
Biophysical Journal Volume 105 September 2013 1133–1142 1133
A Stochastic Model of Calcium Puffs Based on Single-Channel Data
Pengxing Cao,† Graham Donovan,† Martin Falcke,‡ and James Sneyd†*
†Department of Mathematics, The University of Auckland, Auckland, New Zealand; and ‡Mathematical Cell Physiology, Max Delbrück Center
for Molecular Medicine, Berlin, Germany
ABSTRACT Calcium puffs are local transient Ca2þ releases from internal Ca2þ stores such as the endoplasmic reticulum or
the sarcoplasmic reticulum. Such release occurs through a cluster of inositol 1,4,5-trisphosphate receptors (IP3Rs). Based on
the IP3R model (which is determined by fitting to stationary single-channel data) and nonstationary single-channel data, we
construct a new IP3R model that includes time-dependent rates of mode switches. A point-source model of Ca2þ puffs is
then constructed based on the new IP3R model and is solved by a hybrid Gillespie method with adaptive timing. Model results
show that a relatively slow recovery of an IP3R from Ca2þ inhibition is necessary to reproduce most of the experimental out-
comes, especially the nonexponential interpuff interval distributions. The number of receptors in a cluster could be severely
underestimated when the recovery is sufficiently slow. Furthermore, we find that, as the number of IP3Rs increases, the average
duration of puffs initially increases but then becomes saturated, whereas the average decay time keeps increasing linearly. This
gives rise to the observed asymmetric puff shape.
INTRODUCTION
Intracellular Ca2þ signals, such as Ca2þ oscillations or
waves, play a significant role in regulating many cellular
activities, such as synaptic transmission, muscle contrac-
tion, saliva secretion, and cell fertilization and division
(1–4). In many cell types, Ca2þ waves and oscillations are
the result of Ca2þ liberation through clustered inositol
1,4,5-trisphosphate receptors (IP3Rs) located in the mem-
brane of the endoplasmic reticulum (ER) or the sarco-
plasmic reticulum (SR).

Ca2þ signaling is organized in a hierarchical manner (5).
At the lowest level, stochastic release of Ca2þ through a sin-
gle IP3R results in a small localized increase in cytoplasmic
Ca2þ concentration ([Ca2þ]), called a Ca2þ ‘‘blip.’’ Given
the tightly clustered arrangement of IP3R, a Ca2þ blip can
stimulate the release of additional Ca2þ through neigh-
boring IP3Rs to cause release from a cluster of IP3Rs, giving
a larger, but still localized, increase in [Ca2þ], called a Ca2þ

‘‘puff.’’ At the highest level of organization, if enough puffs
are generated, they can form a propagating wave of
increased [Ca2þ] across an entire cell.

Thus, a detailed study of Ca2þ puffs is necessary for
understanding the dynamics of Ca2þ waves. Furthermore,
an understanding of Ca2þ puffs relies on an accurate model
of the IP3R, a model that can generate the correct statistical
properties of the openings and closings of a single IP3R.

Until relatively recently, such a model was not available.
Early IP3R models, such as the DeYoung–Keizer model (6)
or the Atri model (7), reproduced such approximate statis-
tics as the mean open time, or the steady-state open proba-
bility, but were based either on steady-state data alone or on
single-channel data from lipid bilayers (8). In the years
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following those two initial models, many attempts were
made to improve the IP3R models, including such features
as time-dependent IP3R inactivation and multiple inacti-
vated or inhibited states (9,10).

However, the field of IP3R modeling was dramatically
changed by the appearance of new data, to our knowledge,
of single-channel openings and closings from IP3R in vivo
(11–13). For the first time, modelers were able to construct
models of a single IP3R that could reproduce the correct
statistical single-channel behavior in vivo (14–16). To our
knowledge, these new data show that a single IP3R behaves
in ways that cannot be reproduced by the older models. In
particular, it appears that IP3Rs exist in different modes,
each of which has a different open probability, and that acti-
vation of the IP3R is caused by a switch from one mode to
another.

There are a number of studies of Ca2þ puffs already in the
literature (17–27). Without exception, they are all based on
older IP3R models, and thus fail to capture important aspects
of the stationary behavior of a single IP3R. Hence, in light of
recent data and models, it is necessary to reexamine the
question of Ca2þ puff formation and how the hierarchy of
Ca2þ signaling is constructed.

In particular, we wish to address some outstanding ques-
tions in the field. There are a number of such questions, but
the ones we address here are as follows:

� What is the mechanism of puff termination? Do the IP3Rs
close due to inhibition by Ca2þ, by stochastic attrition, or
by some other inherent process?

