T2D organ donors.

DISCUSSION

Our data show that pancreatic a cells respond to glucose with

closure of KATP-channels and suggest that glucose modulates
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KATP-channel activity and glucagon secretion via increased cyto-

plasmic ATP/ADP (Figure 1B). Although we favor the idea that

a cells possess an intrinsic glucose sensing mechanism, we

cannot rule out the involvement of the b cell metabolite GHB

(g-hydroxybutyrate), recently proposed to mediate the inhibitory

effect on glucagon secretion (Li et al., 2013). The mechanism by

which activation of the GHB receptor would inhibit glucagon

secretion has not been established, but our data suggest it

may culminate in KATP-channel closure.

Role of KATP Channels in Regulating a Cell Excitability
In most cells, K+-channel activity dampens cellular excitability by

producing membrane hyperpolarization. Conversely, closure of

K+-channels promotes electrical excitability. The b cell conforms

to this principle: KATP channel closure causes membrane depo-

larization, electrical activity, and insulin secretion. Strikingly, in a

cells, KATP channel closure also causes depolarization but para-

doxically inhibits glucagon secretion. Figure S5 illustrates how

our data suggest this difference between a and b cells arises.

Crucially, in a cells, net KATP-channel activity at 1 mM glucose

(50 pS; Figure 3A) is only 0.5%–1.5% of the 3–9 nS measured

under comparable conditions in b cells (Göpel et al., 2000a;
hors
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Zhang et al., 2008). As a result, a cells are electrically active at

low glucose, stimulating glucagon secretion. Glucose elevation

inhibits remaining KATP channel activity, producing a further de-

polarization that partially inactivates voltage-dependent Na+-

channels and decreases spike height. This reduces P/Q-type

Ca2+-current activation and glucagon exocytosis. Although

glucose also increases action potential frequency (+200%; Fig-

ure 2), this is insufficient to compensate for the reduced exocy-

tosis (�75%; Figure 5A). The combination of these two effects

can be estimated to result in�50% inhibition of glucagon secre-

tion, in good agreement with that observed experimentally

(Figures 1A, 1C, and 1D).

The much larger KATP conductance at 1 mM glucose keeps

b cells hyperpolarized and electrically silent at low glucose, so

that no insulin is secreted. Glucose closes KATP-channels and

thereby triggers depolarization, electrical activity, and insulin

secretion from a very low basal level. As in a cells, there is also

a time-dependent reduction in spike height, but insulin secretion

will remain much greater than in 1 mM glucose even after the

reduction of spike height has occurred.

Our data suggest that tolbutamide and glucose affect electri-

cal activity and glucagon secretion in freshly isolated islets by

identical mechanisms. Very recently, glucose was postulated

to inhibit glucagon secretion by a KATP-channel-independent

(as yet unidentified) mechanism (Cheng-Xue et al., 2013), but

the observation that the glucose-sensitive component of

glucagon secretion was reduced by >85% in islets lacking

KATP-channels argues that this mechanism is of relatively minor

significance.

Resting Activity of KATP Channels Determines Islet
Hormone Release
The model outlined above postulates that the KATP-channel

plays a dual role in the regulation of insulin and glucagon secre-

tion. Depending on the initial activity, channel closure may either

stimulate (b cells) or inhibit (a cells) secretion. Thus, increasing

basal KATP activity in a cells may result in a b cell phenotype—

i.e., no electrical activity or glucagon secretion at 1 mM glucose,

and stimulation of both by glucose. This is precisely what is seen

in the presence of low concentrations of diazoxide (Figure 7B).

Similarly, we observed that glucose stimulates electrical activity

in some a-V59M a cells (Figure 6C). Figure S6 illustrates the rela-

tionship between KATP-channel activity and glucagon secretion.

Cells with little or no expression of mutant channels behave like

control cells (Figure S6A). Cells expressing high levels of mutant

channels (or exposed to high concentrations of diazoxide) will be

permanently hyperpolarized and show no glucagon secretion at

either 1 or 6 mM glucose (Figure S6B). Cells lying between these

extremes will show a spectrum of responses: in some, 6 mM

glucose will stimulate glucagon secretion (Figure S6C); in others,

glucagon release will be high and unaffected by glucose (Fig-

ure S6D). It is of interest that the whole-cell KATP conductance

is �3-fold larger in isolated rat a cells (Olsen et al., 2005) than

that we observe in intact mouse islets. This may account for

the paradoxical glucose-induced stimulation of glucagon secre-

tion observed in single a cells.

