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ABSTRACT In crop breeding, the interest of predicting the performance of candidate cultivars in the field
has increased due to recent advances in molecular breeding technologies. However, the complexity of the
wheat genome presents some challenges for applying new technologies in molecular marker identification
with next-generation sequencing. We applied genotyping-by-sequencing, a recently developed method to
identify single-nucleotide polymorphisms, in the genomes of 384 wheat (Triticum aestivum) genotypes that
were field tested under three different water regimes in Mediterranean climatic conditions: rain-fed only,
mild water stress, and fully irrigated. We identified 102,324 single-nucleotide polymorphisms in these
genotypes, and the phenotypic data were used to train and test genomic selection models intended to
predict yield, thousand-kernel weight, number of kernels per spike, and heading date. Phenotypic data
showed marked spatial variation. Therefore, different models were tested to correct the trends observed in
the field. A mixed-model using moving-means as a covariate was found to best fit the data. When we
applied the genomic selection models, the accuracy of predicted traits increased with spatial adjustment.
Multiple genomic selection models were tested, and a Gaussian kernel model was determined to give the
highest accuracy. The best predictions between environments were obtained when data from different
years were used to train the model. Our results confirm that genotyping-by-sequencing is an effective tool
to obtain genome-wide information for crops with complex genomes, that these data are efficient for
predicting traits, and that correction of spatial variation is a crucial ingredient to increase prediction accu-
racy in genomic selection models.

KEYWORDS
genotyping-by-
sequencing

genomic
selection

wheat
single nucleotide
polymorphism

quantitative trait
locus

spatial Correction
GBLUP
Shared data
resources

GenPred

Wheat is the thirdmost-important cereal crop in the world, with a total
production of 704 million tons annually (FAOSTAT, 2011). To meet
future market demands, some of the most important breeding objec-
tives include increasing total yields and the rate at which wheat breed-
ing programs adapt to new and changing environments.

New genomic tools in wheat breeding have allowed the in-
corporation of new allelic variants into adapted germplasm. Strategies
like quantitative trait loci and association mapping have aided in
identifying genes or genomic regions responsible for traits of interest
(Lander and Botstein 1989; Jansen 1993; Tanksley 1993; Risch and
Merikangas 1996; Pritchard et al. 2000; Kraakman et al. 2004; Kirigwi
et al. 2007; Neumann et al. 2010; Le Gouis et al. 2012; Yu et al. 2012).
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Trait-associated markers then become selection targets to assist in
molecular breeding programs (Collard et al. 2005; Landjeva et al.
2007; Collard and Mackill 2008; Buerstymayr et al. 2009). However,
these approaches have limitations due to the difficulty in detecting
significant markers within gene regions that are involved in the ex-
pression of complex traits influenced by many genes at different levels
(Xu 2003). The most important traits involved in breeding are com-
plex. Therefore, other strategies that take into account thousands of
markers at one time in a model to predict complex traits have recently
been developed.

Genomic selection (GS) is a recent approach that is being applied
in crop breeding to make decisions for advancing germplasm from
one generation to the next. GS was first proposed in animal breeding
by Meuwissen et al. (2001). The development of high-throughput
sequencing platforms, yielding a vast amount of information for each
genotype allows the application of GS. For GS to be applicable in
commercial breeding, genotyping methods need to be cost-effective.
Genotyping-by-sequencing (GBS) is a high-throughput genotyping
method that has been shown to be very useful for complex genomes
like wheat (Poland et al. 2012a; Poland and Rife 2012). GBS costs are
directly linked to the decreasing cost of sequencing driven by global
research into developing new low-cost sequencing technologies and
platforms. The wheat genome is very large at16 Gb (i.e., five times the
human genome) and very complex with 80% repeated regions and
25–30% of its genes duplicated (Bennett and Smith 1976; Dubcovsky
et al. 1996; Akhunov et al. 2003). Furthermore, wheat is a hexaploid
species with three genomes (A, B, and D) per chromosome (Sarkar and
Stebbins 1956; Dvorak and Zhang 1990; Dvorak et al. 1993). GBS uses
methylation sensitive enzymes, which results in the elimination of most
of the repeated regions and reduces the genome representation to in-
crease the efficiency of sequencing (Elshire et al. 2011; Sonah et al. 2013).