� What determines the distribution of interpuff intervals?
Thurley et al. (28) performed a detailed analysis of inter-
puff intervals (IPI), that is, the waiting time between suc-
cessive puffs, and found that some puff sites exhibit
exponential IPI distributions but most sites have nonexpo-
nential distributions with a maximum at times larger than
http://dx.doi.org/10.1016/j.bpj.2013.07.034
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0 s. This shows the stochastic occurrence of puffs is usu-
ally but not necessarily influenced by an inhibitory effect
from the previous puffs, implying that the time constant
of the inhibitory effect could be different for different
puff sites. What kind of mechanism can generate both
exponential and nonexponential IPI distributions? Is it
possible that the mechanism is intrinsic to the IP3R
instead of local depletion of the ER/SR, which has been
shown to be unlikely by Ullah et al. (27)?

The most recent IP3R model is due to Siekmann et al.
(16). The advantage of the Siekmann model is that its topo-
logical structure and transition rates are determined by Mar-
kov chain Monte Carlo (MCMC) fitting (29) directly to the
stationary single-channel current traces instead of fitting
only to statistical distributions. However, the Siekmann
model fails to describe some earlier findings of transient be-
haviors shown in Mak et al. (13). To overcome this problem,
we develop a new IP3R model with time-dependent state
transitions by incorporating the recent nonstationary sin-
gle-channel data from Mak et al. into the Siekmann model.
Both of these data sets are measured from intact cells, and
thus represent a significant improvement on the data used
to construct previous models of the IP3R.
THE MODEL

The Siekmann IP3R model

The Siekmann IP3R model is a six-state Markov model
(Fig. 1) comprising two modes, park and drive, each of
which has multiple closed and open states. When in park
mode, the IP3R is mostly closed. When in drive mode, the
IP3R is mostly open.
FIGURE 1 The structure of the Siekmann IP3R model. C represents

closed state and O is open state; qs are transition rates connecting two adja-

cent states and indicating how fast an IP3R switches between the two states.

The entire structure comprises two parts: One is the high-activity part or

drive mode, containing three closed states C1, C2, C3, and one open state

O6. The other is the low-activity part or park mode, which includes one

closed state C4 and one open state O5.
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This model can be applied to two different isoforms of the
IP3R, IP3R-1 and IP3R-2, by fitting the model to the corre-
sponding single-channel data. Here, we focus on IP3R-1.

All the transition rates are constants except q24 and q42,
and are given in Table S1 in the Supporting Material. In
park mode, because q54 is ~300 times greater than q45, the
steady-state open probability of IP3R is almost zero.
Conversely, in drive mode, the steady-state open probability
is around 70% because of the fast transition pair of q26 and
q62. The transitions q24 and q42 connecting the park and
drive modes determine the open probability of the IP3R
and are dependent on [Ca2þ], [IP3], and [ATP] (12). For
given [ATP] and [IP3], steady-state values of q24 and q42
are computed for different [Ca2þ] (see symbols in
Fig. S1). The stationary data were measured only at
0.1 mM and 5 mM [ATP]s (12,16). We use 0.1 mM [ATP]
because it is closer to the [ATP] of 0.5 mM used for obtain-
ing the dynamic data of Mak et al. (13). Investigating the
effect of varying [ATP] needs more data and is beyond
our current scope.
Incorporation of nonstationary data

Although, in theory, the openings and closing of the IP3R (in
a stationary state) will contain enough information to char-
acterize completely the rate constants in the Markov model,
and thus determine the nonstationary behavior as well, in
practice this is not the case here. Our stationary data,
although sufficient to characterize the stationary behavior
of the IP3R, do not contain enough information to also deter-
mine the transient behavior of the receptor (see Discussion).

We get around this difficulty by using additional data
on transient responses and incorporate these data in a heu-
ristic fashion rather than by the addition of states to the
Markov model. Mak et al. (13) measured dynamic proper-
ties of the response of the IP3R to step changes in [Ca2þ]
or [IP3], and we modify the Siekmann model to incorporate
these dynamic data. We accomplish this by assuming that
q24 and q42 are controlled by gating variables that evolve
on different timescales, which can be determined from
the data of Mak et al. without changing their steady-state
properties, which are determined by the data of Siekmann
et al. (16).

Incorporation of these dynamic properties does not
change the stationary behavior of the IP3R model. Hence,
the fact that q24 and q42 are saturating functions of [Ca2þ],
which was an important feature of the Siekmann model, is
preserved in our new model.

It turns out that these dynamic data are in fact crucial for
the proper behavior of puffs in the model; the original Siek-
mann model does not provide an adequate description of
puff behavior.

It is important to note that this modification of the Siek-
mann model is not based on rigorous MCMC fits to the
data of Mak et al. (13). Instead, we choose the gating
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variables so as to give approximately correct distributions
for the response to step changes of [Ca2þ]. It is left for future
work to do rigorous MCMC fits to both the steady-state and
dynamic data simultaneously. Full details of the new model
are given in the Supporting Material.