Recently it was reported that the impaired counterregulation of

glucagon secretion in diabetic rats could be restored by a

somatostatin receptor antagonist (Yue et al., 2012), suggesting
Cell M
that somatostatin signaling is enhanced in diabetic islets. The

effects of somatostatin on a cells include activation of K+-chan-

nels (GIRK) (Kailey et al., 2013). The resulting increase in GIRK-

channel activity could be envisaged to have the same effect on

glucagon secretion as a low concentration of diazoxide or

weak expression of mutant KATP-channels.

Unexpectedly, glucagon secretion is close to normal in

a-V59M islets, although a cell electrical activity is strongly

affected (Figures 6C and 6D). This is consistent with the mild

metabolic phenotype of a-V59M mice (Figures S4A and S4B)

and suggests that glucagon secretion is upregulated in the

20% of a cells that remain active. However, the response to

adrenaline was reduced by >70% (Figure 6E) in a-V59M islets,

a finding that may explain the impaired insulin tolerance of

a-V59M mice (Figure S4C). The stimulatory effect of adrenaline

on glucagon secretion involves electrical activity and requires

influx of extracellular Ca2+ (De Marinis et al., 2010). Thus, it

seems likely that in a cells expressing mutant KATP-channels,

which are electrically silent, adrenalinewill bewithout stimulatory

effect. Collectively, these findings argue that the subset of a cells

in a-V59M islets that remain electrically active operate close to

their maximum secretory capacity already at 1 mM glucose,

accounting for the smallness of the adrenaline effect. This is

reminiscent of reports of near-normal glucagon secretion in

islets after almost total (98%) ablation of a cells by diphtheria

toxin (Thorel et al., 2011). If this hypothesis is correct, then

glucagon secretion evoked by experimental paradigms that

bypass action potential firing should be enhanced in a-V59M

islets. Indeed, high-[K+]o depolarization (which stimulates secre-

tion in both electrically active and electrically silent a cells)

produces a much larger stimulation of glucagon secretion in

a-V59M than in control islets (Figure 6F).

It may seem surprising that glucose remains capable of inhib-

iting glucagon secretion in a-V59M islets despite no detectable

glucose-induced reduction of KATP-channel activity. However,

for the reasons we outlined above, glucagon secretion will prin-

cipally reflect the activity of the small subset of cells in which

KATP-channel activity is normal. By contrast, measurements of

KATP-channel activity will be dominated by a cells expressing

high levels of mutant KATP channels, which respond poorly to

glucose. Importantly, in some a cells, expression of mutant

KATP-channels is low and total KATP-channel activity onlymargin-

ally increased, just sufficient to suppress electrical activity at

1 mM glucose. However, when glucose is elevated and KATP-

channel activity is reduced, these a cells undergo depolarization

and start firing action potential with resultant stimulation of

glucagon secretion. This opposes the glucose-induced inhibition

in other cells and explains the reduced glucose-induced inhibi-

tion of glucagon secretion in a-V59M mutant islets.

In general, the subtle impact of targeting the Kir6.2-V59M

mutation to the a cell on glucagon secretion suggests that

enhanced a cell KATP-channel activity is unlikely to affect

glucagon secretion in patients with neonatal diabetes due to

gain-of-function KATP-channel mutations.

Implications for Type 2 Diabetes
In T2D, glucagon secretion in vivo is often stimulated rather than

inhibited during hyperglycemia (Dunning et al., 2005). We

observed a similar abnormality in 50% of islet preparations
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from T2D organ donors (Figure 7A); the remaining preparations

exhibited normal glucose regulation. Thus, T2D islets are hetero-

geneous with respect to the dysregulation of glucagon secretion,

in agreement with a recent report (Li et al., 2013). Intriguingly, the

inverted response to glucose seen in some T2D islet prepara-

tions can be mimicked in ND islets by a small increase (0.5%)

in KATP-channel activity produced by diazoxide (Figure 7B).

Similarly, metabolic inhibition, which activates KATP-channels,

affects glucagon secretion in the same way as T2D (Figure 7D).