The development of novel statistical approaches for GS is a crucial
step, where all the genotypic information is taken into account to be
associated with phenotypic data by adjusting the parameters in
a prediction model. The parameters of the model are currently being
adjusted with linear models (Ridge regression [RR]), Bayesian
approaches (Bayes A and Bayes B), and semiparametric strategies
(reproducing Kernel Hilbert spaces [RKHS] and neural networks)
(Meuwissen et al. 2001; Gianola et al. 2003, 2011; de los Campos et al.
2010; Endelman 2011; Goddard et al. 2011; Poland et al. 2012b).
RKHS is defined by a “reproducing kernel,” which is a function of
the relationship between pairs of genotypes. RKHS is a semiparametric
approach, which could be represented as a parametric model by
choosing the appropriate kernel (de los Campos et al. 2010). Two
kernels that are commonly applied are known as RR and Gaussian
(GAUSS). The relationships between genotypes in RR are established

by the use of an additive model, and in GAUSS, the relationship
between individuals is calculated with Euclidean distances that take
into account epistatic interactions (Gianola and Van Kaam 2008;
Endelman 2011).

Because genotyping is taking a more routine and accepted
approach, improvements in model predictions are focused on pre-
cision phenotyping. Physiological differences and environmental
conditions that affect the precision of the measured phenotype need
to be taken into account to have an accurate GS prediction model. The
breeder needs to know with accuracy the fields in which selections will
occur; therefore, high-throughput phenotyping technologies are being
implemented before planting (characterization of field heterogeneity)
and during crop development to help reduce nongenetic variation
(Crossa et al. 2006; Cabrera-Bosquet et al. 2012; Masuka et al. 2012;
White et al. 2012). Otherwise, traditional methods are applied in
which field design takes care of most of the variation and model
correction mechanisms take into account the field heterogeneity that
produces spatial correlation errors. These spatial trends can be elimi-
nated with postdata treatment. Different strategies exist, including model
variance-covariance matrixes, row-columns, and moving-means (Cullis
et al. 1998; Peiris et al. 2008; Müller et al. 2010; Leiser et al. 2012).

The objectives of this study were (1) to validate the GBS technology
as a tool for genotyping germplasm with complex genomes; and (2) to
create an optimized training model for GS with a germplasm to be bred
in a Mediterranean climate environment of central Chile, using
a diverse set of wheat genotypes. Our study confirms that GBS is an
inexpensive, robust, and useful tool to obtain genomewide information
for breeding programs that work with complex genomes, such as
wheat. Furthermore, we evaluate that spatial adjustment of the
phenotypic data in each trial is very important to reduce error in
the model and increase prediction accuracy. Here we evaluate spatial
variation across the field, while also exploring fundamental variations
that take into account environmental and genotypic interactions.

MATERIALS AND METHODS

Germplasm and growth conditions
The germplasm consists of 384 advanced lines from two different
breeding programs, including 55 lines from the wheat breeding
program at Instituto Nacional de Investigación Agropecuaria (INIA)
in Chile, 143 from the International Wheat and Maize Improvement
Centre (CIMMYT) that were previously selected for adaptiveness to
Chilean environments (these lines share common ancestors with the
INIA-Chile breeding program), and 186 lines from INIA in Uruguay.
The objective with this set of lines was to create a germplasm base to
breed for drier areas in Chile and subsequently other countries within
the projects involved.

n Table 1 Description of models used to adjust the phenotypic
data

Model Name Model Expression

IB y = g i + repj + bl(rep)ijk + eijk
RC y = g i +rep j + fil(rep) jk + col(rep) jl + eijkl
RCB_MVNG y = gi + bxj + repk + eijk
MVNG y = u + bxi + ei

IB, incomplete blocks, field design; g, treatment; rep, repetitions; bl(rep),
incompletes blocks nested in repetitions; e, residual; u, general mean; RC,
row by column model; fil(rep), rows nested in repetitions; col(rep), columns
nested in repetitions; RCB_MVNG, random complete block model with moving
means as covariable; x, covariable as phenotypic value of plot minus means of
neighbors plots within grid; MVNG, linear regression model with moving means
as covariable.