The transition rates q24 and q42 are given by

q24 ¼ a24 þ V24ð1� m24h24Þ; (1)

q42 ¼ a42 þ V42m42h42; (2)
where m24, h24, m42, and h42 are the gating variables that
determine the values of q24 and q42; a24, a42, V24, and V42

are either functions of [IP3] or constants, and are given in
the Supporting Material.

We assume they obey the following differential
equations:

dG

dt
¼ lGðGN � GÞ; ðG ¼ m24; h24;m42; h42Þ; (3)

where GN is the equilibrium and lG is the rate at which the
equilibrium is approached. The GN are functions of [Ca2þ]
and are given by the following:

m24N ¼ cn24

cn24 þ kn2424

; (4)

kn�24

�24
h24N ¼
cn�24 þ kn�24

�24

; (5)

cn42

m42N ¼

cn42 þ kn4242

; (6)

kn�42

�42
h42N ¼
cn�42 þ kn�42

�42

; (7)

where the ns and ks are functions of [IP3] and are given in
the Supporting Material. We emphasize that there are purely
heuristic fits, with no biophysical basis. Hence, we have

q24N ¼ a24 þ V24ð1� m24Nh24NÞ; (8)

q42N ¼ a42 þ V42m42Nh42N ; (9)
which are used to fit to stationary single channel data from
(16). Results are shown in Fig. S1 using a set of parameters
given in the Supporting Material. For the case of 10 mM IP3,
the MCMC method fails to work out convergent distribu-
tions of qs when [Ca2þ] is between 1 and ~50 mM, as the
receptor is almost always in the drive mode so that very
few mode switches can be detected (16). Therefore, for
this range, we assume a saturated large q42 and a saturated
small q24.
The rates lm24
, lh24 , and lm42

are constant, and are given in
the Supporting Material. However, lh24 is not well deter-
mined by the data of Mak et al. (13). This could be due to
the simplicity of the model wherein only two modes are
considered. On the other hand, it is also possible that
some unusual modes mislead the estimation of lh24 , as the
experiments in Mak et al. use a wider range of [Ca2þ]
than that in Wagner and Yule (12) and Siekmann et al.
(16), which constrain it to a physiological range. Because
only two modes are unambiguously found by the MCMC
methods (for the physiological range of [Ca2þ]), we will
not add any more states or modes to the Siekmann model.
Instead, we shall estimate lh24 from puff data in Smith and
Parker (30), in which it is found that most puffs exhibit
fast increases from baseline to the peak, with sharp peaks
instead of plateaus. This reveals that IP3Rs are inhibited
by high [Ca2þ] very quickly and are hard to reopen imme-
diately, telling us that lh24 is relatively small for low
[Ca2þ] but relatively large for high [Ca2þ]. Therefore, we
model lh24 by the following:

lh42 ¼ ah42 þ
Vh42c

7

c7 þ 207
: (10)

This is merely a heuristic way of modeling a stepwise rate
that is low at low [Ca2þ] and high at high [Ca2þ]. Because
we have no information about the exact concentration at
which this transition occurs, we arbitrarily assume it to
occur at 20 mM. In addition, we choose Vh42 ¼ 100 s�1 to
represent fast inhibition by Ca2þ. Because ah42 dominates
the recovery rate of an IP3R inhibited by Ca2þ, and in
turn has a significant effect on IPIs, we use it as a parameter
instead of a constant to investigate how it alters the IPI
distributions.
Modeling Ca2D puffs using two different Ca2D

concentrations

Rüdiger et al. (25) used two different [Ca2þ]s to model
puffs: a high constant [Ca2þ] at each open channel mouth
and a low average [Ca2þ] for all the closed channels. This
method ignores Ca2þ diffusion and the spatial distribution
of the IP3Rs, and therefore dramatically increases the
computational efficiency. Here, we apply the same idea to
build our puff model. A detailed justification of this assump-
tion is given in Rüdiger et al. (24,25) and Nguyen et al. (26).

Let c be the average low [Ca2þ] and let cm be the [Ca2þ]
at the IP3R mouth. Before formulating the model, some
assumptions need to be made:

� Ca2þ fluxes through the plasma membrane do not influ-
ence Ca2þ puffs.

� The rate of Ca2þ release through single IP3R is a constant.
In other words, there is sufficiently high [Ca2þ] in the
ER/SR to keep a nearly constant flux. Although local
Biophysical Journal 105(5) 1133–1142
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depletion of the ER/SR is possible for some types of cells,
it should not be the case for puffs observed in Dickinson
et al. (18) and Smith and Parker (30), as [Ca2þ] can be
kept at an elevated level when the channel is sustainedly
open and the stepwise increments of those puffs do not
get progressively smaller.