This suggests that T2D may be associated with increased

KATP-channel activity, possibly as a consequence of impaired

islet metabolism (Doliba et al., 2012). It is notable that glucagon

secretion in the presence of diazoxide or oligomycin shows not

only an inverted glucose response but also reduced secretion

at 1 mM glucose. This is reminiscent of the impaired counterre-

gulation that is a feature of longstanding T2D, raising the

interesting possibility that T2D may involve a progressive and

time-dependent increase in K+-channel activity and deteriora-

tion of the metabolic regulation of glucagon secretion. It is there-

fore of interest that a low concentration of the KATP-channel

blocker tolbutamide restores normal glucose regulation of

glucagon secretion in metabolically compromised islets (Fig-

ure 7D) and improves it in islets from donors with T2D (Figures

7E and 7F). Possibly, low-dose sulfonylurea (much less than

required to stimulate insulin secretion) may be a useful addition

to insulin therapy. Finally, our data suggest that a single cellular

disturbance (impaired glucosemetabolism and ATP production),

via increased KATP-channel activity, may explain the trio of

hormone secretion defects associated with T2D: impaired

glucose-induced insulin secretion, inverted glucose regulation

of glucagon secretion, and defective counterregulation.

EXPERIMENTAL PROCEDURES

All experiments were conducted in accordance with the UK Animals Scientific

Procedures Act (1986) and University of Oxford ethical guidelines.

Media

Media used are specified in Table S1.

Animals and Generation of a-V59M Mice

Most experiments were performed on islets isolated from NMRI mice

obtained from a commercial supplier. Mice expressing Kir6.2-V59M in a

cells (a-V59M mice) were generated using a Cre-lox approach (Clark et al.,

2010).

Human Islets

Human islets (obtained with ethical approval and clinical consent) were iso-

lated from pancreases of 46 nondiabetic donors and 10 donors with T2D.

Genotyping of Human Islet DNA

The rs5219 variant was genotyped using an allelic discrimination assay-by-

design method on an ABI 7900 analyzer (Applied Biosystems).

Hormone Release Measurements

Measurements of insulin and glucagon secretion were performed using the

in situ pancreas perfusion or static incubations of isolated islets.

Electrophysiology

All electrophysiological measurements were performed at +34�C on a cells

within intact islets (from NMRI or a-V59M and control mice).

For themembrane potential andwhole-cell KATP-current recordings (Figures

2A–2C), the perforated patch technique was employed as reported previously
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(De Marinis et al., 2010). The pipette solution consisted of IC1, and the bath

contained EC2.

Exocytosis was measured as increases in membrane capacitance in a cells

in intact islets as described previously (Göpel et al., 2004) using pipette

medium IC2 and extracellular medium EC3. The impact of glucose on

exocytosis was tested using the perforated patch technique using pipette

medium IC3.

Voltage-dependent inactivation of the Na+-current was evaluated using the

standard whole-cell technique and a two-pulse protocol using intra- and extra-

cellular media IC4 and EC4, respectively.

ATP Imaging

The ATP/ADP sensor Perceval (Berg et al., 2009) was used as previously

described (Tarasov et al., 2012).

Identification of a Cells

The identity of the a cells was established either by (1) immunocytochemistry

following injection of the cell with biocytin (0.5 mg/ml) via the recording elec-

trode (Figures S2C and S2D) or (2), in the case of a-V59M and control a cells,

by tdRFP fluorescence. In perforated patchmeasurements of electrical activity

and KATP-channel activity in NMRI islets (Figures 2–4), it was not always

possible to identify the cell by immunocytochemistry because the cell

detached when retracting the recording electrode. In these cases, a cells

were identified by their spontaneous action potential firing at 1 mM glucose

(Göpel et al., 2000a).

Statistical Analysis

Details on the analysis of the electrophysiological data are given in the Supple-

mental Information. Data are presented as man values ± SEM of the indicated

number of experiments (n). Error bars in figures represent SEM. Statistical sig-

nificances were, unless otherwise indicated, evaluated using Student’s t test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one table and can be found with this article at http://dx.doi.

org/10.1016/j.cmet.2013.10.014.

ACKNOWLEDGMENTS

We thank D. Wiggins for technical support and the animal house staff for ani-

mal care. This work was supported by the Wellcome Trust, the Medical

Research Council, Diabetes UK, the European Union, and the NIHR Oxford

Biomedical Research Centre. We dedicate this paper to our colleague Mat-

thias Braun, who died before the paper was published.

Received: April 29, 2013

Revised: July 5, 2013

Accepted: October 31, 2013

Published: December 3, 2013

REFERENCES
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