Figure 1 Diagram to calculate the covariable xi. Yi is the phenotypic
value in the plot. The neighboring plots are indicated with gray color.
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The breeding germplasm was evaluated in the Mediterranean
environment Santa Rosa (36�329 S, 71�559 W; 217 m.a.s.l.) under two
levels of water supply, mild water stress and fully irrigated, in 2011. In

2012 the lines were evaluated in Santa Rosa under the two levels of
water supply and also evaluated in Cauquenes (35� 589 S; 72� 179 W),
a traditionally dry-land agricultural region with lower yield potential.
Cauquenes has a granitic soil (Alfisol) with low fertility; the minimum
average temperature is 4.7� (July), the maximum is 27� (January) and
the long-term average annual precipitation is 695 mm. Santa Rosa has
a volcanic soil (Andisol) with adequate fertility for wheat; the mini-
mum average temperature is 3.0� (July), the maximum is 28.6� (January),
and long-term average annual precipitation is 1270 mm (del Pozo and
Del Canto 1999).

The experimental design was an alpha-lattice with 20 incomplete
blocks, with each block containing 20 genotypes. Two replicates were
used at both trials of Santa Rosa in 2011 and 2012 and at Cauquenes
in 2012. Plots consisted of five rows of 2 m long and 0.2 m distance
among rows. Sowing dates were on August 31st and September 7th at
Santa Rosa and Cauquenes, respectively, and the sowing rate was 20 g
m2. Plots were fertilized with 260 kg ha21 of ammonium phosphate
(46% P2O5 and 18% N), 90 kg ha21 of potassium chloride (60% K2O),
200 kg ha21 of sulpomag (22% K2O, 18% MgO, and 22% S), 10 kg
ha21 of boronatrocalcita (11% B), and 3 kg ha21 of zinc sulfate (35%
Zn). During tillering, an extra 80 kg ha21 of N was applied. Weeds
were controlled with MCPA at 750 g a.i. ha21 + Metsulfuron Metil 8 g
a.i. ha21. Furrow irrigation was used at Santa Rosa: one irrigation (at
tillering) for the mild water stress trial and four irrigations (at tillering,
flag leaf emergence, heading, and middle grain filling) of ca. 50 mm
each for the fully irrigated trial.

For phenotyping, all lines were evaluated for grain yield (GY),
thousand kernel weight (TKW), number of kernels per spike (NKS),
and days to heading (DH) in 2011. In 2012, only GY was evaluated.
For the yield components (TKW and NKS), 25 spikes were randomly
selected from each plot. For GY, the whole plot was harvested. DH

Figure 2 PCoA from dissimilarity matrix calculated with genetic data.
Points in red represent advanced lines from the INIA Chile breeding
program, green points identify lines from CIMMYT, and blue points
denote advanced lines and prebreeding lines from the INIA Uruguay
breeding program.

Figure 3 GBS-based SNP distribution along
different wheat chromosomes.
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was recorded as the number of days from sowing till 50% of spikes
emerged.

SNP identification
Genomic DNA was extracted using DNeasy Plant Maxi Kit (QIA-
GEN). Library construction was followed by using the PstI-MspI GBS
protocol described by Poland et al. (2012a). This step and sequencing
was performed twice. The libraries were made in collaboration with
the Kansas State University, Manhattan, Kansas, and the Institut de
Biologie Intégrative et des Systèmes at the Université Laval, Quebec,
Canada. The sequencing was performed on an Illumina Hi-Sequation
2000 at the DNA core facility at the University of Missouri, Columbia,
Missouri, and the McGill Univesity-Génome Quebec Innovation
Centre (Montreal, Canada) for each set of libraries. The sequences

were analyzed, in relation to base quality and distribution of se-
quence in different samples, using the Galaxy (http://galaxy.psu.
edu/) software.