� The endogenous fast buffers are immobile, unsaturated,
and in quasi-steady state. We have shown that relaxation
of these assumptions does not qualitatively change the
puff statistics, especially in some important aspects
such as the IPI distribution and puff duration distribution
(results not shown).

� The limited effect of endogenous slow buffers on puff
dynamics is ignored. We also ignore the effect of
EGTA, a slow buffer used in the experiments to isolate
different puff sites by decreasing the effective Ca2þ diffu-
sivity (30).

With these assumptions, the differential equations gov-
erning the dynamics of c are

dc

dt
¼ JincreaseNo þ Jleak � Jdecrease

� kon
�
Bfluo4 � bfluo4

�
cþ koffbfluo4;

(11)

dbfluo4 � �

dt

¼ kon Bfluo4 � bfluo4 c� koffbfluo4: (12)

Jincrease is the Ca2þ flux contributing to the increase of c.
Jdecrease represents the flux (mainly via diffusion and sarco-
plasmic/endoplasmic reticulum Ca2þ-ATPase ) removing
Ca2þ from the puff site and is modeled by Vdc=ðcþ KdÞ,
where Vd and Kd are constants. In addition, a linear model
of Jdecrease with an appropriate conductance can also be
used (result not shown). Jleak is Ca2þ leakage from the
ER/SR, and is necessary for establishing a stable resting
cytosolic [Ca2þ]. A Ca2þ dye (fluo-4) is added to the model,
as all the experimental statistical analyses are done by using
the fluorescence ratio instead of [Ca2þ]. Bfluo4 and bfluo4
represent the total fluo-4 concentration and Ca2þ-bound
fluo-4 concentration, respectively.

No denotes the number of open IP3Rs and satisfies
0%No%NIPR (total number of functional IP3Rs). It is
computed by direct counting of the IP3R states, and then
is used to calculate c by integrating Eq. 11. To determine
the state of each IP3R, we use cm, which is modeled by

cm ¼ cþ chd; (13)

where d indicates whether the IP3R is open (d¼ 1) or closed
(d¼ 0). ch is the constant high [Ca

2þ] at the receptor mouth.
d is a stochastic variable that depends on cm via the stochas-
tic solution of the IP3R model. All the parameter values are
given in Table S2.
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Numerical methods

We solve Eqs. 11 and 12 in a deterministic way but apply a
stochastic solver to the IP3R dynamics. Eqs. 11 and 12 are
solved by the fourth-order Runge–Kutta method. To solve
the stochastic IP3R model, a hybrid Gillespie method with
adaptive timing is used to take into account the Ca2þ depen-
dencies of transitions q24 and q42 (31). We choose a
maximum time step size of 10�4 s to guarantee the accuracy.
In addition, the four differential equations in Eq. 3 are
solved by the fourth-order Runge–Kutta method as well.
All the numerical results are obtained using the software
MATLAB (The MathWorks, Natick, MA).
RESULTS

We focus on investigating how the puff statistics are influ-
enced by the following three parameters:

� [IP3] (p),
� recovery rate of an IP3R from Ca2þ inhibition ðah24Þ, and
� the number of IP3Rs at a puff site ðNIPRÞ
as they are found experimentally to be important to the puff
dynamics.
Calcium puffs

Fig. 2 shows an example of simulated puff traces. F=F0

represents the ratio of bfluo4 to its resting value. We can
see that a large puff usually needs openings of sufficiently
many receptors. To investigate how puffs are initiated and
terminated, we rescale the puff amplitude and plot it,
together with m42 and h42, in Fig. 3 (m42 and h42 are calcu-
lated by averaging over all the IP3Rs). In the lower panel
of Fig. 3, we can see a ‘‘trigger’’ event at the beginning
of the puff, which leads to a fast upstroke of the activation
variable m42, which then further increases the open proba-
bility of IP3Rs. This trigger event has been found experi-
mentally (32). Termination of Ca2þ release is achieved
when h42 gets close to zero. During the falling phase,
open IP3Rs close randomly and independently with an
average open time determined by m24 and h24 (results
not shown), as they are hard to open again when h42 is
very small. The slow recovery of h42, which is due to
the small value of ah42 used, influences the average IPI
and the next puff amplitude. This is investigated in the
Supporting Material.

We can see in Fig. 2 that there are many small blips and
other noise in the puff trace. To eliminate this noise, we
choose puffs with amplitude larger than 3, that is,
ðF� F0Þ=F0>3. The choice of this value is based on the
simulated blip amplitude distribution and the mean blip
amplitude of 1.6. Details are given in the Supporting
Material.