Single-nucleotide polymorphism (SNP) calls were made using the
Tassel Pipeline (TP; http://maizegenetics.net), with modification for
nonreference SNP calling by Poland et al. (2012a). The TP handles the
sequence information coming from next-generation sequencing. Tags
are defined, which are a set of identical sequences, and then the
number of sequences per tag are counted. To handle tags with se-
quencing errors, the parameter to eliminate tags was established at less
than 15 sequences. Tags are then defined individually by the lines that
it came from. A pairwise alignment between tags to call some set of
potential SNPs is then established. The TP has different filters for
calling SNPs. In this study inbred lines that are in a highly homozygous

Figure 4 Plot residuals along the field for each model analysis for Santa Rosa irrigated. The color scale shows the value of residuals as indicated.
(A) Residuals for incomplete blocks, field design; (B) residuals for RC; (C) residuals for RCB_MVNG; (D) residuals for MVNG.
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state were used; therefore, the “inbreeding coefficient” filter was used
and set to 0.9 to eliminate high amounts of heterozygotes. The minor
allele frequency filter was set to 0.01, and the minimum locus coverage
was set to eliminate SNPs with more than 80% missing data. Once
the complete SNP matrix was established (supporting information,
File S1), the missing data were imputed using the realized relation-
ship matrix method multivariate normal expectation maximization
(MVN-EM) described by Poland et al. (2012b) with the R environ-
ment (R Development Core Team 2008) package rrBLUP (Endelman
2011). To further verify that the imputed SNPs were not affected, we
correlated the genetic relationship matrix with and without imputed
SNPs. Then, to further verify the quality of the imputed SNPs,
marker-based kinship matrixes between random subsets of SNPs
were calculated and compared with the rrBLUP software package
(Endelman 2011).

Genetic and phylogenetic comparisons
SNP data from 384 diverse wheat genotypes were used to calculate the
kinship (A) matrix of genotypes using the EMMA package (Kang
et al. 2008) in R environment (R Development Core Team 2008).
The dissimilarity matrix (1 2 similarity matrix) was analyzed by
principal coordinate analysis (PCoA) by use of the ape package (Paradis
et al. 2004) in R.

Sequence alignments
The SNP tags were BLASTed against the sequence database available
from the Synthetic x Opata map by Poland et al. (2012a) (available at
http://www.wheatgenetics.org/index.php/download/viewcategory/10-
synop) using blastn from package NCBI-BLAST+ (Altschul et al.
1990) setting the parameters, maximum target, and number of
threads at 1 and percent of identity at 95%.

Figure 5 Plot residuals along the field for each model analysis for Santa Rosa nonirrigated trial. The color scale shows the value of residual effects
as indicated. (A) Residuals for incomplete blocks, field design; (B) residuals for RC; (C) residuals for RCB_MVNG; (D) residuals for MVNG
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Linkage disequilibrium (LD) between each pair of mapped SNPs
was calculated as r^2 using the trio package (Schwender et al. 2012) in
R. SNPs were ordered following the bin map order presented in the
database used by Poland et al. (2012a). After SNPs were ordered, the
LD values were plotted using the LDheatmap package (Shin et al.
2006) in R.

Phenotypic predictions
Phenotypic data were analyzed using the lme4 (Bates 2007) and
mvngGrAd (Technow 2012) packages in R. The analysis was per-
formed individually for each condition and year. Two different mixed
models and one linear regression model (Table 1), defined as Row-by-
Column (RC), Random Complete Block model with moving means
(RCB_MVNG), and linear regression model with moving means as
covariable (MVNG), were considered to account for spatial correla-
tions. Two of the four models use a covariable to correct for spatial
variation in the field. The covariable (xi) was calculated as the value of
phenotypic plot minus mean phenotypic value of neighbors plots, xi =
yi – mean (y1, y2, y3, y4, y5, y6; Figure 1).

The three mixed models have a general expression as follows:

y ¼ bXþ Zuþ e

where X is the design matrix for fixed effects b, Z is the design matrix
for random effects, and u and e are the residual matrix that follows the
distribution e ~ N(0,se

2I). After the analysis of the residuals from each
phenotypic model was established, the best linear unbiased predictors
(BLUPs) were obtained to calculate genomic predictions by genomic
best linear unbiased predictor (GBLUP) using the rrBLUP package
with two different kernels, RR and GAUSS (Endelman 2011). The
predictions were validated with 100 replications using the cross vali-
dation method described by Crossa et al. (2010). The samples were
subdivided in seven similar sets. The training population was com-
posed of six of the sets (86% of the samples) and the validation was
performed on the remaining set (14% of the samples). For predictions
between environments, adjusted data from two environments were
used to train predictions in the remaining three environments.

RESULTS

SNP identification
GBS SNPs were identified among sequences tag pairs by allowing one
to three mismatches between tags. Two library replicates for the 384
samples were analyzed jointly for SNPs, producing a total of 102,324
SNPs. Similarity matrices calculated with and without imputation
shown high correlation (r = 0.990, p , 0.001).

Genetic and phylogenetic comparisons
To test the predictability of the markers in constructing a genetic
relationship matrix, the 102,324 SNPs were divided into two randomly
assigned identical sets of 51,162 SNPs in each group. Two genetic
similarity matrices were constructed independently with each of the
sets of SNPs. The Pearson correlation between matrices was 0.997 (p =
0.001). A genetic similarity matrix was calculated with the complete
set of markers to perform a principal coordinate analysis. The germ-
plasm was separated in two groups, representing each breeding pro-
gram (CIMMYT-INIA Chile and INIA Uruguay). The first two
principal coordinates explained 12.9% of variation (Figure 2).

n Table 2 Broad sense heritability for each field trial

2011 2012
H2 IB H2 RC H2 RCB_MVNG / MVNG H2

SR_FI GY 0.42 0.44 0.57 0.622
TKW 0.88 0.88 0.89 —

DH 0.95 0.95 0.95 —

NKS 0.76 0.76 0.74 —

SR_MWS GY 0.33 0.37 0.56 0.641
TKW 0.79 0.81 0.82 —

DH 0.93 0.93 0.93 —

NKS 0.74 0.75 0.75 —

C_WS GY — — — 0.340

H2, broad sense heritability; IB, incomplete blocks, field design; RC, row by
column model; RCB_MVNG, random complete block model with moving means
as covariable; MVNG, linear regression model with moving means as covariable;
SR_FI, Santa Rosa under Full Irrigation; SR_MWS, Santa Rosa under Mild Water
Stress; C_SWS, Cauquenes under severe water stress; GY, grain yield; TKW,
thousand kernel weight; DH, days to heading; NKS, number of kernels per spike.

n Table 3 Accuracy of predictions for each trial in 2011 using random training sets with 100 independent randomizations

IB RC RCB_MVNG MVNG

SR_FI GY RR 0.298 6 0.117 0.296 6 0.119 0.319 6 0.114 0.319 6 0.113
GAUSS 0.312 6 0.117 0.310 6 0.120 0.325 6 0.117 0.326 6 0.116

TKW RR 0.780 6 0.056 0.780 6 0.056 0.777 6 0.057 0.843 6 0.040
GAUSS 0.786 6 0.055 0.786 6 0.055 0.782 6 0.056 0.847 6 0.039

DH RR 0.409 6 0.109 0.409 6 0.109 0.405 6 0.109 0.579 6 0.123
GAUSS 0.436 6 0.111 0.436 6 0.111 0.433 6 0.111 0.614 6 0.121