FIGURE 2 An example of simulation results of calcium puff traces. The top panel shows an example of the [Ca2þ] trace (variable c in Eq. 11). F=F0

represents the ratio of bfluo4 to its resting value. We set NIPR ¼ 10, p ¼ 0:2 mM, and ah42 ¼ 1 s�1.
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Dependence of IPI distribution on ah42

Experimental IPI distributions exhibit two different shapes,
exponential and nonexponential (28). The former indicates
that there is no (or very little) refractoriness during the
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FIGURE 3 A close-up of some puffs in Fig. 2. The lower panel is an

enlargement of the rectangular portion of the upper panel. The ratio F=F0

(solid curve) is rescaled into the interval [0,1] for ease of comparison

with m42 and h42.
IPIs, whereas the latter implies an apparent refractory phase
after each puff. A formula that gives excellent fits to exper-
imental IPI distributions has been proposed by Thurley et al.
(28) as follows:

PIPI ¼ l
�
1� e�xt

�
e½�ltþlð1�e�xtÞ=x�; (14)

where l is the puff rate, a measure of the typical IPI (similar
to average puff frequency), and x is the recovery rate. This
formula is derived based on the assumption that there is a
refractory period after a puff. If x[l, Eq. 14 can be
reduced to a simple exponential distribution,

PIPI ¼ le�lt: (15)

Refractoriness of simulated puffs comes from the slow
recovery of h42 from inhibition by Ca2þ. This implies that
varying ah42 could change the duration of refractoriness
and, in turn, change the shape of IPI distribution. This is
confirmed by Fig. 4, which shows that increasing ah42
from 0.1 s�1 to 5 s�1 leads to a change of the simulated
IPI distribution from nonexponential to exponential. The
details of the fits shown in Fig. 4 are given in Fig. S5, in
which we can see that values for l vary from 0.1 s�1 to
0.5 s�1 and values for x vary from 0.5 s�1 to 2.2 s�1. These
results are quantitatively consistent with the experimental
ranges of l and x found in SH-SY5Y cells, that from
0.18 s�1 to 0.5 s�1 for l and from 0.4 s�1 to 4 s�1 for x.
Moreover, it is also found that in HEK 293 cells, values
for l and x are in the ranges from 0.5 s�1 to 3 s�1 and
from 1 s�1 to 90 s�1, respectively (5,28).
Biophysical Journal 105(5) 1133–1142
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Coefficient of variation is independent of [IP3]

For a puff site, the IPI standard deviation has been shown to
be linearly related to the IPI mean, regardless of [IP3] (28).
A qualitatively consistent result occurs in the model (Fig. 5),
in which we plot the IPI standard deviation against the IPI
mean. The coefficient of variation (CV) is defined as the ra-
tio of the standard deviation to the mean of IPIs. When
CV ¼ 1, the IPI is a homogeneous Poisson process (the
dashed line in Fig. 5), whereas when CV ¼ 0, the IPI is a
constant, giving an entirely periodic series of puffs. Other
values of the CV between 0 and 1 indicate an inhomoge-
neous Poisson process with refractoriness. In our model,
the CV is 0.79, which is in reasonable agreement with exper-
imental values (that vary from 0.42 to 0.94 for different
types of cells (28)). Therefore, the model result not only
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FIGURE 5 Relation of standard deviation and mean of IPI is linear and

independent of [IP3]. Six [IP3]s, 0.05, 0.1, 0.15, 0.2, 0.3, and 0.5 (mM),

are used to generate the six points (from right to left), respectively. The

points are expressed as mean 5 SE and are fit by a solid line with slope

of 0.79 compared with the dashed line of CV ¼ 1. We set NIPR ¼ 10 and

ah42 ¼ 1 s�1.
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confirms the nonexponential IPI distribution in Fig. 4, but
also implies that a relatively slow recovery of IP3R from
Ca2þ inhibition could be a key mechanism of modulating
IPI. We also find that changing the value of ah42 can vary
the CV between 0.65 and 0.95. The relation is not very clear,
as ah42 can also change some other statistics, such as average
IPI and puff amplitude, which could in turn influence the
CV. This is left for future work.
Dependence of IPI on the number of IP3Rs at a
puff site

It has been found experimentally and by model simulations
that the IPI mean is a hyperbolic function of NIPR, the num-
ber of IP3Rs at a puff site (18). This implies a linear relation-
ship between the IPI mean and 1=NIPR. This relationship is
reproduced by our model (Fig. 6). Moreover, we find that
varying [IP3] changes the slope of the linear fit, but has little
effect on the linearity of the relationship. We explain this as
follows. If Po is the probability per unit time for opening of a
single channel at baseline, then NIPRPo is the probability per
unit time for opening of one of the NIPR channels. Hence, the
average IPI is proportional to 1=NIPRPo. Because a saturated
low calcium sensitivity near the baseline of 0.1 mM is
assumed in the IP3R model (Fig. S1), Po is nearly a constant
for [Ca2þ] close to baseline, which implies that the average
IPI is simply proportional to 1=NIPR.