NKS RR 0.479 6 0.114 0.479 6 0.114 0.484 6 0.115 0.665 6 0.077
GAUSS 0.487 6 0.119 0.487 6 0.119 0.492 6 0.120 0.669 6 0.075

SR_MWS GY RR 0.236 6 0.141 0.275 6 0.147 0.231 6 0.127 0.347 6 0.134
GAUSS 0.231 6 0.144 0.273 6 0.150 0.260 6 0.128 0.370 6 0.132

TKW RR 0.759 6 0.061 0.762 6 0.061 0.757 6 0.058 0.841 6 0.034
GAUSS 0.764 6 0.059 0.767 6 0.059 0.761 6 0.057 0.845 6 0.034

DH RR 0.398 6 0.110 0.399 6 0.110 0.396 6 0.110 0.563 6 0.134
GAUSS 0.423 6 0.108 0.423 6 0.108 0.423 6 0.108 0.604 6 0.134

NKS RR 0.464 6 0.115 0.466 6 0.114 0.458 6 0.114 0.608 6 0.088
GAUSS 0.483 6 0.111 0.485 6 0.111 0.478 6 0.111 0.608 6 0.086

IB, incomplete blocks, field design; RC, row by column model; RCB_MVNG, random complete block model with moving means as covariable; MVNG, linear
regression model with moving means as covariable; SR_FI, Santa Rosa under full irrigation; GY, grain yield; RR, Ridge regression kernel; GAUSS, Gaussian kernel;
TKW, thousand kernel weight; DH, days to heading; NKS, number of kernels per spike; SR_MWS, Santa Rosa under mild water stress.
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Sequence alignments
When comparing sequences using BLAST against the Poland et al.
(2012a) GBS-based SNP database, we found that the sequences in
common showed a good coverage throughout all 21wheat linkage
groups. Of all the SNPs, 13% (13,357) found high-quality matches.
Although a good coverage was observed, the D genome presented
fewer SNPs than the A and B genomes (Figure 3). As expected, LD
analysis between mapped SNPs indicated high LD between closely
linked SNPs along all chromosomes (File S1).

Phenotypic analysis
Phenotypic data were collected under different soil water availability
in 2011 and 2012. The traits under study (GY, TKW, NKS, DH) were
analyzed adjusting for field design and for spatial variation using
linear mixed models. The residuals for the adjusted traits in 2011 were
heterogeneous due to spatial correlations (Figure 4 and Figure 5).
Other models (RC, RCB_MVNG, and MVNG) were considered to
reduce correlations between residuals. The RC model was inadequate
to correct the residual heterogeneity, because the same spatial corre-
lation was observed (Figure 4 and Figure 5). The other two
(RCB_MVNG and MVNG) models adjusted, which include the mov-
ing means as a covariable, presented homogeneous residuals along the
field (Figure 4 and Figure 5). In addition, the broad sense heritability
was calculated for each model. The greatest heritability value was for
the MVNG model for all traits (Table 2).

In 2012 the fields had minimal spatial variation; therefore, after we
adjusted the phenotypic data with the intended field design, the
residuals we observed were homogeneous throughout the field. The
heritability for yield was greater for the 2012 trials than for the 2011
trials. Cauquenes, which was a dry-land condition with more drought
stress, presented a more pronounced field variation (Table 2) resulting
in a lower heritability than the other two fields in 2012.

Phenotypic predictions
A GS model using the GBLUP approach was fitted for each trait, using
the line BLUPs of the best-fit phenotypic model. In all cases the 86%
of genotypes were used to train the genomic model and the
predictions were assessed in the other 14%. The predictions were
evaluated using 100 cross validations with the training and prediction
sets randomly partitioned.

We determined the standard deviation across all correlation for
each model. The RR and GAUSS kernels were tested for each GS
model. In most of the cases GAUSS performed better than RR. In
general, the phenotypic data adjusted with MVNG, resulted in greater
prediction accuracies, although high standard errors were observed
(Table 3). The prediction accuracies for 2012 were greater than for
2011 (Table 3 and Table 4).