For small numbers of IP3R, the model (Fig. 6) has longer
IPIs than does the data (see Fig. 4E in Dickinson et al. (18)).
There could be two reasons for this. One is that the applied
[IP3] is different. The other is that the cluster size estimated
in the experiments is severely underestimated because of a
very slow recovery rate (Fig. S6). For either of these rea-
sons, the discrepancy can be easily fixed by changing model
parameters.
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NIPRR12. The average puff amplitude is expressed as mean 5 SD. We

set p ¼ 0:1 mM and ah42 ¼ 1 s�1.
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The relationship between IPI and latency

Puff latency is defined to be the waiting time from addition
of IP3 to the occurrence of the first puff (18). The biggest
difference between IPI and latency is that the former could
contain some inhibition effect from the preceding puff,
whereas the latter definitely does not contain such an effect.
Similar to Fig. 4D in Dickinson et al. (18), we plot the IPI
mean and latency for different NIPRs (Fig. 7), and find that
they are linearly related with a slope of ~1.2 and a positive
IPI-axis intercept of ~0.35 s (which are close to the slope
of 1.1 and intercept of 0.35 s found experimentally). The
intercept gives the average effective time of the inhibitory
effect of the preceding puffs on the next IPI. The quantita-
tive agreement between model results and experimental
data shows that the preceding puff has a clear inhibitory
effect on the occurrence of the next puff. Moreover, by
investigating the dependence of puff amplitude on the pre-
ceding IPI (see the Supporting Material), we find that the
inhibitory effect is time-dependent, which is also found
experimentally (33).
Dependence of puff amplitude on number of
IP3Rs at a puff site

Fig. 8 shows the dependence of average puff amplitude and
the largest puff amplitude (both normalized to mean blip
amplitude) on the number of IP3Rs at a puff site ðNIPRÞ.
Both amplitudes increase as NIPR increases. The average
amplitude is linearly related to NIPR for NIPR<12. However,
when NIPRR12, it behaves like the square root of NIPR.
Because our model assumes that the rate of Ca2þ release
through a single channel is a constant, we rule out ER/SR
depletion as a reason for the nonlinearity. To check whether
it is due to the nonlinear relation between Ca2þ and buffer,
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FIGURE 7 IPI is linearly dependent on puff latency. NIPR is chosen to be

6 ~ 15, 20, and 25. Only are the points of 6 and 25 IP3R channels labeled.

Small values of NIPR, such as 3 ~ 5, are excluded in the figure for a better

view because they will not change the linearity but significantly increase the

scales of axes. Results are plotted as mean 5 SE and fit by the solid line.

The dashed line indicates where IPI is equal to latency. We set p ¼ 0:2

mM and ah42 ¼ 1 s�1.
we plot the puff [Ca2þ] amplitude instead of the Ca2þ-
bound buffer (Fig. S9) and find that the average puff
[Ca2þ] amplitude is linearly dependent on NIPR. This result
shows that the nonlinear relation of puff amplitude and NIPR

in Fig. 8 is caused by using the Ca2þ buffer to indicate puff
amplitude. Although no severe buffer saturation is observed,
the nonlinearity of the buffering indicator inevitably affects
the observed results, as the height of [Ca2þ] for large puffs
can easily become higher than the dissociation constant of
fluo-4 of 2 mM.

Another important relationship obtained by combining
Fig. 8 and Fig. S9 is that the average puff amplitude is non-
linearly related to the average maximum Ca2þ current in a
similar way, as maximum Ca2þ current can be roughly
assumed to be proportional to puff [Ca2þ] amplitude.
Dependence of puff duration on the number of
IP3Rs at a puff site

Experimental puffs usually exhibit a rapid increase to the
peak but a relatively slow return to baseline (30). This prop-
erty is also seen in the model (Fig. 9). As NIPR increases, the
average rise time gets saturated to ~130 ms, whereas the
average decay time keeps increasing linearly. This gives
rise to an asymmetric puff shape for larger NIPR. However,
for smaller NIPR, the two times are close to each other, which
indicates that small puffs are relatively symmetric. The
linear dependence of average decay time on the number of
receptors is primarily a consequence of the fact that the
IP3Rs close randomly and independently (30). The satura-
tion of rise time could be caused by two reasons. One is
the puff amplitude saturation observed in Fig. 8. The other
is that sufficient high average [Ca2þ] (c) during Ca2þ release
through a few initially activated channels prevents other
Biophysical Journal 105(5) 1133–1142
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closed channels from opening. The former seems not to be
very convincing, as the amplitude saturation occurs when
NIPR ¼ 12, whereas the rise time saturation takes place
when NIPR is only ~8. Hence, the latter is preferred to be a
major reason for the phenomenon.
DISCUSSION

Ca2þ puffs are local transient Ca2þ release events from in-
ternal Ca2þ stores such as the ER or the SR through a clus-
ter of open IP3Rs. For a better understanding of the
mechanisms underlying this physiological phenomenon,
we first construct a new mathematical model of the IP3R,
based mostly on the Siekmann IP3R model (16), but also
incorporating the time-dependent data of Mak et al. (13).
By construction, we know that our new model fits the sta-
tionary data equally as well as the original Siekmann
model. It merely has additional time-dependencies to allow
for the correct transient behavior. We then show how our
model qualitatively and quantitatively reproduces experi-
mentally observed puff statistics. The most important
feature of our model is that the IP3R can recover from inhi-
bition by Ca2þ only on a relatively slow timescale. This
timescale cannot be identified from the stationary data of
Siekmann et al., but depends on the nonstationary data of
Mak et al.

This is an important point worth emphasizing. We know
(theoretically) that a sufficiently long experimental trace
will contain information about the behavior of the IP3R on
both long and short timescales, and thus will be sufficient
to determine both steady-state and transient behavior. How-
ever, the reality is more complex. In practice, such long
traces are not obtainable, and, even if they were, fitting to
the data would require unrealistically large amounts of com-
puter time because of the rarity of the slow transitions. Thus,
fitting the stationary data alone will determine only some of
the important receptor properties.
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Interestingly, it turns out that the slow processes are vital
for controlling the inhibition of the IP3R; thus, puffs do not
occur often enough (in the stationary state) to be character-
ized by stationary data using our methods.

There are thus two options. The first option would be to
incorporate nonstationary data (i.e., the responses to steps
of [IP3] and/or [Ca2þ]) into the full fitting process, and
thereby construct an extended Markov model, with more
than the present 6 states. One would then continue to include
additional states until the MCMC fits to the data indicated
that additional states were unnecessary or that the additional
rate constants could not be unambiguously determined.
Ullah et al. (15) took an approach similar to this (although
their method of fitting to data is different from that of Siek-
mann et al. (16)), constructing a Markov model with 12
states. However, the model of Ullah et al. cannot success-
fully reproduce calcium puffs. This failure is primarily
due to lack of an effective transition from the inactivated
state to the resting state, without which transition the recep-
tors lose the excitability that is crucial for generating repet-
itive puffs and waves.

The second option, which we took, is to construct a
hybrid model, partaking both of the nature of Markov
models (such as the De Young–Keizer model) and of heuris-
tic models (such as the Atri model). This has the advantage
that we need not introduce any additional states into the
Markov model, but it has the disadvantage that the time-
dependent transitions we introduce have no biophysical
basis. However, we have lost less than one might think. It
is highly unlikely that an actual IP3R exists in exactly 6
states (or even 60 states), with well-defined transitions
between them. In general, it is thus more accurate to inter-
pret Markov models as useful descriptions rather than as
exact biophysical reality, in which case a hybrid Markov/
heuristic model is just as useful.

Finally, we note that although the new model still does
not reproduce every aspect of the nonstationary data (i.e.,
it does not reproduce multimodal waiting time distribu-
tions), it still captures the most important features of the
dynamic data by reproducing the most dominant modes of
those distributions.

The hybrid nature of our model raises some interesting
questions. Which part of our model is primarily responsible
for the puff dynamics? We know that the Markov model,
with time-independent rate constants, does not provide an
adequate description of puff dynamics. This is why we
introduced the heuristic time dependencies in the first place.
However, can the Markov model skeleton be replaced by a
simpler model (most likely with the incorrect stationary
behavior) as long as the heuristic time dependencies are
retained?

We can answer only some of these questions. For
example, one implication of Fig. 4 is that the original Siek-
mann IP3R model (that fits only to stationary single-channel
data) cannot be used to reproduce the nonexponential IPI
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distributions. In Eq. 3, if lG is sufficiently larger than
the average change velocity of c, G can be reasonably
assumed to follow its equilibrium at any time. Thus, m42,
m24, and h24 evolve nearly as their equilibria, whereas h42
evolves on a much slower timescale indicated by a small
value of ah42 . As ah42 increases, the evolution of h42 becomes
closer to its equilibrium. However, a consequence of this
change is that the feature of the nonexponential IPI distribu-
tion gradually disappears and becomes closer to an expo-
nential distribution. This implies that the inhomogeneity
of the occurrence of puffs is primarily caused by the slow
recovery of h42. Therefore, assuming that the IP3R can
instantaneously follow the steady state cannot reproduce
results that fully explain the experimental data, which
confirms the necessity of introducing a relatively slow re-
covery rate ah42 .

However, we do not yet know the simplest possible
version of our model that can generate correct IPI distribu-
tions or other puff statistics. Preliminary results indicate that
the modal nature of the IP3R plays little role in the dynamics
of puffs and can thus reasonably be ignored in studies of
periodic Ca2þ waves. In this case, the simplest Markov
scheme is just a two-state open/closed model, with time-
dependent transitions. However, a complete study of this
question is well beyond the scope of this article and is left
for future work.