All possible combinations of the trials were used to test as training
sets to observe the prediction accuracy from year to year or from one
environment to the next. Because of the high variation from year to
year, the best predictions were obtained when adding information in
the model that included both years (Table 5).

DISCUSSION
The challenge in wheat breeding is to accelerate the adaptation of
germplasm for more efficient and rapid results, if possible, to increase
yield, and to adapt to future climate change. Tools are now available
that allow taking up this challenge and relate the complex genetic
mechanism involved in phenotypic expression in relation with
environmental interactions (Heffner et al. 2009).

Genotypic analysis
We detected 102,324 SNPs using two library replicates, which were
used to calculate a dissimilarity matrix, which was analyzed by PCoA.
As described by Poland et al. (2012a), we didn’t expect big differences
between dissimilarity matrixes calculates with and without imputa-
tion. For PCoA, the lines were grouped by breeding program of origin.
This was expected as the lines from the same breeding program
should be more similar genetically because they share a common
parental background and were bred under similar developmental con-
ditions (Rauf et al. 2010).

When BLASTing against tags in the SynOpDH genetic map, we
found that 13% of the tags aligned with high similarity. These tags
were used to test LD between SNPs (File S1). High LD groups were
identified, which is expected if the genotypes in each sample are true
calls. In the same way, the distribution and concentration of SNPs in

n Table 4 Accuracy of prediction for yield in 2012 using random
training sets with 100 independent randomizations

RR GAUSS

SR_FI 0.487 6 0.093 0.516 6 0.086
SR_MWS 0.617 6 0.078 0.626 6 0.077
C_SWS 0.382 6 0.104 0.378 6 0.104

RR, Ridge regression kernel; GAUSS: Gaussian kernel; SR_FI, Santa Rosa under
Full Irrigation; SR_MWS, Santa Rosa under Mild Water Stress; C_SWS, Cauqenes
under Severe Water Stress.

n Table 5 Accuracy of predictions between different environments

SR_FI2011 SR_MWS2011 C_SWS2012 SR_FI2012 SR_MWS2012

1 0.292 0.319 0.263 0.294 0.414 0.405 2 2 2 2
2 0.221 0.234 0.192 0.205 2 2 0.626 0.637 2 2
3 0.291 0.312 0.251 0.275 2 2 2 2 0.761 0.760
4 0.569 0.641 2 2 0.319 0.310 0.592 0.624 2 2
5 0.626 0.681 2 2 0.258 0.249 2 2 0.622 0.619
6 0.628 0.718 2 2 2 2 0.403 0.426 0.458 0.453
7 2 2 0.560 0.639 0.329 0.326 0.592 0.620 2 2
8 2 2 0.604 0.662 0.271 0.269 2 2 0.610 0.615
9 2 2 0.624 0.693 2 2 0.430 0.445 0.466 0.465
10 2 2 2 2 0.088 0.109 0.330 0.358 0.303 0.325

In each case (1210), two environments were used to train the prediction model. SR_FI2011, Santa Rosa Full irrigated in 2011; SR_MWS2011, Santa Rosa mild water
stress in 2011; C_SWS2012, Cauqenes severe water stress in 2012; SR_FI2012, Santa Rosa full irrigated in 2012; SR_MWS2012,Santa Rosa mild water stress 2012.
The training sets were 1: SR_FI2012/SR_MWS2012; 2: C_SWS2012/SR_MWS2012; 3: C_SWS2012/SR_FI2012; 4: SR_MWS2011/ SR_MWS2012; 5: SR_MWS2011/
SR_FI2012; 6: SR_MWS2011/C_SWS2012; 7: SR_FI2011/SR_MWS2012, 8: SR_FI2011/SR_FI2012; 9: SR_FI2011/C_SWS2012; 10: SR_FI2011/SR_MWS2011.
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different chromosomes was in agreement with other assessments of
LD in elite wheat breeding lines (Chao et al. 2010). Although 13%
does not seem like a high proportion, the resulting number of SNPs is
13,357, which are well distributed and is a high number of SNPs,
allowing us to calculate LD across individuals and confirming high
correlations between closely linked SNPs per linkage group. This ev-
idence allows us to trust the quality of the SNPs identified through
GBS for genomic predictions.