A major assumption in our model is that lh42 is heuristi-
cally modeled by Eq. 10 wherein an important parameter,
ah42 , is introduced to indicate the recovery rate of a single
IP3R from inhibition by Ca2þ. This assumption is based
on the appearance and statistics of observed puffs, rather
than on nonstationary single-channel data in Mak et al.
(13), because a relatively long (~2.4 s) recovery time given
by the data in Mak et al. cannot be achieved otherwise by
our model. The failure is mainly due to the saturation of
q42 curves for high [Ca2þ], as seen in Fig. S1b. To resolve
the problem, we need to consider two aspects. One is
whether the stationary single-channel data support a smaller
value of q42 for 300 mM [Ca2þ]. The other is whether [Ca2þ]
at the channel mouth during Ca2þ release can reach 300 mM.
The former needs more stationary data, whereas the latter is
still not clearly known. If [Ca2þ] can reach 300 mM, then we
need to modify the existing model, especially the values of
q42 for high [Ca2þ]. But if [Ca2þ] can only reach ~100 mM,
the dynamic data for 300 mM are not sufficient to reveal the
actual recovery rate. Because of this uncertainty, we use Eq.
10 as an alternative way of modeling the slow recovery
process.

Our new model is, to our knowledge, the first to repro-
duce, simultaneously, the correct statistics of IP3R opening
and closing, as well as the correct puff statistics. Although
most of the model results, like Figs. 5–9, could qualitatively
be reproduced by some older models (18,20–27), none of
these older models demonstrate the correct IP3R statistical
behavior. In addition, our model demonstrates that slow
recovery of an IP3R from Ca2þ inhibition is a crucial feature
for Ca2þ puffs, and shows also how the IPI distribution is
affected by the recovery rate (Fig. 4). We find that various
IPI distributions (either exponential or nonexponential,
both of which are seen experimentally (28)) obtained by
varying the recovery rate, ah42 , reveal that different puff sites
could exhibit different average recovery rates. In addition,
we also find that puff amplitude initially increases but
then becomes saturated as ah42 increases (Fig. S6). This sug-
gests that the number of IP3Rs at a puff site could be
severely underestimated if the average recovery process is
sufficiently slow.

We investigate the relation of puff amplitude and IPI in
the Supporting Material (Fig. S8), based on which we find
that a saturation in Fig. S8 occurs at about 1=ah42 . This could
be a way of estimating ah42 from experimental data. In addi-
tion, we find the following IPI seems to be independent on
the preceding puff amplitude by looking at the scatterplot
similar to Fig. S7 (results not shown). This could be
explained by Fig. 3, in which we can see that the inactivation
variable h42 will quickly drop to be very close to zero during
a puff regardless of the puff amplitude. Therefore, the inhib-
itory effect from preceding puffs with various amplitudes on
the following IPIs is nearly identical.

Puff amplitude has been reported to be nonlinearly related
to the maximum Ca2þ current such that, as maximum Ca2þ

current increases, puff amplitude initially increases linearly
but then becomes proportional to the square root of
maximum Ca2þ current (19,34,35). Our model gives the
same result. Thurley et al. (19) suggested that the nonline-
arity is due to local Ca2þ depletion in the ER/SR. However,
this conclusion was challenged by Solovey et al. (35), who
showed that this nonlinearity could be generated by a mean
field model or by using a stochastic model with a constant
single-channel Ca2þ flux. They also concluded that the
nonlinear relation was due to the dynamics of the Ca2þ-
bound dye. By comparing the nonlinear relation between
average puff amplitude and the number of IP3Rs (Fig. 8)
and the linear relation between average puff [Ca2þ] ampli-
tude and the number of IP3Rs (Fig. S9), our model supports
the conclusion of Solovey et al. by showing that nonlinearity
arises from the nonlinear relationship between [Ca2þ] and
Ca2þ-bound buffer concentration, even when Ca2þ-bound
buffer is not saturated.

Ca2þ oscillations and waves usually exhibit a relatively
long decay time and periods ranging from a few seconds
to a few minutes. The mechanisms underlying long-period
waves remain unclear; this is perhaps the most important
unsolved problem in the theoretical study of Ca2þ waves.
One can obtain stochastically generated long-period waves
in models that do not have the correct puff statistics, but
there is as yet no model that has the correct IP3R statistics
and the correct puff statistics and can generate long-period
waves. Our own preliminary computations indicate that
our new model can generate short-period waves (around a
Biophysical Journal 105(5) 1133–1142
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few seconds) but not waves of longer period. However, we
leave a detailed study of this question for a future article.
SUPPORTING MATERIAL

Nine figures and two tables are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(13)00856-4.
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