Phenotypic predictions
Before predictions were made, the phenotypic data were adjusted and
residuals in the model were analyzed. The analysis showed a strong
spatial effect across the field for the 2011 data. The introduction of
a spatial correction model enabled a better adjustment in measure-
ments, showing an increment in the heritability of measurements. A
greater heritability indicates that a greater proportion of the variance
in the experiment is due to a difference between genotypes (Holland
et al. 2003). The models that showed a greater heritability also showed
an increase in the mean accuracies of genomic predictions. The im-
portance of taking into account appropriate field design prior to the
experiment has been demonstrated before (Federer 2003; Federer and
Crossa 2012). Strategies for data analysis also have been described in
cases in which the variability in the field has not been measured before
applying the field design and has made the field design ineffective
(Cullis et al. 1998; Piepho and Williams 2010). In this study we found
that these postdata adjustments improved the quality of our data. As
genotyping becomes less and less of a constraint for developing ge-
nomic prediction training sets, proper treatment of phenotypic obser-
vations is the key to increasing the accuracy of predictions. There are
studies that include sets of environmental variables in training models,
which are measured during experiments, with the objective to control
these sources of variation and consider genotypic · environmental
interactions (Chapman 2008). If the different sources of variation
could be measured, together with genotypic · environment interac-
tions, prediction accuracies should improve.

Another interest is the ability to predict phenotypes across
environments, or from year to year (Burgueño et al. 2012). However,
when predicting new lines in previously untested environments, most
prediction power is lost. Therefore, it is important to generate a grow-
ing database for model training, with corresponding sets of genotypes
for the breeding program and target environments and continually
increase the number of environments tested. In the present study,
greater prediction accuracies were observed when we used data from
2 years to train the model (Table 5). When training the model with
data from only one year, the accuracies of predictions were low be-
cause the year-to-year correlation was low (Table 5).

The accuracies of predictions were comparable with other work in
wheat, which have used different fingerprinting approaches (Crossa
et al. 2010; Heffner et al. 2011), adding confidence to the GBS
approach.

Two different statistical models were tested using the GBLUP
approach. The greatest prediction accuracies were achieved with
a Gaussian kernel. This model considers epistatic effects in addition to
additive effects modeled presented in RR models (Gianola and Van
Kaam 2008).

This study is part of a long-term objective to adapt wheat
germplasm to Mediterranean climate environments of central Chile
and subsequently to other regions in South America that are in similar
needs. Previous data (I. Matus, unpublished data) and experience
suggest that the 384 lines present traits incorporated from
CIMMYT, show adaptation to drier areas in Chile, and that both

germplasm groups (INIA-Chile and INIA-Uruguay) have shown
different degrees of adaptation to these Chilean environments. We
believe that this dataset contains the necessary genetic diversity for
a germplasm base to start a breeding program guided toward drier
areas in Chile.

The development of new genotyping tools has been the framework
to the practical implementation of GS. There are many crops with
different genomic characteristics that should be considered when
identifying the most suited genotyping methodology. In this study,
GBS was successfully applied for the genome-wide characterization of
wheat breeding lines. GBS is a low-cost approach that can be used to
genotype thousands of lines per year in a commercial breeding
program.

The challenge in leveraging genomic assisted breeding approaches
in applied programs now remains in obtaining high-quality and long-
term accumulation of phenotypic data from multiple years and
targeted environments. This study showed an increase in prediction
accuracy with proper treatment of phenotypic data from field trials.
High-throughput and high-precision phenotyping tools are being
tested and used that will be well suited for breeding program and
increasing predictions. Understanding and predicting the complex
interaction between genotype and environment will also be key to
select lines based on genotypic information.
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